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Abstract—Matrix inversion is an important requirement for many
scientific and practical applications. Parallel architectures like
Graphics Processing Units (GPUs) can have noticeable impacts
on accelerating such computations, however, at the expense of
more power consumption. Both computation speed and power
become more challenging when the size of matrices gets larger.
This paper proposes an accelerated version of the Gauss-Jordan
matrix inversion method using GPUs. The experimental results
show that the proposed method is faster than a recent baseline
method. As an additional property, the configurations have been
made in a manner to consume less power.
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I. INTRODUCTION

Matrix invesion is too important in a diverse spectrum
of applications including graph theory, computer graphics,
cryptography, etc. There are several known methods like
Gauss-Jordan [1], Strassen [2], Strassen-Newton [3], Cholesky
decomposition [4], and Lower Upper Decomposition [5] for
matrix inversion.

As calculating the inverse of a matrix takes O(n3) (where
n is the dimension of the matrix), the usage of many core
architectures, like GPU is too effective to reduce the computa-
tion time of inversing large matrices. In fact, the highly parallel
architecture of GPUs makes them more suitable than general-
purpose Central Processing Units (CPUs) for algorithms with
large parallelizable blocks of data.

The recursive nature of some matrix inversion algorithms
such as Strassen-Newton reduces the effectiveness of paral-
lelization [6]. In recursive algorithms, each iteration needs
to wait for the result of previous iteration. In Gauss-Jordan
method, each iteration calculates the new values of all elements
in the matrix that cause this method to be more appropriate for
parallelization. GPUs has demonstrated high computing power
in several application fields and we can use GPUs to speedup
the Gauss-Jordan matrix inversion method. On the other hand,
GPU also produces high power consumption and has been one
of the largest power consumers in desktop and supercomputer
systems [7].

Girish Sharma et al. [6] proposed a fast GPU-based Parallel
Gauss-Jordan method (PGJM). This algorithm calculates the

inverse of matrix in two steps using Gauss-Jordan method.
Their method uses n and n× (n− 1) threads for steps 1 and
2, respectively. As the matrix size increases, the parallel Gauss-
Jordan method will need more threads, blocks, streaming
multiprocessors (SMs) and thus more processing cores. In
addition, using more processing cores results more power
consumption.

Comparing to the method that proposed in [6], here, we
improve this method using one step for calculating the inverse
of matrix. The improved parallel Gauss-Jordan method (I-
PGJM) is faster than PGJM. In fact, using different grid and
block dimensions it can affect the power consumption. Thus,
We can make some trade-off between the speed-up and power
consumption of I-PGJM.

The remainder of this paper is organized as follows. Section
II presents a background of Gauss-Jordan and parallel Gauss-
Jordan methods, and addresses the highlights to achieve a
program that consumes less power. Section III proposes a fast
parallel Gauss-Jordan method that has lower power consump-
tion. Experimental results are presented in Section IV. Section
V discusses the related work and Section VI concludes the
paper.

II. BACKGROUND

This section discusses the Gauss-Jordan method [1], the
parallel Gauss-Jordan method [6] and the programming-level
techniques for reducing the power consumption.

A. The Gauss-Jordan Method
Gauss-Jordan is an accurate method for matrix inversion

that is based on Gauss-Jordan elimination. This method for
calculating the inverse of matrix A of size n× n augment the
matrix with the identity matrix (I) of the same size. Thus we
have a matrix C = {cij} of size n× 2n that its left half is A
and its right half is I . This method converts the left half of C
to identity matrix after some row operations. At the end, the
right half of C is equal to A−1.

Converting the left half of C can be broken down into two
steps per each column of the left half matrix. The first step
converts cii to 1 by dividing all elements in ith row by cii.
The second step convets all elements in ith column to 0 except
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for the ith one. Following these two steps for each column
sequentially, the left half of C becomes the unit matrix while
the right half becomes the desired inverse of A.

The first step needs to O(n) divisions and the second step
needs to O(n2) computations. Thus, this method takes O(n3)
for calculating the inverse of matrix.

