
Design and Implementation of a Scalable SDN-OF Controller Cluster 

Min Luo
*
, Quancai Li

+
, Man Bo

+
, Ke Lin

+
, Xiaorong Wu

+
 , Chenji Li

+
, Sheng Lu

+
 , Wu Chou* 

                                                      *Shannon Lab, Huawei Technologies, Inc., Santa Clara, USA 
+
Shannon Lab, Huawei Technologies, Inc., Hangzhou, China  

Corresponding Author Email: min.ch.luo@huawei.com 

 
Abstract – Software-defined networking (SDN) is a new 

paradigm to increase network resource utilization, minimize 

management complexity, and reduce operational cost. While 

the logically centralized control in SDN offers many unique 

advantages that can enable globally optimized routing and 

resource utilization, the controller in SDN needs to be carefully 

designed to avoid being a performance bottleneck or a 

potential single point of failure of the network. This paper 

presents a scalable clustering approach for the design and 

implementation of SDN-OF controller. In the proposed 

approach, controller instances (threads, and processes on a 

single or multiple physical servers) will mostly run in equal 

mode for packet-in processing, and only few such instances will 

serve as the “master” to process special packets that may result 

in updating network states. A self-learning adaptive 

mechanism is incorporated to further optimize the number of 

the controller instances under the varying operating conditions 

to adapt to changes in network states, controller workloads, 

and controller data traffic flows dynamically. As a 

consequence, it automatically enables load balancing and fail-

over protection. The proposed approach has been successfully 

implemented and tested under some stringent conditions, and 

the performance advantages are observed. 

Keywords – Software defined networking; Openflow; 

Centralized Controller Cluster; Message Dispatching Cluster; 

Message Processing Cluster; Load Balancing; Fail-over. 

I.  INTRODUCTION 

Recent advances in computing technologies have led to 
new business opportunities with improved business agility, 
high productivity, and reduced operational cost. However, 
while devices and applications on the network are 
advancing rapidly, the underlying networking infrastructure 
(architecture and the protocol stack specifically) has been 
evolving at a much slower pace. This disparity causes 
difficulties and ineffectiveness to support applications 
emerging from new business opportunities, because the 
traditional network control and management environment is 
not well-suited for new innovation, especially the complex 
legacy network infrastructure which cannot meet the 
growing demands of the application needs. There is a 
growing effort, spearheaded by the Open Networking 
Foundation (ONF) to create an open and programmable 
networking environment through software-defined 
networking (SDN) [1].  OpenFlow [2] is such an industry 
effort of ONF, in which the network control plane is 
logically centralized and decoupled from the data 
forwarding plane. In SDN, OpenFlow (OF) is used as the 
protocol between the SDN controllers and the data switches 

to manage and dictate the networking behavior of OF 
compliant switches. 

In this paradigm, application developers, enterprises, and 
carriers can gain unprecedented programmability to control 
how data flows in the underlying data networks to best 
support the applications and readily adapt to their changing 
business needs. The openness and the flexibility in SDN 
provide new capabilities for offering better Quality of 
Service, and reducing the need to purchase specialized and 
expensive networking equipments. However, in SDN, 
network controller forms a logically centralized network 
control apparatus. If the processing power of the controller 
remains constant, flow setup time delay can grow in 
proportion to the packet-in traffics to the controller. This 
situation needs to be carefully addressed in SDN, especially 
when it scales up with an increasing number of OF switches 
in the network [2]. As such, there is a critical need towards a 
scalable centralized controller design and implementation, 
such that it can scale well with the size of the network and 
the growth of the traffics. To address this critical technical 
issue in SDN, new techniques and designs are needed to 
overcome the limitations in existing solutions.  In addition, 
more challenging stress tests and studies on the controller 
scalability are needed because of the central role of the 
controller(s) in SDN.  

SOX [9] is designed and implemented based on model 
driven technologies for extensibility and consitency. This 
allows SOX to take advantage of the recent advances in 
distributed computing, to enhance the controller generality, 
scalability, reliability, and interoperability. In addtion to be 
a generalized SDN controller which can support multiple 
evolving OF standards, e.g. OF1.0, OF1.2, OF1.3, etc., it 
also provides some key transformation capabilities to 
interworking with existing networks with BGP/PCE and 
exisiting transporting protocols such as MPLS.  

