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Abstract—Airline revenue management employs forecasting and
optimization techniques to offer the right price at the right time
to the right customer. With the ability to store large amounts
of data comes the challenge to incorporate the information
contained in those data sets. This contribution considers the
estimation of demand segments present in a specific market
using nonparametrical methods on panel data. We employ finite
mixtures to model booking events in different time frames and
to obtain an estimator for the number of demand segments. Via
an airline revenue management simulation tool, we perform an
experimental study of the derived estimator. We discuss the results
with respect to the underlying demand structure of the simulation
and identified demand segments. The findings are discussed with
respect to theoretical and practical use. Finally, we discuss the
real world applicability and possible further research intentions.
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enue management

I. INTRODUCTION

A central theme of revenue management is analyzing
historical sales data to draw conclusions on the underlying
demand structure. A multitude of sources influence booking
data in airline revenue management. In addition, availability
control and product restrictions censor sales. This leads to
a discrepancy of historical sales data and actual demand.
Studying this issue helps to understand the market and to
improve revenue management optimization parameters.

To apply revenue management techniques, we have to
be able to segment the market. The goal is to optimize the
availability of products over time such that the customers’ will-
ingness to pay is exploited. Talluri and van Ryzin [1] give a de-
tailed overview of revenue management techniques. Naturally,
this motivates identifying demand segments and their behavior
to forecast the number of customers arriving in a certain time
frame. Airline revenue management usually segments demand
by characteristica including customers’ willingness to pay,
utility costs for different product properties (e.g., weekend stay,
minimum stay, economy or business class, number of transfers)
and date of the request or cancellation. One example would be
to simply segment the market into business travellers with a
high willingness to pay and late booking requests and private
travellers with lower willingness to pay and earlier booking
requests. In practice, this relatively simple distinction does not
suffice to obtain a satisfying forecast or optimization. Also,
most of the related works assume a fixed number of demand
segments as input into estimation or optimization procedures,
e.g., [2], [3]. Thus, we are motivated to find ways to obtain a
suitable amount of demand segments.

Revenue management forecasting usually relies on histor-
ical data to extrapolate demand. It is important to accurately
forecast demand, as for example a study by Pölt [4] suggests
that a 20% increase in forecasting accuracy may lead to an 1%
increase in revenue. As the amount of data stored by companies
steadily increases, methods to analyze these data sets are
needed. Most current, practice-oriented approaches explain
demand structures with parametric statistics or heuristics. For
an overview of forecasting methods see, e.g., the taxonomy of
Azadeh [5]. Parametric estimation needs specified underlying
distributions. We focus on nonparametric estimation of demand
structures here, which uses large data sets to remove the
assumption of a specific underlying distribution.

One example of the application of nonparametric statistics
to revenue management is presented by Van Ryzin and Vulcano
[6]. They propose an expectation-maximization approach for
analysing market structures. They identify demand segments
with their preferences over the set of alternatives and use an
iterative algorithm to create new sets of demand segments,
such that the probability for the observed booking distribution
is maximized.

To model customer decisions, we employ a discrete choice
model: Customers buy one of a set of products at each specified
time period. In the case of quantity-based airline revenue man-
agement, we identify products with discrete booking classes
on a specific flight itinerary and time periods correspond
to flight departures. Our proposed method to estimate the
number of demand segments works as follows: In a first step,
we formulate our model for panel data of two time periods
using a finite mixture model to represent the probability of a
booking event. An introduction to finite mixture models can
be found in McLachlan and Peel [7]. In the next step, we
decompose the model such that the estimation of the number
of demand segments becomes a rank estimation problem.
This idea is based on an approach of Kasahara and Shimotsu
[8], in which the authors derive sufficient conditions for the
nonparametric identifiability for various finite mixture models
in the framework of discrete choices.

This short paper is structured as follows: In Section 2,
we define a mathematical model of the booking process and
derive a lower bound for the number of demand segments
in a market. Section 3 discusses a study, which employs an
airline revenue management simulation tool in order to test
the methods in a theoretical environment. Finally, Section
4 reviews our findings, provides an outlook of the intended
extensions to the model, and addresses practical applicability.
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II. METHODS

The notion of finite mixture models is often applied in
economics, chemistry and health care [9]. In principle, this
modeling technique can represent an observation set as a
composition of several subpopulations. In the context of airline
revenue management, this can explain seemingly homogeneous
booking data by presuming the presence of a number of
demand segments.