B. The Parallel Gauss-Jordan Method
Girish Sharma et al. [6] proposed the parallel version

of Gauss-Jordan method. They implement their method with
CUDA on Nvidia GTX 260. Their method used two steps.
The first one uses n threads (equal to number of rows or
columns in matrix A) that each divides one element of current
row (crr, ..., cr(n+r), where r is the current row index) by
cii. Preventing division by zero exception can be done by
checking the value of cii. If its value was zero then the
elements of current row added to elements of kth row such
that ckk ̸= 0. To avoid the extra GPU cycles, resulting from
if...else condition, this summation is done prematurely for all
elements. The second step uses n× (n− 1) threads to convert
the elements of rth columns to zero except for crr. In this
step, they minimize the computations by processing only the
first n columns (starting from the rth columns).

This algorithm uses n threads in one block to avoiding
division by zero, n threads per one block for step 1 and n
threads in n blocks for step 2 that each block handles the
computations of one column at a time. Since the maximum
number of threads per block in modern GPU are 1024, if the
number of columns is greater than 1024, then the matrix splitts
vertically.

This algorithm was programmed using CUDA C and was
tested against various sizes of the several types of matrices,
e.g., identity, sparse, band, random and hollow matrix. The
results demonstrate that if the size of the matrix (n) is less than
100, the computation time is linear to the size of the matrix
because the maximum number of active threads that can be
scheduled at a time is 9216 and for n = 100 the number of
threads that need for computations at a time is 10100. Thus
values around n = 100 displaying the quadric nature of the
algorithm due to hardware limitation.

In here, we propose a method that uses one step per each
column to set crr to 1 and the remain elements in the rth
column to 0. This method that was described in Section III,
uses a total number of n× (n− 1) threads and is faster than
PGJM.

C. GPU Power-aware Programming
The power consumption of GPUs can be divided into two

parts, namely, leakage power and dynamic power [8]. Dynamic
power is the power that is consumed by a device when it is
actively switching from one state to another. The main concern
with leakage power is when the device is in its inactive state.
Different components, such as SMs and memories, e.g., local,
global, shared, etc. contribute to dynamic power consumption.

Techniques for reducing the GPU power consump-
tion are classified into five categories [8]: dynamic volt-
age/frequency scaling (DVFS), CPU-GPU workload division-
based techniques, architectural techniques, techniques that
exploit workload variation to dynamically allocate resources
and programming-level techniques.

For reducing the power consumption of Gauss-Jordan
method for large matrices, we use programming-level tech-
niques. Yi Yang et al. [9] identify the common code patterns
that lead to inefficient use of GPU hardware and increase the
power consumption. These code segments that they call it ’bug’
are grouped into following categories:

• Global memory data types and access patterns
• The thread block dimensions
• Portability across different GPUs
• The use of constant and texture memory
• Floating-point number computations

Using data types either smaller than ’float’ or larger than
’float4’ (the data with a size of 4 floats) violates the mem-
ory coalescing requirements. The results show that GTX480
delivers much lower bandwidth when the data type is not float,
float2, or float4.

In modern GPUs, threads are organized in a thread hi-
erarchy, multiple threads forming a 1D/2D/3D thread block,
and thread blocks forming a thread grid. Different size in
the thread hierarchy results different performance and power
consumption in different GPUs. The experimental results in [9]
demonstrate that if the thread ids are used as memory access
addresses, the size of the x-dimension in a thread block needs
to be at least 32 for GTX480 to maximize the global memory
access bandwidth and the optimal configuration to improve
data reuse using shared memory is application and data size
dependent.

Since different GPUs have different hardware features, the
configuration of the program must be altered with different
GPUs. However, different hardware features in different GPUs
are not necessitating significantly different performance con-
siderations.

Proper use of constant and/or texture memory can achieve
high performance and low power consumption due to the on-
chip constant and texture caches. Thus, if one method uses
constant values, it is better to use constant or texture memory.

If we use a constant float, such as 4.0, the CUDA compiler
will treat the constant as a double-precision number that results
in less performance and higher power consumption. For fixing
this bug if single-precision provides sufficient accuracy, we can
use the explicit single-precision floating-point number (4.0f).

