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Abstract – the paper develops and compares a comprehensive 

range of configurations of artificial neural networks and 

support vector machines for solving the truck classification by 

weigh-in-motion problem. A local scatter point smoothing 

schema is also demonstrated as a means of selecting an optimal 

set of design parameters for each model type. Three main 

model formats are considered: (i) a monolithic structure with a 

one versus all strategy for selecting truck type; (ii) an array of 

sub-models each dedicated to one truck type with a one versus 

all truck type selection strategy; and (iii) an array of sub-

models each dedicated to selecting between pairs of trucks. 

Overall, the SVM approach was found to outperform the ANN 

based models.  The paper concludes with some suggestions for 

extending the work to a broader scope of problems. 

Keywords – artificial neural network; empirical modeling; 

support vector machine; truck weigh-in-motion. 

I.  INTRODUCTION  

 Empirical modeling is concerned with the development 
of a representation of some aspect of a system based on data 
observed from that system or from an analog of that system.  
While empirical modeling is widely used in fields such as 
business, engineering, and science, its poses many challenges 
that need to be overcome before its full potential can be 
realized [1].  The ability to classify moving trucks based on 
the strain envelopes they induce on bridge girders (termed 
weigh-in-motion) has been identified as an example problem 
rich in the issues challenging empirical modeling, and thus 
provides a good point of reference in developing and 
evaluating this modeling technique [1]. 

To date a variety of empirical modeling techniques have 
been applied to the problem of truck-type classification from 
bridge weigh-in-motion data.  Supervised learning methods 
such as artificial neural networks (ANNs) have been studied 
extensively in this regard. In a comprehensive study by 

Gagarin et al. [2] an ANN was used to map directly from a 
stream of strain readings measured on a bridge girder 
resulting from a truck crossing event to an output array 
where each element represented a truck type; the output 
element with the strongest response represented the ANN’s 
determination of the truck-type.  This approach demonstrated 
reasonable accuracy in classifying trucks, around 857% 
correct classifications, but it did not perform well for truck 
types with similar wheel configurations.  A later study [3] 
attempted to improve performance by using a type of 
Hamming Network (a binary classifier) with novel 
presentation formats.  While both types of ANN showed 
some promise as classifiers, they suffered from a more 
fundamental problem associated with direct-mapping 
solutions, namely that each classifier can only work for a 
single bridge configuration.  Each new bridge requires 
collection of a new set of training patterns followed by 
training of a new classifier.  Moreover, it is not possible to 
extend the scope of application of these classifiers by 
including additional input variables to describe a bridge’s 
configuration since this would lead to a geometric explosion 
in the number of training patterns required.  

In an attempt to get around this problem, a radically 
different approach was considered by Vala et al. [4] based on 
genetic algorithms (GAs).  In this study the GA was used to 
evolve a truck-type configuration that could best explain the 
strain envelope, and a numeric structural model of the bridge 
was used to evaluate the evolving solution.  While the GA 
approach was, in principle, more flexible than the ANN 
classifier in terms of its scope of application, the study was 
only preliminary and its ability to estimate truck-type 
satisfactorily was not conclusive.   

Work is on-going at the University of Florida developing 
more flexible methods of classifying truck-types from 
weigh-in-motion data as part of a broader line of study 
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developing empirical modeling methods.  However, to 
conclude the work on direct-mapping it was decided to 
compare the use of ANNs to that of support vector machines 
(SVMs), an empirically based classification device that has 
developed a growing interest since the mid-1990’s with 
success in a diverse range of applications including facial 
detection [5], CT image recognition [6], and market power 
estimation [7]. 

This paper is specifically concerned with comparing the 
performance of SVM and ANN based approaches to weigh-
in-motion based truck-type classification.   

II. MODELING APPROACH 

A. Truck Types and Bridge Properties 

A total of nine different truck types were considered in 
this study, representing those most frequently operating on 
US highways, as adopted in earlier research [8] and outlined 
in Figure 1. For each truck type there is a range of values 
defining its axle loadings and axle spacings as summarized 
in Table I. 

 

 
Figure 1.  Nine truck types used in this paper (adapted from Gagarine et 

al. [1]) 

TABLE I: AXLE LOAD AND SPACING RANGE OF NINE TRUCK TYPES 

(adapted from Gagarine et al. [1]) 

 
 
The bridge type considered was 100 meters in length, single 
span, simply supported, with a single lane.  The bridge was 
treated as a rigid beam and the study assumed no dynamic 
effects on the structure.  Single truck crossing events only 
were considered. 

B. Model Structure 

A truck crossing event was represented as an array of 
bending moments induced at mid-span, while the type of 
truck inducing the bending moments was indicated across an 
array of outputs. 

Three different model formats were considered as 
illustrated in Figure 2.  The first model format comprised a 

monolithic model that mapped directly from the input array 
of bending moments to a set of 9 outputs representing the 
different truck types.  Each output represented a different 
truck type and was capable of generating a value between 0.0 
and 1.0.  The output that generated the closest value to 1.0 in 
response to a set of bending moments was assumed to 
identify the truck type.  This format was only adopted for the 
ANN model since SVMs cannot include more than one 
output.  