In this paper, we present an extension to SOX, and 
describe a centralized SDN-OF controller cluster 
architecture to scale up the network management power 
with the size of the data network (e.g. department, campus, 
branch data center or even a WAN, etc.). The remaining part 
of this paper is organized as follows. In Section II, we 
briefly summarize some design and architectural principles 
that is applied in the proposed approach. In Section III, we 
describe the design and architecture of the proposed scalable 
controller cluster and its main functional components. In 
Section IV, we present scalability studies and performance 
results. Findings of this paper and some future R&D 
directions are summarized in Section V. 

43Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-416-9

INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation

mailto:min.ch.luo@huawei.com


II. RELATED DESIGN AND ARCHITECTURE 

HyperFlow [3] is a distributed event-based control plane 
for OpenFlow, in which each controller directly manages 
the switches connected to it and indirectly programs or 
queries the other controller through proprietary 
communications. However, its scalability, performance, and 
robustness needs to be further studied and evaluated on 
large test-beds with more stressful conditions. ONIX [4] 
provides a platform in which a network control plane can be 
implemented as a distributed system, and it provides a 
general API for interaction among data, control, and 
management planes. It recommends that, as a good “best 
practice”, some consistency among distributed controllers 
could be sacrificed for high performance requirements. 
However, it does not address how to leverage the advanced 
high performance computing techniques to improve the 
performance of the centralized controller in order to 
minimize such inconsistency.  ElastiCon [5] focuses on 
dynamically shifting workload to allow the controllers 
operating at a pre-specified load window, while Kandoo [6] 
and DIFANE [7] try to limit the overhead of processing 
frequent events on the control plane. Moreover, DIFANE 
would keep all traffics in the data plane under control by 
selectively directing packets through intermediate switches 
with specific rules. Finally, OpenDayLight [8] currently 
allows a switch to be connected to one or more controllers, 
but only a single master controller can process new flow 
requests which is not for large networks in the current 
release. In addition, its management applications only 
operate on the controller(s) through fixed IP addresses that 
are assigned randomly without explicitly taking the load 
balancing needs into consideration. 

Following ONIX [4], some important principles for the 
design and implementation of SDN controller cluster are 
described as follows:  

A. Performance First 

As the size of the network with SDN-Openflow enabled 
devices increases, the amount of new flow requests between 
the switches and the controllers grow accordingly. A 
scalable controller cluster is needed to ensure that the short 
new flow setup latencies are maintained for all switches in 
the network as the packet-in traffics from the switches to the 
centralized controller scale up. As such, the performance is 
always the most important consideration in our controller 
design. 

B. Weak Consistency if Necessary 

As the network scaling up, keeping strong consistency 
of network-wide states and related information will 
consume lots of computing and storage resources for the 
centralized multi-controllers in SDN. Similar to [4], in our 
approach, the controller cluster would trade some 
consistency for high performance, since most of the 
instantaneous inconsistencies would have negligible effects 
to the controller. 

C. Light Weight Framework 

The framework of the controller (cluster) should be as 
light weight as possible for large-scale centrally controlled 
networks, so that it can ensure quick response to all control 
traffics destined towards the controller cluster and achieve 
high performance at relatively low cost. 

D. High Scalability:  

In order to meet the growing control traffic demands for 
large-scale networks, the controller cluster should be able to 
scale seamlessly and autonomously, as long as the 
aggregated I/O capacities are not fully consumed. 

E. Robust 

A controller cluster should provide highest possible 
reliability, availability, and resilience to all kinds of 
potential network errors, including failures of devices, 
software, and more importantly malicious attacks to the 
centralized controller and its communication channel(s). 
Only with this stringent robustness, can it protect the 
network against significant loss to the business 
opportunities and avoid catastrophic consequences due to 
the possible single point of failure of the controller cluster. 
In our approach, the controller cluster with multiple servers 
runs in the equal mode, which effectively provides 
automatic fast failover and load-balancing. 

III. OVERVIEW OF THE PROPOSED CENTRALIZED 

CONTROLLER CLUSTER APPORACH 

As discussed in the previous section, the new centralized 
SDN/Openflow control paradigm calls for robust and 
scalable controllers, especially for large networks with ever 
increasing and varying traffic volume. In this paper we 
propose an innovative multi-controller cluster and 
management mechanism to address the key issues in 
building a powerful and reliable centralized SDN-OF 
controller system that offers: 

 Automatic load balancing and failover. 

