INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation

Adaption of the n-way Dissemination Algorithm for GASPI Split-Phase Allreduce

Vanessa End
and Ramin Yahyapour

Gesellschaft fiir wissenschaftliche
Datenverarbeitung mbH Goéttingen
Gottingen, Germany
Email: <vanessa.end>,
<ramin.yahyapour>@gwdg.de

Abstract—This paper presents an adaption of the n-way dissemi-
nation algorithm, such that it can be used for an allreduce oper-
ation, which is - together with the barrier operation - one of the
most time consuming collective communication routines available
in most parallel communication interfaces and libraries. Thus,
a fast underlying algorithm with few communication rounds is
needed. The dissemination algorithm is such an algorithm and
already used for a variety of barrier implementations due to its
speed. Yet, this algorithm is also interesting for the split-phase
allreduce operations, as defined in the Global Address Space
Programming Interface (GASPI) specification, due to its small
number of communication rounds. Even though it is a butterfly-
like algorithm, significant improvements in runtime are seen when
comparing this implementation on top of ibverbs to different
message-passing interface (MPI) implementations, which are the
de facto standard for distributed memory computing.

Keywords—GASPI; Allreduce; Partitioned Global Address Space
(PGAS); Collective Communication.

I. INTRODUCTION

A main aspect in distributed application programming
is the communication of data. An emerging communication
interface designed for high performance computing (HPC)
applications is the Global Address Space Programming Inter-
face (GASPI) specification [1]. It is based on one-sided com-
munication semantics, distinguishing it from message-passing
paradigms, libraries and application programming interfaces
(API) like the Message-Passing Interface (MPI) standard [2].
In the spirit of hybrid programming (e.g., combined MPI and
OpenMP communication) for improved performance, GASPI’s
communication routines are designed for inter-node commu-
nication and leaves it to the programmer to include another
communication interface for intra-node, i.e., shared-memory
communication. Thus, one GASPI process is started per node
or cache coherent non-uniform memory access (ccNUMA)
socket.

To enable the programmer to design a fault-tolerant appli-
cation and to achieve perfect overlap of communication and
computation, GASPI’s non-local operations are equipped with
a timeout mechanism. By either using one of the predefined
constants GASPI_BLOCK or GASPI_TEST or by giving a
user-defined timeout value, non-local routines can either be
called in a blocking or a non-blocking manner. In the same
way, GASPI also defines split-phase collective communication
routines, namely gaspi_barrier, gaspi_allreduce
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and gaspi_allreduce_user, for which the user can
define a personal reduce routine. The goal of our research
is to find a fast algorithm for the allreduce operation which
has a small number of communication rounds and whenever
possible uses all available resources for the computation of the
partial results computed in each communication round.

Collective communication is an important issue in high
performance computing and thus research on algorithms for the
different collective communication routines has been pursued
in the last decades. In the area of the allreduce operation,
influences from all other communication algorithms can be
used, e.g., tree algorithms like the binomial spanning tree [3]
or the tree algorithm of Mellor-Crummey and Scott [4]. These
are then used to first reduce and then broadcast the data. Also,
more barrier related algorithms like the butterfly barrier of
Brooks [5] or the tournament algorithm described by Debra
Hensgen et al. in the same paper as the dissemination algorithm
[6] influence allreduce algorithms.

Yet, none of these algorithms seems fit for the challenges of
split-phase remote direct memory access (RDMA) allreduce,
with potentially computation-intense user-defined reduce oper-
ations over an InfiniBand network. The tree algorithms have a
tree depth of [log,(P)] and have to be run through twice, lead-
ing to a total of 2[logy(P)| communication rounds. In each
of these rounds, a large part of the participating ranks remain
idling, while the n-way dissemination algorithm only needs
[log, . 1(P)] communication rounds and involves all ranks in
every round. Also, the butterfly barrier has k& = [log,(P)]
communication rounds to do besides only being fit for 2F
participants.

One of the most heavily used algorithms for barrier op-
erations is the dissemination algorithm presented by Hensgen
et al. in 1988 [6]. It is used in different programming APIs
and libraries like the MPICH implementation [7] of MPI,
the global address space networking API (GASNet) [8] and
the second generation of the Global address Programming
Interface (GPI-2) v1.1.0 [9] for barrier implementations due
to its speed. In 2006 Torsten Hoefler et al. [10] have based the
n-way dissemination algorithm on this work to exploit implicit
parallelism of the InfiniBand network.