We used these hints for reducing the power consumption
of I-PGJM. The details of I-PGJM power consumption con-
sideration are shows in Subsection III-B.

III. IMPROVED PARALLEL GAUSS-JORDAN METHOD

In this section, we first propose the improved method for
matrix inversion and then consider the power consumption of
this method.

A. I-PGJM
As mentioned in Section II, Girish Sharma et al. [6]

proposed a two-step method for calculating the inverse of a
matrix using Gauss-Jordan method. In this section, we present
an improved method that combines these two steps into one
and calculates the inverse of a matrix faster than this method.

Suppose we want to calculate the inverse of matrix A of
size n×n. The Gauss-Jordan method as mentioned in Section
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Figure 1. The I-PGJM method for matrix inversion in GPU (n ≤ 1022).

II creates a matrix C = {cij} of size n × 2n so that its left
half is A and its right half is the identity matrix. The right half
of matrix C After n iterations that each consists of two steps
is the inverse of A.

The first step of iteration r, sets crj =
crj
crr

where j =
r, ..., n+ r (Note that there is no need to update the values for
j < r and j > n+ r [6]) and the second step sets

cij = cij − cir × crj (1)

where i = 1, ..., n, i ̸= r and j = r, ..., n+ r. The step 1 and
2 must run sequentially as the step 2 needs the new value of
crj calculated after step 1. To run these two steps in a time,
we can define a coefficient coir = cir

crr
and rewrite equation 1

as:
cij = cij − coir × crj (2)

where crj is the original value of rjth element in C. Then, in
iteration r we can share the elments of rth row among threads.
Thus the elements of matrix C in iteration r are calculated as
follows:

cij =

{
cij − coir × sharedRowj i ̸= r

cij
crr

i = r (3)

where j = r, ..., n+r and the values of crr and sharedRow are
calculated before updating the values of C using syncthreads
in CUDA. Using n threads each in n blocks can calculate the
inverse of matrix A. Figure 1 displays the I-PGJM method
implemented using CUDA C.

To avoid the division by zero and extra GPU cycles result-
ing from if...else condition, before the above computations the
summation of each row to next row is calculated. Thus, we
need n+2 threads in each iteration. As each block calculates
the values of one row and the maximum number of threads
in each block are 1024, for n + 2 > 1024 we need to break
down the calculation of each row into several blocks. Thus for
n > 1022 the grid dimension is N ×n where N =

⌊
n

1024

⌋
+1

and each block has
⌈
n+2
N

⌉
threads. Figure 2 shows the method

for calculating the inverse of large matrices (n > 1022).
The total number of threads can be larger than n+2. Then,

the ’if’ condition at the begining of the method in Figure
2 is necessary to avoid accessing the out of range matrix

Figure 2. The I-PGJM method for calculating the inverse of large matrices
(n > 1022) in GPU.

dimension. As each block calculates at most 1024 elements
of the current row in the matrix, the size of shared variables
can be set to 1024.

Comparing the I-PGJM and PGJM [6], I-PGJM used (n+
2)×sizeof(float) shared data rather than (3n+2) ((n+1)×
sizeof(float) in step 1 and (2n+1)× sizeof(float) in step
2). As mentioned in [6] if the matrix size is greater than 1024
the proposed algorithm will use more blocks for computing
the inverse of large matrices. Thus, for large matrices these
two methods need to have more blocks.

The experimental results in Section IV show that I-PGJM
is faster than the method that proposed by Sharma et al. [6].

B. Power consumption considerations
In the I-PGJM, we try to reduce the use of registers,

shared memory and global memory. But increasing the matrix
dimension lead to use more blocks for calculating the matrix
inversion and hence more power consumption. As mentioned
in Subsection II-C, using different data types and access
patterns can affect the power consumption. We used different
data types for matrix inversion in K20Xm and find that it has
similar behaviour as GTX480. Also, a few common data access
patterns exist that may cause performance degradation. This
performance degradation in K20Xm (that we used in here) is
negligible.

Using constant or texture memory can reduce the power
consumption. In Gauss-Jordan method, the matrix elements
should be updated iteratively. Then, we can not use constant
or texture memory.