 Reduced communication overhead (synchronization 
and coordination between controllers). 

 Scalability and extensibility.  
The proposed cluster architecture is depicted in Figure 1, 

while [9] provides a detailed description on other core 
components such as the Network Information Base (NIB), 
Topology Management, Routing, Host Management, etc. 
The controller cluster consists of two major components: the 
message dispatcher (MD) or a MD Cluster (MDC), and the 
message processing cluster (MPC). 

The main function of MD is to establish TCP channel 
connection from switches to a MD server node in the cluster 
in order to receive various packet-in(s) (PI) into some 
policy-based and prioritized input queues depending on the 
type of packets (for example, normal PI messages, status 
updates, or control messages, etc.) and their processing 
priority.  

44Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-416-9

INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation

app:ds:randomly


……

MD1MD1

OFSwitch 1

Message  
Dispatcher
(Cluster)

Message 
Processing 
Cluster

Controller Cluster

OFSwitch3OFSwitch 2 OFSwitch m

“Master”

C

C C

C

Available MPI Pool
Active MPI Ring
“Equal Mode”

NormalNormal

NormalNormal

NormalNormal

NormalNormal

NormalNormal

… … 

MDnMDn

… … 

……

……

Figure 1. Diagram of controller cluster architecture 
 

The MPC is responsible for processing the received 
packets, finding the proper path by invoking routing and 
resource allocation optimization algorithms, transforming 
the optimized routing decisions into flow table entries, and 
sending them back to the MD while the MD will eventually 
transport these flow entries back to all the switches en-route. 

The following two subsections will discuss MD/MDC, 
and the MPC respectively. 

A. Message Distribution Cluster (MDC) 

A single message dispatcher server could control all 
switches and distributes all the messages to the MPC for a 
reasonably sized network. However its performance, 
especially its scalability could be limited by the total 
throughput of a single server, and also it lacks the required 
high availability and reliability for centrally managing a 
network of significant size, e.g. those networks with 1000 or 
more switching or routing nodes. 

In our proposed controller cluster, we extend the single 
message dispatcher to a Message Distribution Cluster 
(MDC) with multiple dispatcher server nodes as illustrated 
in Figure 1.  An OF1.3 enabled switch can be controlled by 
multiple controllers and support such features with a 
Message Distribution Cluster. 

When the controller cluster is initiated, each switch is 
configured to establish a connection with all MDC servers. 
Then the MDC servers distribute the handshake messages 
received from the switches to the Message Processing 

Cluster MPC, while the “instantaneous MP master” ( to be 
descried later) in MPC can record and maintain all the 
connected switches information after processing the 
handshake messages. In general, the MPC coordinates the 
management of the switches via consistent hashing to 
designate a MDC server for each switch. Policies can be 
configured such that each server within the MDC works in 
equal mode, while each server control (responsible for 
receiving, processing, and replying asynchronous messages) 
a number of designated switches. Currently, some 
rudimentary techniques are used for partitioning the network 
into “domains”, mostly utilizing the network topology 
information, such as “neighboring” and hop-counts to 
measure how close a switch is to all other switches, and then 
grouping the “neighboring” nodes into the same domain. If 
the MP master detects some MD servers leave the cluster 
for any reason, it would reassign those switches originally 
controlled by those left MDC without overloading any 
remaining active servers in the cluster. As illustrated, the 
inherent ring structure of the active Message Dispatcher 
Instances (MDIs) and those available and ready to serve 
MDIs in the MDI pool effectively enable the use of the 
enhanced consistent hashing in order to make sure all the 
servers in MDC are utilized in a balanced fashion. Therefore 
the MDC could achieve the required high performance, 
adaptability, and scalability even when servers are added or 
removed from the cluster for any reason. The detail of the 
process is depicted in Figure2. For simplification, the 
internal active MDI ring and the available pool are not 
depicted herein.   

 

……

……

……

OFSwitch 1 OFSwitch n

Message 
Dispatcher
Cluster

Message Processing Cluster

Controller Cluster

Master Normal Normal

1

2
2

3 3

4

1

4

Figure 2. Managing Switches in Dispatcher Server(s) 

 

The operation workflow has the following main steps:  

 Step1: Switch(s) initially connects with all the 
dispatcher servers in the MDC. 