However, until today the dissemination algorithm and the
developments have not been used for allreduce operations,
partly due to the problems arising when using the dissemi-
nation algorithm with a number of nodes P # 2*. The same
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problem arises for the n-way dissemination algorithm if the
number of involved nodes does not equal (n + 1)*. This will
be elaborated in more detail below.

There are two key features which make (n-way) dissemina-
tion based allreduce operations very interesting for both split-
phase implementations as well as user-defined reductions, like
they are both defined in the GASPI specification [1].

1)  Split-phase collectives either require an external ac-
tive progress component or alternatively progress has
to be achieved through suitable calls from the calling
processes. Since the underlying algorithm for the
split-phase collectives is unknown to the enduser, all
participating processes have to repeatedly call the
collective several times. Algorithms for split-phase
collectives hence ideally both involve all processes
in every communication step and moreover ideally
require a minimum number of steps (and thus a
minimum number of calls). The n-way dissemination
algorithm exactly matches these requirements. It re-
quires a very small number of communication rounds
of order [log,, ,,(P)] and additionally involves every
process in all communication rounds.

2)  User-defined collectives share some of the above
requirements in the sense that CPU-expensive local
reductions ideally should leverage every calling CPU
in each round and ideally would require a minimum
number of communication rounds (and hence a min-
imum number of expensive local reductions).

In the following, the reasons why the n-way dissemination
algorithm is not suitable for the allreduce collective operation
are described. The cases in which the algorithm may be used
as is are identified and also those cases, in which the algorithm
must be adapted to receive correct results are described. Based
on the data movement within the algorithm data boundaries
can be identified with which the algorithm can then be adapted.
Through this adaption, the amount of data to be transferred in
the last round is reduced, in some cases it is even possible to
omit the last round. Even though the shown adaption of the
algorithm was done for allreduce operations performed with
non-idempotent functions, the benefits regarding runtime are
also measurable when used for, e.g., a barrier.

Some more related work will be presented in the next
section. The n-way dissemination algorithm is introduced in
Section III and then, in Section III-A, the reasons necessitating
the adaption are described. An adaption to the n-way dissem-
ination algorithm is proposed in Section IV to resolve these
problems. First results, achieved with an implementation of the
adapted algorithm on top of ibverbs, are presented in Section
V. The conclusion and an outlook of future work are given in
Section VI.

II. RELATED WORK

Some related work, especially in terms of developed algo-
rithms, has already been presented in the introduction. Still to
mention is the group around Jehoshua Bruck, which has done
much research on multi-port algorithms, hereby developing a
k-port algorithm with almost the same communication scheme
as the n-way dissemination algorithm has [11][12]. These
works were found relatively late in the implementation phase,
such that an extensive comparison to this work has not been
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made yet. But considering the results achieved with this work,
also Bruck’s algorithm is an interesting candidate for the
GASPI allreduce.

In the past years, more and more emphasis has been
put on RDMA techniques and algorithms [13][14] due to
hardware development, e.g., InfiniBand™/[15] or RDMA over
Converged Ethernet (RoCE). While Panda et al. [13] exploit
the multicast feature of InfiniBand™, this is not an option for
us because the multicast is a so called unreliable operation and
in addition an optional feature of the InfiniBand™architecture
[15]. Congestion in fat tree configured networks is still a
topic in research, where for example Zahavi is an active
researcher [16]. While a change of the routing tables or routing
algorithm is often not an option for application programmers,
the adaption of node orders within the API is a possible option.

III. THE n-WAY DISSEMINATION ALGORITHM

The n-way dissemination algorithm, as presented in [10]
has been developed for spreading data among the participants,
where n is the number of messages transferred in each
communication round. As the algorithm is not exclusive to
nodes, cores, processes or threads, the term ranks will be used
in the following. The P participants in the collective operation
are numbered consecutively from 0, ..., P—1 and this number
is their rank. With respect to rank p, the ranks p+1 and p—1
are called p’s neighbors, where p — 1 will be the left-hand
neighbor.

Let P be the number of ranks involved in the collective
communication. Then k = [log, ;(P)] is the number of
communication rounds the n-way dissemination algorithm
needs to traverse, before all ranks have all information. In
every communication round [ € {1,...,k}, every process p
has n peers s;;, to which it transfers data and also n peers
71,5, from which it receives data:

mod P
mod P,

sii = p+i-(n+1)7t

. _ 1
rg = p—j-(n+1)7! M

with ¢,7 € {1,...,n}. Thus, in every round p gets (additional)
information from n(n + 1)!~! participating ranks - either
directly or through the information obtained by the sending
ranks in the preceding rounds.