The grid and block size are important for performance and
power consumption. We experiment with different grid and
block sizes to achieve less power consumption. Achieving the
suitable grid and block dimensions lead to have the fast method
that can calculate the inverse of large matrices and has less
power consumption.

IV. EXPERIMENTAL RESULTS

The PGJM [6] and I-PGJM were programmed using
CUDA C and were executed by Tesla K20Xm GPU. This
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GPU has a shared memory size of 48KB and the maximum
threads per block is 1024. The block and grid dimensions
(x, y, z) are respectively restricted to (1024, 1024, 64) and
(65535, 65535, 65535). For comparing the results to the se-
quential program, we used Intel Core i7 CPU (2.67GHz) with
8192 KB and 6GB of cache and memory size, respectively.

We used random matrices that have different dimensions
from 21 to 213. the experimental results are shown in two sub-
sections. The first one demonstrates the results of comparing
these methods in term of execution time, and the second one
shows the power consumption of proposed method for different
grid and block dimensions to get the optimal dimensions for
reducing the power consumption.

A. Matrix Inversion Execution Time
In this subsection, we campare the execution time of PGJM,

I-PGJM and the sequential Gauss-Jordan method with different
matrix dimensions (n). The execution time is calculated using
cudaEventRecord function and is the difference in time before
passing the data from host to device and after getting the
results from device. For n > 1022, the grid and block
dimensions of proposed method are (N,n) and (

⌈
n+2
N

⌉
, 1),

respectively and for PGJM (for step 2) are ( n
1024 , n + 2) and

(1024, 1), respectively. For sequential algorithm, the execution
time for n < 25 is less than one millisecond (see Table
I). Figure 3 shows the speedup of I-PGJM with respect to
PGJM. The values around 100 for matrix dimension display the
quadric nature due to hardware limitation [6]. This behaviour
results more speedup for proposed method as matrix dimension
increased (speedup = 9.02 for n = 213). Thus, I-PGJM is
suitable for large matrices. For n > 1024 these two methods
need to use more blocks, then the speedup slightly reduced for
n = 2048.

TABLE I. THE EXECUTION TIME (MS) OF I-PGJM, PGJM AND THE
SEQUENTIOAL ALGORITHM FOR DIFFERENT MATRIX DIMENSIONS.

n I-PGJM PGJM Sequential Algorithm
2 0.245 0.255 0
22 0.273 0.284 0
23 0.310 0.353 0
24 0.409 0.488 0
25 0.575 0.784 0
26 0.955 1.412 3
27 1.844 3.536 10
28 4.761 9.964 120
29 21.570 62.314 950
210 155.691 497.304 7550
211 1410.690 4209.350 60500
212 9750.890 44424.500 482619
213 72648.400 655863.000 3860219

Figure 4 shows the speedup of I-PGJM with respect to the
sequential Gauss-Jordan method. The speedup of I-PGJM with
respect to the sequential program is around 53 for n = 213.
Since the maximum number of threads per block are 1024, for
n > 1024 the algorithm need to use more blocks and hence
the performance drop occurred for n = 2048.

B. Power Consumption
The execution time results demonstrate that I-PGJM is

more suitable for calculating the inverse of large matrices. As
increasing the computation results in more power consumption,
the proposed method needs to use a configuration that leads

2 4 8 16 32 64 128 256 512 1024204840968192
1

2

3

4

5

6

7

8

9

10

Matrix Dimension

S
pe

ed
up

 

 

Figure 3. The speedup of the proposed method related to method in [6].
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Figure 4. The speedup of I-PGJM with respect to the sequential algorithm.

to less power consumption. As mentioned in Subsection II-C
and Section III, we used ’float’ data type, fewer threads and
shared memory to reducing the power consumption. Also,
we experiment with different grid and block dimensions to
reducing the power consumption.

We measure the run-time power of the proposed method
with the NVIDIA Management Library (NVML) [10] by
running the proposed method on a thread and NVML on
another thread using Pthreads. NVML is a high level utility
that called nvidia-smi. NVML can be used to measure power
when running the kernel but since nvidia-smi is a high level
utility the rate of sampling power usage is very low and unless
the kernel is running for a very long time we would not notice
the change in power [11]. The nvmlDeviceGetPowerUsage
function in the NVML library retrieves the power usage
reading for the device, in milliwatts. This is the power draw
for the entire board, including GPU, memory, etc. The reading
is accurate to within a range of +/- 5 watts error.