 Step2:  Dispatcher servers send the connected switch 
messages to the MPC, where the instantaneous 
“master” MPI could process them. 

45Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-416-9

INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation

app:ds:maintain


 Step3: The “master” MPI will decide which 
dispatcher server is assigned to control this switch. 

 Step4: Dispatchers only reply to switches that they 
are responsible, in either master/slave or the equal 
mode. 

B. Message Processing cluster（MPC） 

The main function of the message processing cluster 
(MPC) is to receive and process switch messages from the 
MDC, send proper response messages (such as flow entries 
for routing the new packet-in) back to the MDC, while the 
MDC will dispatch those replies back to the relevant 
switch(s). 

MPC can be a stand-alone server, or a cluster of physical 
servers on its own, each such server can provide multiple 
message processing instances (MPIs) at either the thread or 
process level [9]. Again for the sake of high performance 
and reliability, a specialized cluster architecture is used in 
our approach. 

As depicted in Figure 1, the active MPIs within the MPC 
are organized into a ring structure, where each MPI would 
take the “master” role in turn for a short amount of time, 
while it will process the control and other status related 
messages within a certain specified time slot or until there 
are no more such messages to process, then it will proceed 
to become a normal MPI. For example, the “instantaneous 
master” is responsible for handling OF switching events, 
such as session connection, topology discovery, or status 
updates. Then it will quickly pull some packet-ins from the 
prioritized message queue and immediately pass the “master” 
role to the next MPI on the ring. After the previous “master” 
transitions itself into a regular “equal” mode MPI, it will 
start to process the packet-in message, and generate flow 
entries based on the routing and forwarding strategies and 
policies using the key packet-in attributes. 

As network load changes, more or less MPIs may be 
needed, and if the traffic suddenly surges, the proposed 
approach should be able to respond instantly to add more 
MPIs. Therefore, a separate pool of MPIs are initialized, and 
updated with the latest information from the shared NIB, 
and any MPIs in the pool are ready to be pulled into the 
active ring to process packet-ins or other control messages. 
In [9, 10], more details are presented on how the NIB, and 
the multiple priority queues are architected in the controller 
cluster. In this way, MPC can achieve high availability and 
automated load balancing with the desired high performance. 
In addition, it can significantly reduce the management 
work load, because all MPIs are identical in structure and 
can be cloned from  a uniform infrastructure. 

C. Packet-In Message Processing 

We categorize messages handled by the MPC into two 
types: The control messages that cover all Openflow 
protocol messages, along with various events originated 
from network status or policy changes, and the normal 
packet-in (PI) messages that include forwarding-request 
packet (data flow, host-to-host request data flow etc.).  
 
 

1) Control Messages 
The control message is mainly used in the control layer, 

and they also provide critical information needed for the 
data forwarding layer (normal PI messages). As depicted in 
Figure 4, only the “master” controller will process those 
control messages, therefore the cost to achieve much desired 
consistency across all the MPIs in the cluster is minimized. 

Typical control messages include： 

 Protocol interactive messages (handshake messages, 
port status, etc.) between controller and switches. 

 Some special control messages wrapped in PI 
Messages, such as LLDP link discovery messages. 

 Static messages (basic configuration, policy 
configuration, etc.). 

 Events due to network status changes. 

 Messages or other data generated dynamically 
through the northbound APIs. 

 

MasterMaster NormalNormal NormalNormal

……

Message Processing Cluster

Controller Cluster – Processing Control Messages

Result

OFP Msg Reply

Other 
Controller

OFP Msg

Process:
OFP Msg

1

2

3

4

Result

Result

Figure 3. Processing Control Messages 

 
Some of the control messages have strong dependencies 

with each other, and the order of processing them become 
critical to maintain the proper consistency. This is one of the 
main reasons why the current instantaneous “master” 
approach is taken, in order to process all control messages 
with one MPI at any given time. Therefore, not only it can 
enforce the proper processing order, but it also makes the 
updates to the other MPIs and the shared central NIB 
consistent at minimum costs. In case that the “master” MPI 
becomes dysfunctional, the next MPI on the ring would take 
over the “master” role. When this occurs, some control 
messages or their processing results may get lost, that could 
result in some temporary inconsistency in the network. 
However, the enforced short maximum time interval to 
transfer the “master” role to the next available MPI would 
limit the consequence of the inconsistency to an acceptable 
level. Furthermore, after the controller completes topology 
discovery and feature learning, there will be much more 
reading operations than writing in a SDN network, while 
only the failed writing operation could lead to such 

46Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-416-9

INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation



inconsistency. The proposed approach properly follows 
what is recommended in [4], and innovatively provided a 
solution that greatly improves the processing performance 
with affordable costs, while allowing certain acceptable 
weak consistencies at certain duration-controlled time 
intervals.  