A. Using the n-way Dissemination Algorithm for Allreduce

When using the dissemination algorithm for an allreduce,
the information received in every round is the partial result the
sending rank has computed in the round before. The receiving
rank then computes a new local partial result from the received
data and the local partial result already at hand.

Let S} be the partial result of rank p in round [, o be the
reduction operation used and x,, be the rank’s initial data. Then
rank p receives n partial results Slrfl in round [ and computes

P ap 1,1 T2 Tln
Sy =5 ,08508"0---08"7, 2)

which it transfers to its peers s;11; in the next round. This
data movement is shown in Table I for an allreduce based on
a 2-way dissemination algorithm. First for 9 ranks, then for 8
participating ranks. By expanding the result of rank 0 in round
2 from the second table, it becomes visible, that the reduction
operation has been applied twice to xq:

SY = (zgox7omg)o(rs0mg0x3)0 (20T 0T0).  (3)
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TABLE I. ROUND-WISE COMPUTATION OF PARTIAL RESULTS IN A
2-WAY DISSEMINATION ALGORITHM

| rank | round 0 | round 1 | round 2 |

0 o S(f:mooxgoaw Sg:SgoS(l’oSf
1 1 S%:mloxooxg S%:S%OSIOSil

z 2 ) g 5
2 T2 Sl = X2 O0T1 O X 322510510S1
3 T3 Sf:mgomzoml S‘g:S‘foSfoSf
4 T4 Sf:x4ow30m2 S;l:SiloS%oSI
5 s Sy =a50xz40x3 | S5 =S5708708%
6 Te Si’:mgoazg,om Sg:S?oSfosg
7 T7 SI=x7o:rgoac5 Sg:SIoSfoS%
8 Ts Sf:mgoanoxg SS:S?OS?oSf

| rank | round 0 | round 1 | round 2 |

0 0 0 5 )
0 o Sl = X9 O 7 O g SQZSloSloSI
1 T S}:mloxoocw S;:S}OS?OS‘;
2 To Sf:a:QO;rlo:ro Séz‘SfoSl?oSil
3 3 S? =ax30x00x; | S5=S5708Y057

T Z a— T 6
4 T4 S%7m4ox30m2 5%75%05’305%
5 Ts S} = x5 0x4 0x3 S5 =8{08705]
6 Tg S?:m60x5ow4 Sg:Sg’oSfo,SY
7 T7 SI:m7oa:60;r5 Sg:SIoSfoS%

In general, if P # (n+ 1)’“, the final result will include data of
at least one rank twice: In every communication round [, each
rank receives n partial results each of which is the reduction of
the initial data of its (n+ 1)!~! left-hand neighbors. Thus, the
number of included initial data elements is described through

l
Znn—!—l +1=
i=1

for every round !.

(n+1) 4)

In the cases of the maximum or minimum operation to be
performed in the allreduce, this does not matter. In the case
of a summation though, this dilemma will result into different
final sums on the participating ranks. In general, the adaption
is needed for all operations, where the repeated application of
the function to the same element changes the final result, so
called non-idempotent functions.

IV. ADAPTING THE n-WAY DISSEMINATION ALGORITHM

The adaption of the n-way dissemination algorithm is
mainly based on these two properties: (1) in every round
l, p receives n new partial results. (2) These partial results
are the result of the combination of the data of the next
Zi (1) (n+1)*! +1 left-hand neighbors of the sender. This
is depicted in Figure 1 through boxes. Highlighted in green are
those ranks, whose data view is represented, that is rank 0’s in
the first row and rank 2’s in the second row. Each box encloses
those ranks, whose initial data is included in the partial result
the right most rank in the box has transferred in a given round.
This means for rank O, it has its own data, received S’g and
S7 in the first round (gray boxes) and will receive S? and S?
from ranks 2 and 5 in round 2 (white boxes).

As each of the boxes describes one of the partial results

received, the included initial data items can not be retrieved by
the destination rank. The change from one box to the next is
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Figure 1. The data boundaries g and received partial results .S, "’ of ranks 0

and 2.

thus defined as a data boundary. The main idea of the adaption
is to find data boundaries in the data of the source ranks in
the last round, which coincide with data boundaries in the
destination rank’s data. When such a correspondence is found,
the data sent in the last round is reduced accordingly. To be
able to do so, it is necessary to describe these boundaries in a
mathematical manner. Considering the data elements included
in each partial result received, the data boundaries of the
receiver p can be described as:

Gy [jrcv] =
lrcv_2
p—n > (41 —jey(n+ 1) mod P, (5)
=0

where jyey (n+ 1)“”_1 describes the boundary created through
the data transferred by rank r; in round /.

revsJrev

Also, the sending ranks have received partial results in the
preceding rounds, which are marked through corresponding
boundaries. From the view of rank p in the last round k, these
boundaries are then described through

gind [jsnd] =

lsna—2
p—sn+1)F1—n Z (n+1)°
— Jena(n 4 1)lsna—t mod P, (6)

with s € {1,...,n} distinguishing the n senders and jnd, lsnd
corresponding to the above ji.y, Iy for the sending rank. To
also consider those cases, where only the initial data of the
sending or the receiving rank is included more than once in
the final result, we let lgnd, lrev € {0,...,k—1} and introduce
an additional base border gp in the destination rank’s data.