As input for our estimation method, we use panel data.
Panel data is the generic term for data which is collected at
different times for the same population and the same indicators.
Here, we will observe customers for a set amount of flight
departures and store their booking decisions.

Suppose we have panel data of individuals over a number
of T time periods. In each time period t ∈ T , an individual
chooses to buy one alternative xi out of the set of available
alternatives X . Let M be the number of mixture components
contributing to the observed data. The probability of buying a
product is denoted by p∗m[x1] for the first time period and by
pm,t[xt] for t > 1. Each mixture component m contributes a
factor ωm ∈ [0, 1] to the observation. The baseline model of
our investigation then looks as follows:

P [{xt}Tt=1] =

M∑
m=1

ωmp∗m[x1]

T∏
t=2

pm,t[xt], (1)

where
∑M

m=1 ωm = 1 ensures that the probability (1) consists
of the contribution of demand segments. This means that the
probability for an event {xt}Tt=1 is completely explained by
the M mixture components.

Now, we can identify the nature of demand segments: Each
mixture component m represents a demand segment with its
own probability to book a specific class xt at different times
t. Thus, our objective to estimate the number of demand seg-
ments corresponds to estimating parameter M of our model.
We assume that panel data of customers for T = 2 time periods
is available.

Since the temporal spacing of time periods is not yet de-
fined and we consider an airline revenue management context,
let the time periods correspond to flight departures. On all
flights, the same set of booking classes X is offered such
that a booking event for two time periods is a tuple (x1, x2).
Therefore, the model (1) simplifies to

P [(x1, x2)] =

M∑
m=1

ωmp∗m[x1]pm,2[x2]. (2)

Let N be the number of individual observations in the panel
data and denote by xi = (x1, x2) the observation tuple of the
ith individual. Given this data, we can estimate the probabilities
P [(x1, x2)]. In a first approach, we use plug-in estimates for
this probability, i.e.,

pi,j = P̂ [(x1 = i, x2 = j)] =

∑N
i=1 1{(x1=i,x2=j)}(x

i)

N
. (3)

With these estimates, we can calculate an observable
|X| × |X| matrix P = (pi,j)

P =


p1,1 p1,2 · · · p1,|X|
p2,1 p2,2 · · · p2,|X|

...
...

. . .
...

p|X|,1 p|X|,2 · · · p|X|,|X|

 (4)

Note here, that in order to identify M , it is required to
have |X| ≥M .

Defining V = diag(ω1, . . . , ωM ), this admits the decom-
position P = P1V P2, where P1 and P2 are |X| × M and
M × |X| matrices consisting of the entries p∗m and pm,2,
respectively. We can now apply a simple rank argument: Since
rank(V ) = M and rank(Pi) ≤M , we have that

rank(P ) ≤ min
{
(rank(P1), rank(V ), rank(P2)

}
≤M (5)

Therefore, the rank of matrix P yields a lower bound for the
number of demand segments M , i.e.,

M ≥ rank(P ). (6)

III. RESULTS

Our results are based on an airline revenue management
simulation. It models the complete revenue management pro-
cess from forecasting demand to optimizing available booking
classes, to taking reservations of arriving customer requests. It
also includes an extensive stochastic demand model to create
artificial demand. Through simulation experiments, we obtain
data sets, which provide input for the estimation process.
Customers are generated according to several parameters (e.g.,
willingness to pay, preferred flight departure time, utility costs
for specific product properties). The algorithm draws these
values with a given error term from a normal distribution, to
create realistic variation. Demand segments in the context of
our simulation tool are then a specific set of these underlying
parameters. The set of available alternatives X is defined
by a set of 12 booking classes and the no-purchase alterna-
tive. We distinguish booking classes by price, compartment
and additional product properties, such as being refundable
or rebookable or requiring a minimum stay. These product
properties impose, depending on the demand segment, either
a penalty on the utility of the customer or an acceptance
probability, such that the customer has to decide if he accepts
this restriction or not without having further implications on
the utility. As expected, the more limitations are imposed on
a booking class, the cheaper its price. It is also possible for
booking classes to only differ in price. Three of the 12 booking
classes are located in the business compartment, the remaining
9 are located in the economy compartment.