2) Equal Mode for Normal Packet-In Messages 
For normal PI messages, the equal mode is adopted, in 

which all servers (threads or processes) share the processing 
loads while providing backups to each other. As discussed 
earlier, the “master” MPI will pull a packet-in message from 
the normal PI message queues, transfer the control to the 
next MPI on the ring, and then start to process the new 
packet-in, as all other active MPIs will do. 

Controllers in SDN are to process new flow routing 
requests by collaborating with upper layer management 
applications, such as routing and resource allocation, 
transforming the resulting decisions into flow entries, and 
then distributing them to all OF-switches along the 
designated path(s).  

In the proposed approach, each MPI uses the local 
cached data, fetched or synchronized from the central NIB 
to perform the above tasks. 

IV. ADAPTIVE RESOURCE CONTROL MODEL IN MPC 

In order to maximize the performance of the 
contemporary powerful multi-core CPUs and available I/O 
throughput, an adaptive resource control model is 
established. Today’s abundant mobile internet traffics are 
dynamic and bursty, complicated with different QoS 
requirements. They necessitate finer-grained control with 
enough pre-provisioned resources to make sure that the 
perceived performance is acceptable even in worst situations. 
The providers, however, need to properly control the use of 
those resources for their increased utilization, and at the 
same time, it is aimed to reduce the network management 
complexity and operating cost. For example, if it can 
effectively apply SDN based centralized control with 
adaptive and optimized routing and resource allocation [12], 
they can offer to dynamically reroute the traffics, enable or 
disable the use of certain routes, and increase or decrease 
capacities on some routes. As traffic patterns in general 
would be quite different between working hours and off 
hours, such dynamic routing decisions would not only help 
achieve their business objectives, but also enable a greener 
computing and data networking paradigm.  

With the proposed approach, as the new packet-in 
requests varies, the number of concurrent threads in each 
MPI, and also the number of servers allocated to the MPC 
can be increased or decreased dynamically. However, after 
numerous experiments and comparison studies, it was 
recognized that increasing the number of threads or servers 
may not necessarily improve the actual single MPI or the 
entire MPC processing capability, especially when we have 
to deal with a large number of PIs from a large scale 
network. When the number of concurrent threads in a MPI 
or servers in MPC increases beyond a certain limit, the 
newly added thread or server can consume additional 
precious data bandwidth, CPU processing power, and 

memory resources, leading to the increased risks of data 
locking, exceeding the limit of the total available I/O 
capacity, and eventually, the overall performance 
degradation.   

The use of the Multi-dimensional DHT (MDDHT) [11], 
along with the MDC and MPC in the proposed approach, 
can learn different traffic patterns and the related parameters 
to discover the hidden relationships between the traffic 
loads and the proper number of MPIs/servers needed for 
efficient network traffic control under various operating 
conditions. Such parameters include the number of packet-
in messages that a thread or a server can process in a second, 
given its CPU/memory processing capabilities, the I/O 
capacity, and the bandwidth at the port and the aggregated 
switch level, etc. 

V. PERFORMANCE AND SCALABILITY CONSIDERATION 

Our main objective is to design and implement a 
powerful controller cluster to address the critical 
performance issue for the centralized controllers in a large 
SDN-OF network, while providing the desired fault 
tolerance and load balancing capabilities. As discussed 
before, slightly sacrifice made in the consistency with some 
acceptable packet losses to exchange for significant gains in 
performance [4], should be an excellent overall trade-off. In 
addition, such a compromise would render the proposed 
approach much more cost-effective. 

In an earlier design of the proposed approach, direct 
connections, through some centralized and prioritized 
packet queues, were established between the switch and the 
MPC, without a dedicated MD or MDC.  But soon we found 
that such a “centralized” and “single I/O” mechanism would 
limit the throughput of the controller/MP cluster and 
become a bottleneck, causing the total throughput of the 
cluster to decrease and the latency of processing each 
individual request to increase, no matter how powerful the 
MPC is. 