These boundaries are also depicted in Figure 1 for the
previously given example of a 2-way dissemination algorithm
with 8 ranks. The figure depicts the data present on ranks 0
and 2 after the first communication round in the gray boxes
with according boundaries gg, go, g1[1] and ¢1[2] on rank O
and gg g3[1] and ¢?[2] on rank 2. Since the boundaries 9B
and g7[1] coincide, the first sender in the last round, that is
rank 5, transfers its partial result but rank 2 only transfers a
reduction S’ = x5 o 1 instead of x5 0 z; o zp.

More generally speaking, the algorithm is adaptable, if
there are boundaries on the source rank that coincide with

15



INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation

boundaries on the destination rank, i.e.,

= gl,.c\,[ 'rcv] (7)

or g;  [jsna] = gn- Then the last source rank, defined through
s, transfers only the data up to the given boundary and the
receiving rank takes the partial result up to its given boundary
out of the final result. Taking out the partial result in this
context means: if the given operation has an inverse o~!,
apply this to the final result and the partial result defined
through g;,_, [jrev]- If the operation does not have an inverse,
recalculate the final result, hereby omitting the partial result
defined through g;,__[jrcv]. Since this boundary is known from
the very beginning, it is possible to store this partial result in
the round it is created, thus saving additional computation time
at the end.

gind [jsnd}

From this, one can directly deduce the number of partici-
pating ranks P, for which the n-way dissemination algorithm
is adaptable in this manner:

P = gfsnd [jsnd} — Gliev [jrcv]
lsnd_2
=s(n+1)*1+n Z (n+ 1) + jopa(n + 1)kma™t
i=0
ZI'CV72
—n Y (A 1) e+ 1) ®)
i=0

For given P, a 5-tuple (s,lsnd, lrev, Jsnd, jrev) €an be precal-
culated for different n. Then this 5-tuple also describes the
adaption of the algorithm:

Theorem 1: Given the 5-tuple (s, lsnd, lrev, Jsnds Jrev)s the
last round of the n-way dissemination algorithm is adapted
through one of the following cases:

1) lrcva lsnd >0
The sender p — s(n + 1)*~! sends its partial result
up to gi'  [jsna] and the receiver takes out its partial
result up to the boundary g¢;,__[jrev]-

2) lrcv > 0 lbIld =0
The sender p—s(n+1)k~1 sends its own data and the
receiver takes out its partial result up to the boundary
Glrey [ .rcv]-

3) leev = Oa lsna =0
The sender p — (s — 1)(n + 1)*~! sends its last
calculated partial result. If s = 1 the algorithm ends
after k£ — 1 rounds.

4) leev = 0, lsna =1
The sender p — s(n+1)*~1 sends its partial result up
to g7 . [Jsna — 1]. If jsna = 1, the sender only sends
its initial data.

5) lrcv = 0, lsnd >1
The sender p — s(n + 1)*~! sends its partial result
up to g7 [fsna] and the receiver takes out its initial
data from the final result.

Proof: We show the correctness of the above theorem
by using that at the end each process will have to calculate
the final result from P different data elements. We therefore
look at (8) and how the given 5-tuple changes the terms
of relevance. We will again need the fact, that the received
partial results are always a composition of the initial data of
neighboring elements.
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1) lI‘CV7 and > 0:

lsna—2
P=stn+1)"'4n (n+1)" + jonq (n + 1)lma ™!
i=0

lrev—

—n Z n—|—1

— Glyey [Jrcv] . 9

N lrcv_
— Jrev (n 4 1)

= glsnd []snd}

In order to have the result of P elements, the sender
must thus transfer the partial result including the data up
to g7 | [jsna] and the receiver takes out the elements up to
Gliey jrcv]-

2) lyey > 0, lsna = 0O:

1

P=s(n+1 — rey (N4 1)

=s(n+ 1) - glrcv[ rCV] (10)

and thus we see that the sender must send only its own data,
while the receiver takes out data up to gi,_, [jrev]-

3) leev = 0, lsna = 0:

P = stn+1)ft . an

In the first £ — 1 rounds, the receiving rank will already
have the partial result of n Z L n+1) = (n+ -1
elements. In the last round it then receives the partial sums
of (s—1)(n+ 1)*7! further elements by the first s — 1
senders and can thus compute the partial result from a total
of s—=1)(n+D+ n+D! = s+t -1
elements. Including its own data makes the final result of
s(n+1)""!' = P elements. If s = 1 the algorithm is done
after kK — 1 rounds.