Customers are identified by a unique customer identifica-
tion number. Thus, we can track their purchases over several
flight departures. We also assume that the simulation parame-
ters do not change over the course of both time periods, i.e.,
the willingness to pay, product restriction costs, and request
and cancellation date are constant for both flights for which
they requested tickets. In order to obtain different bookings
given constant demand, we varied the forecasts for both flights
such that the revenue management system does not offer the
same product availabilities in both cases. This was achieved
by introducing a forecast error as follows: For each booking
class on one flight itinerary, we draw a realization of a random
variable with uniform distribution on [0.8, 1.2]. The forecast
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for this booking class is then multiplied by the value of the
realization. This ensures that customers do not always book
the same class and that the panel data obtained is sufficiently
diverse.

To compute the rank of matrix P , we used a QR de-
composition with varying tolerance for eigenvalues which are
considered to be zero. This will be denoted by QRx, where x
is the number of decimal places which are considered non-zero
and the values of QRx are the lower bound for the number of
demand segments computed. We also modified the number of
customers we tracked over several simulation runs, to assess
the amount of data needed for convergence.

We performed the estimation procedure with three different
scenarios. The first data set is based on a simulation with only
two demand segments. These customers who book mainly
prefer the economy compartment, one demand segment that
has higher willingness to pay and the other has a lower
willingness to pay. The second data set describes a scenario
with six demand segments. Each of the demand segments has
its own set of parameters and therefore its own subset of the
available booking classes, which customers consider buying.
While this may be the most realistic scenario considered here,
we plan to perform the estimation for additional scenarios. The
third data set is similar to the first, but one demand segment
is mainly business oriented while the other one is mainly
economy oriented, such that there is an inherent separation
within the data set.

TABLE I. SIMULATION WITH TWO DEMAND SEGMENTS

Number of customers QR7 QR4 QR3 QR2 QR1
100 7 7 7 7 7
1000 7 7 7 7 7
10000 7 7 7 7 5
50000 8 8 7 6 5
100000 8 8 7 6 4

At first glance, the results exhibit some peculiarities. Table
I shows that the lower bound of demand segments actually
increases when the number of observations increases, i.e., from
seven to eight demand segments when observing 10000 and
50000 customers. We would expect the number of demand
segments to decrease as demand observations increase. The
reason that this is not always the case lies in the simulation
design. Since customers are stochastically generated, outliers
buy products that were not bought in simulation runs before.
The algorithm recognises these customers as a new demand
segment.

TABLE II. SIMULATION WITH SIX DEMAND SEGMENTS

Number of customers QR7 QR4 QR3 QR2 QR1
100 12 12 12 12 12
1000 13 13 13 13 13
10000 13 13 13 13 12
25000 10 10 10 10 10
50000 8 8 8 8 8
100000 7 7 7 7 7

Table II shows the results for the simulation with six
demand segments. A similar effect to the one in Table I takes
place for 100 and 1000 observations: Again, the lower bound
for the number of demand segments increases due to the
increase in generated customers and thereby customers who

booked booking classes that were not observed before. Here,
we also note that the sensitivity to the non-zero eigenvalues
is lowered compared to Table I. The only occurence of a
difference is at 10000 customers observed from 13 to 12
demand segments.

TABLE III. SIMULATION WITH TWO DEMAND SEGMENTS WITH DISTINCT
BOOKING BEHAVIOUR

Number of customers QR7 QR4 QR3 QR2 QR1
100 10 10 10 10 10
1000 10 10 10 10 8
10000 8 8 8 8 6
50000 7 7 7 7 4
100000 5 5 5 5 4

Table III shows the results of the estimation for the third
scenario setup. It includes two demand segments, which largely
differ in their booking behaviour. This means that customers
from one demand segment usually book cheaper economy
classes while the others book the more expensive economy
and business classes. A low amount of observations leads to
a high amount of estimated demand segments, since there is
a broad spectrum of booking classes booked. As the number
of observations increases, we obtain an even lower amount of
demand segments than in the first scenario (compare Table I).
Since it should be easier to separate two demand segments,
which are clearly distinct, than two which overlap in booking
behaviour, this meets our expectations.