Later MDC was introduced between the 
controllers/MPC and switches. Even though the direct 
connection model could provide faster response time for 
new flow requests if the overall I/O limit is not reached, but 
it could be degraded at an explosive rate soon after the 
sustained I/O is approaching the system upper limit. With 
multiple servers in the MDC, where each server brings in its 
own portion of I/O capability, the overall throughput of the 
proposed approach can be improved almost linearly until 
reaching the limit imposed by the capability of the MPC. On 
the other hand, it is found that accelerating TCP/IP 
communication performance by DPDK technology [13] and 
high-performance TCP/IP protocol stack can significantly 
improve the performance of both the MDC and the MPC. 

VI. SCALABILITY AND PERFORMANCE ANALYSIS 

In this section, we review how we conducted 
performance testing experiments and present related 
comparison results. We focus on how the proposed 
approach could improve the performance, scalability, and 
reliability. In particular, we study how fast such a 
centralized controller cluster could process new PI messages 

47Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-416-9

INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation



in a large-scale communication network, and investigate on 
how certain known issues could be addressed to avoid 
potential performance bottleneck. 

A. Experimental Methodology and System Setup 

We designed and implemented the proposed scalable 
centralized controller cluster prototype with one Message 
Dispatcher Instance with one MD server and several 
Message Processing Instances (MPIs) running on two to 
four servers, and we compared the throughputs achieved by 
such a cluster with different number of MP servers. For a 
fair comparison, we first evaluated our centralized controller 
cluster with only one MPI in the MPC, and after that, we 
moved on to evaluate the throughput of the cluster with 
multiple MPIs in MPC.  

As shown in Figure 6, we constructed a network 
topology with two OpenFlow switches, one Message 
Dispatcher Instance (MDI), and several Message Processing 
Instances (MPI). They were run on separate 2.4GHz 64bit 
Intel Xeon E5620 server machines with 8GB RAM to avoid 
interferences, where all data links were 10Gbps. It is also 
important to note that for each processed packet-in (PI) 
message, the centralized controller cluster would reply with 
one packet-out (PO) message and two flow-mod (FM) 
messages. In general, N separate FM messages would need 
to be created and distributed if there are N nodes en-route 
for a PI. Therefore, in our experimental configuration, there 
were three reply messages for each PI with a 1:3 (or N+1 in 
general) ratio between the receiving and replying endpoints 
in the centralized controller cluster.  

  

OF Switch 1-dpid:

00:00:00:00:00:00:00:01

OF Switch 2-dpid:

00:00:00:00:00:00:00:02

Host1

192.168.1.1
Host2

192.168.1.2

……

Single

Message

Dispatcher

Message Processing Cluster

Controller Cluster

Core Normal Normal

Figure 6. Experiment setup 

 

To our knowledge, currently published controller 
performance results are based mainly on using only ONE 
switch. Consequently, the ratio of the number of PI 
messages and the number of PO plus FM messages are only 
1/2. In addition, the controllers and switches are mostly only 
OF 1.0 compliant, supporting only one flow table. In our 
experiments, the OF switches were all compliant to the 
newer and more sophisticated OF 1.3 standard, and the 

controller and the switches actually supported a flow 
pipeline with nine flow tables optimized for typical network 
applications, such as firewall, ACL, layer 2 or layer 3 
transporting, VLAN, etc. Therefore, what being tested and 
presented here are more practical as the older version of OF 
1.0 cannot support many critical network functions for 
existing data services. 

We injected traffic flows from one host to another based 
on a fixed but configurable rate.  Each flow was generated 
as a single 64 Byte UDP packet. Consequently, in our 
experiments, each PI message was effectively 84 Bytes, 
while PO messages were 80 Bytes each, and FM messages 
were 136 Bytes each respectively. 

B. Experiments with one MD and 1-5 MPIs in MPC 

We computed the rate of packet-out (PO) and flow-mod 
(FM) messages that would be created and replied from the 
controller cluster. As depicted in Figure 7, we initially 
studied and compared the centralized controller cluster’s 
scalability and performance with varying number (1 to 5) of 
MPIs.  