 

 
Model Format 1 

 

 
Model Format 2 

 
 

 
Model Format 3 

 

Figure 2.  Three model formats adopted for the study 

The second model format shown in Figure 2 comprised a 
set of 9 sub-models, each dedicated to a single truck type.  A 
single array of bending moments was shared as input, and 
each sub-model had a single output capable of generating a 
value between 0.0 and 1.0.  As for the first model format, the 
output that generated the closest value to 1.0 was assumed to 
identify the truck type.  This format was adopted for both the 
ANN and SVM models. 

The third model format shown in Figure 2 comprised 36 
sub-models, each dedicated to selecting between a pair of 
truck types (there being 36 permutations of truck pairs in 
total).  A single array of bending moments was shared as 
input.  Each output would select between a pair of trucks.  
For example, sub-model 1 was dedicated to comparing truck 
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types 1 and 2; an output of 0 would indicate truck type 1 and 
an output of 1 would indicate truck type 2.  The truck type 
with the most selections across the output array was assumed 
to be the truck type crossing the bridge. 

C. Truck Crossing Simulation 

The data used for training and validation of the models 
was based on a random selection of truck configurations 
(based on Table I).  Data was generated by simulating the 
passage of a truck over the bridge. The bending moment 
induced at the mid-span of the bridge, m, was calculated 
during the truck crossing event using a 50 Hz sample rate as 
indicated in Figure 3.   

 

 
Figure 3.  The simulation of a type 3S truck passing a bridge and its 

bending moment envelope 

Each simulated truck crossing event was used to generate 
a single input to output pattern to be used for training or 
validation of the models/sub-models.  For model formats 2 
and 3, each sub-model was trained independently. Each 
pattern comprised 626 inputs representing the bending 
moments induced by the truck crossing event, and an array 
of binary outputs used to indicate truck type.  A total of 900 
input patterns were generated (100 for each truck type) and 
the corresponding outputs were tailored to match the 
operation of each model/sub-model.  For each pattern, the 
axle loads and spacings were selected using a uniformly 
distributed random variate with values ranged between the 
limits listed in Table I. 

III. PRELIMINARY MODEL DEVELOPMENT 

Training of both the ANN and SVM models requires 
preselection of certain training parameters, the values of 
which can significantly affect the performance of the model. 
In addition, since the initial input arrays have a high 
dimension (626 values) Principal Component Analysis 
(PCA) was used to prune this number down to something 
more manageable.  

The architecture of the ANNs adopted for this study was 
the popular feedforward layout.  Two ANN variants were 
considered, one with a single hidden layer of 600 neurons 
and a second with two hidden layers of 300 hidden neurons 
each.  This provided a total of four ANNs, two using format 
1 (Figure 2) and two using format 2.  All ANNs used the 
sigmoidal activation function.  Future work may use a 
sensitivity analysis to assess the dependence of model 
performance on the number of hidden neurons. The training 
algorithm used for the ANN was error backpropagation, a 
gradient descent technique, and was implemented within the 
MATLAB R2012a environment. 

Since the ANN backpropagation approach requires a 
careful selection of the step size to ensure convergence and 

acceptable training quality, this study tested a range of 
learning rates from 0.01 to 0.1 in intervals of 0.01.  

For the SVM, the kernel function adopted was the Radial 
Basis Function due to its popularity. The SVM’s kernel 
function also requires a careful selection of its scaling value, 
and so a range of values were tested from 3.60 to 3.70 with 
intervals of 0.01. 

For pruning the number of input variables, a range in the 
array size was considered from 10 to 55 in steps of 5, using 
principal component analysis (PCA) to select the most 
significant inputs in each case. 

A. ANN Development, Model Format 1 

Training of an ANN was allowed to progress until 300 

training epochs had been completed. Training used a 

random selection of 80% of the 900 pattern data set.  The 

remaining 20% of the patterns were used for validating the 

resultant ANN.  Model development was repeated for the 

range of learning rates and input vector sizes outlined 

above, providing 100 training trials. These experiments 

were repeated 10 times, each occasion using a different set 

of 900 patterns.  The performance of the ANNs was 

measured as the portion of the validation patterns correctly 

classified.  This was averaged over the 10 repetitions of the 

experiment.  Local scatterplot smoothing (LOESS) was 

adopted (with a span value of 0.15) to find the location of 

the peak performance and thus the optimal values for the 

number of input variables and the learning rate. Figure 4 

shows the results of these experiments, plotting the 

proportion of correct classifications (from 0.0 to 1.0, color 

coded) against the number of inputs (PCA derived) and the 

learning rate.  The optimal values were found to be 32 for 

the number of inputs and 0.088 for the learning rate.  The 

corresponding R square value was 0.8249, indicating an 

acceptable description of parameter relationship using the 

smoothing method.  

 

 
Figure 4.  LOESS regression on the performance of ANN Format 1 with 

one hidden layer 
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The experiment was repeated this time using an ANN 

with two hidden layers, with the resultant performance 

surface shown in Figure 5.  The optimum set-up was found 

to be 35 inputs and a learning rate of 0.0676. The R squared 

value was again acceptable at 0.8926.  