These preliminary results indicate that the approach does
better for a higher amount of demand segments. The identifi-
cation of demand segments in this model still remains open, as
the presented methods do not explain the relationship between
the simulation-generated demand segments and those identified
by the estimation procedure presented here.

IV. CONCLUSION

We have developed a procedure to estimate a lower bound
of the number of demand segments from panel data. This
approach does not rely on the specification of an underlying
demand structure and thus can be used without the knowledge
of specific distribution functions. First preliminary results,
which are based on a simulation study of an airline revenue
management tool, show promising results.

There are several gaps to be filled in order to use the
presented methods in real world applications. Some simplifica-
tions limit the generality of the model, e.g., the assumption that
the probabilities are not dependent on previous time periods.
This is clearly not the case in real world scenarios. In the
introductory example, we can easily deduce that for business
travellers, the probability to book a business class again should
be higher than buying a lower economy class. We expect that
the probabilities are not too eratic. Still, assuming that we
obtained a number of demand segments in a market, we may
now use that knowledge to derive the probability distribution
of each segment. This requires panel data for at least three
time frames as is described in [8]. With these probability
distributions and the information of the booking data, we may
calculate a forecast for future flights.

Another point of interest is the distribution of requests for
the demand segments. As the estimation procedure uses final
booking data, i.e., booked classes after departure of the flight,
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the information about when the customer booked his flight is
lost. However, the request date is a crucial part of dynamic
revenue management optimization techniques. We may argue
that if we can obtain panel data in the first place, we should be
able to know when the booking was made. This would present
us with the possibility to make inference of when the demand
segments likely request over the booking horizon.

It is also difficult to assess the quality of the preliminary
results, as we do not know yet which initially created segments
are identified. The ultimate test should be to compare the
forecast, which resulted from this estimation procedure, with
forecasts of state-of-the-art methods currently used in practice.
One may also substitute different parts of already established
forecasting methods with nonparametric estimation procedures
in order to alleviate the need for a specific underlying distri-
bution which has to be specified beforehand. For example, we
may be able to represent price elasticities with the probabilities
of the demand segments.

In current practice, creating observation sets in the form
of panel data is difficult, since we usually only have access to
the information of how many bookings were observed in each
offered class after the flight departed. Neither the time of the
request nor the set of available classes at that time is stored.
The need to track each single customer for a set amount of time
frames is imperative for the presented estimation method. In
airline revenue management, we may consider the use of bonus
cards or improved tracking of online purchases of flights to
create such data sets. Other areas, where revenue management
is commonly practised, e.g., hotels and car rentals, may also
use the fact that customers usually have to leave personal
information when renting rooms or cars. The access to this
kind of information should be available and give more detailed
data sets.

The next steps to extend this model include to incorporate
more observable characteristica into the data set in order to
lower the amount of observations needed to obtain reasonable
results. We may additionally consider the availability of book-
ing classes at the request time as an explaining characteristic.
Also, other panel data sets have to be constructed from other
simulations to assess the behaviour of the lower bound. We
plan to create scenarios with up to 12 demand segments
present. This would amount to a scenario where each demand
segment has exactly one booking class which he is willing
to buy. In revenue management, these kinds of customers are
called product customers as opposed to priceable customers,
e.g. see [10], since their choice set only consists of the spec-
ified booking class and the no-purchase alternative. Another
approach would be to allow for incomplete observations of
customers, i.e., assess the viability of this method for customer
data sets which do not track every single customer for two or
more time periods. Incomplete or inaccurate observations may
also be created when the technique of collecting this panel data
is not able to exactly assign recurring customers. We plan to
use different rank estimation methods for our matrix rather
than an explicit calculation, e.g., the rank stastistic of Robin
and Smith [11] or Kleibergen and Paap [12].
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