 
 

 
Figure 7. Centralized Controller Cluster throughput 

Vs. the number of Message Processing Instances: 1 MD Server 

48Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-416-9

INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation



As can be seen from Figure 7, when the number of MPIs 
was three or less, the throughput of the centralized 
controller cluster could scale linearly with the number of 
MPIs, where each MPI could process 560K PI messages per 
second. But as we continued to increase the number of MPIs, 
the throughput of the centralized controller cluster stopped 
increasing linearly and eventually stagnated. 

Further drill-down analysis revealed that with four MPIs, 
the centralized controller cluster could process 1.7 million 
PI messages per second; as a result, 1.7 million PO 
messages and 3.4 million FM messages would need to be 
generated and replied to the 2 switches in the experimental 
network per second. As such, the MDI would consume 
about (1.7 million POs * 80 Bytes/PO * 8 Bits/Byte + 3.4 
million FMs * 136 Bytes/FM * 8 Bits/Byte), or requiring 
about a total of 4.8 Gbps bandwidth in one direction. That 
has almost exceeded the maximum TCP replying capability 
using the standard Linux socket API. 

As the number of Message Processing Instances 
continues to increase, I/O performance eventually become 
the main bottleneck that impacts the scalability and the 
throughput of the centralized controller cluster.  

C. Effects of Increasing the number of MDs in MDC 

In order to overcome the I/O limit imposed by one MD 
server in the above experiment and fully utilize the 
processing capabilities of the MPC, two MD servers were 
used in a new experiment. Each MD server was assigned to 
be responsible for one switch just to simplify the matter. In 
practice, such as in the distributed SOX [10], some 
mechanism is needed to partition a large network so that 
each MD server could be assigned to be responsible for a 
subnet.   

Figure 8 presented the result. As it can be seen, the total 
throughput now scales linearly as the number of MPIs 
increases. With the proposed approach, the MPC can be 
scaled easily to increase its processing capacity with 
additional MPIs in MPC, and now with the additional MD 
servers in the MDC to overcome the I/O limit, the 
centralized controller cluster can manage much larger 
network with adequate I/O bandwidth such that the overall 
system can scale up linearly. 

   

 
 

 
Figure 8. Centralized Controller Cluster throughput 

Vs. the number of Message Processing Instances (2 MD Servers) 

 

D. Other Considerations 

Furthermore, with this centralized controller cluster, one 
MD instance/server can be enough to match the PI message 
processing capacity of the deployed MPC. If more PI 
messages need to be processed, distributed controller 
clusters should be used, while each cluster manages a 
smaller domain or subnet of the large scale network with 
enough I/O bandwidth between the controller cluster and all 
switches it controls as in DSOX [10].  

As higher speed (such as 40 Gbps or even 100 Gbps) 
NIC cards become available, obviously both processing 
power of MDC and MPC can be significantly increased. As 
it is relatively easy to increase the number of servers in the 
MPC to achieve much higher PI message processing rate, 
more MDIs (or servers) in the MDC should be added to 
further balance the load of the much increased traffics 
between the centralized controller cluster and the switches. 

49Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-416-9

INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation



VII. CONCLUSION AND FUTURE DIRECTIONS 

This paper presented a scalable centralized controller 
clustering approach for SDN with Openflow. In our 
approach, the controller instances (threads, and processes on 
a single or multiple physical servers) would handle the 
control and normal data packets differently, in which the 
packet-in message processing was carried out by different 
controller instances in the cluster running in equal mode. It 
is aimed to achieve maximum performance with slightly 
sacrificed but acceptable and temporary inconsistency. The 
controller cluster in our approach demonstrated excellent 
scalability until the system I/O limit was reached. A self-
learning and adapting mechanism was also incorporated in 
our approach to further optimize the number of controller 
instances under varying operating conditions to adequately 
handle frequent changes in network states and traffic flows. 
In addition, the described approach provides automatic load 
balancing and fast fail-over at almost at no extra cost.  

Experimental studies were conducted, and the test 
results with varying number of physical servers (or 
processing instances) were presented and studied. It clearly 
demonstrated the feasibility and advantages of the proposed 
approach.  

Efficient control and management of large scale 
networks based on SDN is an active research area. Many 
issues remain to be investigated, such as the balance 
between the proper level of consistency and the high 
performance in a distributed cluster environment, the 
interoperability of SDN with existing IP networks, dynamic 
network resource utilization, etc. 