In the proposed method, all blocks in one row of a grid
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Figure 5. The execution time and power consumption of I-PGJM and PGJM
for different grid dimensions. The matrix size is 212 × 212.

compute the elements of one row in matrix and each block
has

⌈
n+2
N

⌉
threads related to a subset of elements in the

corresponding row. For constant n, we calculate the execution
time and power consumption of the proposed method with
different grid and block dimensions. The x-dimension of grid
can be changed from N to n. The grid sizes that used for
experiments are from 2i to 2j where 2i > N and 2j < n+ 2
for n > 1022. The block dimension can get different values
such that the total number of threads per block remain constant,
i.e.,

⌈
n+2
N

⌉
).

Figures 5 and 6 show the execution time and power
consumption of I-PGJM and PGJM for calculating the inverse
of matrix A of size n×n for different values of grid dimensions
for n = 212 and n = 213, respectively. Increasing the number
of blocks in x-dimension of grid results in lower threads in
each block (Matrix dimension is constant). Thus, each block
used less resources that lead to lower power consumption. On
the other hand, the maximum number of blocks that can be
scheduled in each SM is limited. Thus, increasing the number
of blocks results more execution time.

Figures 7 and 8 show the experimental results for different
block dimensions of I-PGJM for calculating the inverse of ma-
trix A of size n×n for n = 212 and n = 213, respectively. As
can be seen in these figures, the difference between maximum
and minumum power consumption is negligible. Note that, the
power usage reading of NVML is accurate within a range of
+/-5 wats error. But, when the x-dimension of blocks is larger
than 32, the power consumption increases. Thus, using less
than 32 threads in x-dimension of blocks leads to less power
consumption. Also, by simply changing the x-dimension of
blocks to 32, we have better performance.

V. RELATED WORK

There has been much recent work decreasing the execution
time of Gauss-Jordan method for matrix inversion. Some
researchers focus on using multiple GPUs [12]. Although
splitting the matrix between GPUs and ability to use them is
important, in this study, we focus on one GPU and propose a
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Figure 6. The execution time and power consumption of I-PGJM and PGJM
for different grid dimensions. The matrix size is 213 × 213.
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Figure 7. The execution time and power consumption of I-PGJM for
different block dimensions. The matrix size is 212 × 212.

method that has a considerable reduction of the computational
time and power consumption.

Peter Benner et al. [13] have studied the inversion of
large and dense matrices, on hybrid CPU-GPU platforms,
with application to the solution of matrix equations arising in
control theory. They have presented several matrix inversion
algorithms, based on common matrix factorizations and the
GJE method, similar to [12], but for solving equations in
control theory.

Kaiqi Yang et al. [14] proposed a parallel matrix inversion
algorithm based on Gauss-Jordan elimination with pivoting.
This method divides the matrix into some sub-matrices and
assign each sub-matrices to one core. Each core updates
the sub-matrix using Gauss-Jordan elimination. This method
experimented in at most four cores and has communication
overhead. Then, this method can not used in many core
platforms such as GPU.

The most related work to this paper is the method that is
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Figure 8. The execution time and power consumption of I-PGJM for
different block dimensions The matrix size is 213 × 213.

proposed in [6]. In here, we proposed a method that reduces
the computation times of this method. Also with the power
consumption hints that described in [8] and [9], we used
the configuration that reduces the power consumption of the
proposed method.

VI. CONCLUSION

In this paper, we improved the execution time of Gauss-
Jordan matrix inversion method on GPU. In the case of
large matrices, as increasing the computations, the power
consumption requires more attention. The proposed method
used fewer threads and can be configured with different grid
and block dimensions. Thus, we can find the configuration that
has lower power consumption. The results show that the block
dimensions has negligible effect on the power consumption
of proposed method and trade-off between performance and
power can improve the power consumption of I-PGJM on
GPU.
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