 

 
Figure 5.  LOESS regression on the performance of ANN Format 1 with 

two hidden layers 

B. ANN Development, Model Format 2 

The set of experiments described in section A above were 
repeated but this time using the model format 2 shown in 
Figure 2, that is, the system comprising 9 sub-models.   

For the one hidden layer ANN, the number of hidden 
neurons in each sub-model was 67 for the one hidden layer 
ANN, giving 603 hidden neurons in total.   For the two 
hidden layer ANN, 33 hidden neurons were included in each 
layer of each sub-model providing a total of 594 hidden 
neurons. 

Figure 6 shows the results of these experiments, as before 
plotting the proportion of correct classifications against the 
number of PCA selected inputs and the learning rate.   

 

 
Figure 6.  LOESS regression on the performance of ANN Format 2 with 

one hidden layer 

The optimal values were found to be 39 for the number of 
inputs and 0.06520.088 for the learning rate. The 
corresponding R square value was acceptable at 0.8304. 

Similarly Figure 7 plots the LOESS smoothed surface 

representing the proportion of correctly classified validation 

patterns for the two hidden layer ANN based on model 

format 2.  In this case the optimal values were fund to be 40 

for the number of PCA selected inputs and 0.0736 for the 

learning rate, with an R square value of 0.8304. 

 

 
Figure 7.  LOESS regression on the performance of ANN Format 2 with 

two hidden layers 

C. SVM Development, Model Formats 2 and 3 

The next set of experiments concerned development of 
the SVM models, the first using the one versus all strategy 
(model format 2, Figure 2) and the second using the one 
versus one strategy (model format 3, Figure 2). 

Figure 8 shows the LOESS smoothed performance 
surface for the SVM based on model format 2.  This plots the 
proportion of correctly classified trucks in the validation data 
set versus the number of PCA selected inputs and the Radial 
Basis Function kernel scaling value. The optimal values were 
found to be 19 for the number of inputs and 3.6677 for the 
kernel scaling value, with an R square equal to 0.9984. 

Similarly the SVM system based on model format 3 is 
plotted in Figure 9.  The optimal values were 18 for the 
number of PCA selected inputs and 3.6960 for the kernel 
scaling value, with an R square value of 0.9999.  

It can be seen from Figures 8 and 9 that the scaling value 
did not play an important role in determining the 
performance of the resultant SVM. However, the number of 
PCA selected inputs was clearly very important for both 
SVM modeling approaches. 
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Figure 8.  LOESS regression on the performance of SVM Format 2 with a 

one versus all strategy  

 

Figure 9.  LOESS regression on the performance of SVM Format 2 with a 

one versus one strategy  

IV. MODEL EVALUATION 

The optimal values determined for the number of inputs 
and the learning rate or kernel value were used to develop 
the final versions of each of the 6 model forms. The 
performance of each of these models is compared in Figure 
10 in terms of their ability to correctly classify the validation 
patterns.  All 1,800 validation patterns generated across the 
10 data sets were used for this purpose. 

Clearly, the results demonstrate that the SVM models 
outperform the ANN models.  Of the SVM models, the one 
versus all strategy was found to slightly outperform the one 
versus one strategy. 

For the ANN models, the structure comprising 9 sub-
models significantly outperformed the monolithic ANN 
structure.  Having individual sub-models may allow the 
system more flexibility in learning the pattern of a specific 

truck type and therefore improve the accuracy of the entire 
model. 

 
Figure 10.  Comparison of optimal model performances for 1,800 

validation patterns 

For the ANN models, the number of hidden layers did 
not appear to have a significant impact on classification 
performance. 

Figure 11 provides an analysis of the misclassified truck 
patterns for the single hidden layer ANN, model format 1, 
for the validation patterns.  The blue arrows indicate the 
number and direction of the misclassifications. It can be seen 
from this figure that the misclassifications between truck 
type 7, 8 and 9 and truck type 1, 2 and truck type 3, 5 and 5, 
6 contributed to the majority of the misclassification 
instances. As might be expected, it is also apparent from this 
that the misclassifications tended to occur between trucks 
with similar axle configurations. 
 

 
Figure 11.  Analysis of truck missclassifications for the single hidden layer 

ANN, model format 1 (see Figure 2) 

 

V. CONCLUSION AND FUTURE WORK 

The study developed and compared the performances of 
6 ANN and SVM based truck classifiers using weigh-in-
motion data.  The optimal versions of each model were 
determined using a LOESS based empirical modelling 
parameter selection schema. The results indicated that the 
SVM models significantly outperformed the ANN models in 
terms of the number of correct truck classifications. 
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Future work should be concerned with developing 
models that are extendable to a wider range of problems, 
including bridges of different lengths, span configurations, 
and numbers of lanes, as well as situations involving 
multiple truck crossing events. Such models should also be 
able to estimate truck parameters such as axle loadings and 
spacing.  A challenge is to achieve this while circumventing 
the problem of a geometric increase in the number of training 
patterns with respect to the number of variables required to 
describe the problem.  
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