 

REFERENCES 

[1] Open Networking Foundation. Software-Defined networking: The 
new norm for networks. ONF White Paper, 2012. 

[2] “OpenFlow Switch Specification 1.3.0”, Open Networking 
foundation. 

[3] A Tootoonchian, Y Ganjali, “HyperFlow -- A Distributed Control 
Plane for OpenFlow”, Proceeding of the 2010 INM conference, 
https://www.usenix.org/legacy/event/inmwren10/tech/full_papers/To
otoonchian.pdf 

[4] T Koponen, M Casado, N Gude, J Stribling, L Poutievski, M Zhu, R 
Ramanathan, Y Iwata, H Inoue, T Hama and S Shenker. “Onix: a 
distributed control platform for large-scale production networks”, 
Proceedings of the 9th USENIX OSDI conference, Vancouver, 2010. 
http://static.usenix.org/events/osdi10/tech/full_papers/Koponen.pdf  

[5] A Dixit, F Hao, S Mukherjee, T Lakshman, R Kompella, “Towards 
an Elastic Distributed SDN Controller”. Proc. of the ACM 
SIGCOMM Workshop on HotSDN. pp. 7-12, Hong Kong, August 
2013.  

[6] S Yeganeh, Y Ganjali. “Kandoo: a framework for efficient and 
scalable offloading of control applications”, Proc. of the ACM 
SIGCOMM Workshop on HotSDN, pp. 19-24, ,Helsinki,Finland, 
August 2012 

[7] M Yu, J Rexford, M Freedman, J Wang, “Scalable flow-based 
networking with DIFANE”, Proc. of the ACM SIGCOMM. pp. 351-
362, 2010 

[8] OpenDaylight, http://www.opendaylight.org/, [accessed: 2014-12-18] 

[9] M. Luo, Y Tian, Q Li, J Wang, W Chou. “SOX –A Generalized and 
Extensible Smart Network Openflow Controller(X)”, The First SDN 
World Summit, Germany, October 2012. 
http://www.layer123.com/download&doc=Huawei-SOX_WP_V1.0 

[10] Q.Li, K. Lin, M. Luo, etc., “DSOX: Architecture and Design,” 
Technical Report, Huawei Shannon Lab, May 2014. 

[11] M. Luo, X. Wu , Y. Zeng, J. Li, K. Lin, B. Man, and W. Chou, 
“Multi-dimensional In-Memory Distributed Hashing Mechanism for 
Fast Network Information Processing in SDN”, accepted by the 9th 
International Conference on Complex, Intelligent, and Software 
Intensive Systems (CISIS-2015), Blumenau, Brazil,  July 2015 

[12] M. Luo, Y. Zeng, J. Li, W. Chou, “An Adaptive Multi-path 
Computation Framework for Centrally Controlled Networks”, 
accepted by Journal of Computer Networks, Elsevier, February 2015 

[13] Intel® DPDK: Data Plane Development Kit. http://dpdk.org/, 
[accessed: 2014-12-18] 

 

50Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-416-9

INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation

https://www.usenix.org/legacy/event/inmwren10/tech/full_papers/Tootoonchian.pdf
https://www.usenix.org/legacy/event/inmwren10/tech/full_papers/Tootoonchian.pdf
http://www.google.com.hk/url?url=http://dl.acm.org/citation.cfm%3Fid%3D1924968&rct=j&frm=1&q=&esrc=s&sa=U&ei=QQG9U9CGJIX98QX4nYDYDw&ved=0CBkQFjAB&usg=AFQjCNHeJX_syTFRoxkPxalW1iCAhhHfjg
http://www.google.com.hk/url?url=http://dl.acm.org/citation.cfm%3Fid%3D1924968&rct=j&frm=1&q=&esrc=s&sa=U&ei=QQG9U9CGJIX98QX4nYDYDw&ved=0CBkQFjAB&usg=AFQjCNHeJX_syTFRoxkPxalW1iCAhhHfjg
http://static.usenix.org/events/osdi10/tech/full_papers/Koponen.pdf
http://dx.doi.org/10.1145/2342441.2342446
http://dx.doi.org/10.1145/2342441.2342446
http://www.opendaylight.org/
http://www.layer123.com/download&doc=Huawei-SOX_WP_V1.0
http://dpdk.org/