4) lrcv = 07 lsnd =1

P o= s(n+1)"" +jma (12)
Following the same argumentation as above, the receiving
rank will have the partial result of s (n + 1)" "' — 1 elements.

It thus still needs

. (s (n+1)""! - 1)
= s+ D" g —s(+ D) 1
= jsnd +1 (]3)

elements. Now, taking into account its own data it still needs
Jsna data elements. The data boundary ¢ [jsna] Of the sender
includes jg,q elements plus its own data, i.e., jsnq+1 elements.
The j', element will then be the receiving rank’s data, thus

it suffices to send up to g1 [jsna — 1]
5) lrcv = 07 lsnd > 1:

P = sm+1)"!

lsna—2

+ 0 Y (1) +jaa (DT (14)
=0
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In this case, the sender sends a partial result which nec-
essarily includes the initial data of the receiving rank. This
means that the receiving rank has to take out its own initial
data from the final result. Due to ls,q > 1 the sender will not
be able to take a single initial data element out of the partial
result to be transferred. [ |

Note that the case where a data boundary on the sending
side corresponds to the base border on the receiving side, i.e.,
gfsnd[jsnd] = gp, has not been covered above. In this case,
there is no 5-tuple like above, but rather P — 1 = g; [jsnd]
and the adaption and reasoning complies to case 4 in the above

theorem.

V. EXPERIMENTS AND EVALUATION

In the following, it is assumed that an optimal implemen-
tation for an allreduce function on modern ccNUMA architec-
tures will always take the form of a hybrid implementation
where communication within the node or socket is using
shared socket memory and communication across nodes is
performed via distributed memory. This not only complies
to the GASPI specification but also follows the approach of
Panda et al. [13]. The n-way dissemination algorithm was
implemented on top of ibverbs and then compared to different
MPI implementations, as this is the de facto standard of
distributed memory communication. The implementation of
the adapted n-way dissemination algorithm was tested on two
different systems:

Cluster 1: A system with 96 nodes, each having two
sockets with 12 core Ivy Bridge E5-2695 v2 @2.40GHz
processors and an InfiniBand ConnectX FDR interconnect
in fat tree configuration. On this system, the algorithm was
compared to the allreduce and barrier of the Intel MPI 4.1.3
implementation, as this was the fastest MPI implementation
available on the system.

Cluster 2: A system with 36 nodes, each having two sock-
ets with 6 core Westmere X5670 @2.93GHz processors and an
InfiniBand ConnectX QDR network in fat tree configuration.
On this system, the algorithm was compared to the allreduce
and barrier routines of MVAPICH 2.2.0 and OpenMPI 1.6.5,
because no Intel MPI implementation is available on this
system.

In order to obtain the following average runtimes, the
algorithms were run 103 times on the larger system and 10°
times on the smaller system to balance single higher runtimes
which may be caused through different deterministically ir-
reproducible aspects like jitter, contention in the network or
similar. Timings were taken right before the call and again
right after the call returned to obtain the average runtimes.

Similar to [10] it was observed, that the choice of n
influences the runtime of the routine. The choice of n for
the n-way dissemination algorithm will primarily depend on
message rate, latency and bandwidth of the underlying net-
work. Ultimately n will have to be determined as a function
of these parameters or - much simpler, but less elegant - in the
form of static (but network dependent) lookup tables. For the
experiments in this section, different n € {1, ..., 7} were tested
in the first call of the routine. The routine was internally run
15 times for each n and timed. The n with the lowest average
runtime was chosen for the following runs. This overhead is
included in the following runtime plots.
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Comparison of Averaged Runtimes of the n-way Barrier and two MPI Versions
2 x 6 core Westmere X5670, 2.93GHz, InfiniBand ConnectX QDR
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Figure 2. Comparison of the adapted n-way dissemination barrier to
available MPI barrier implementations: OpenMPI 1.6.5 and MVAPICH 2.2.0
on Cluster 2.

Comparison of Averaged Runtimes of the Barrier
2 x 12 core Ivy Bridge E5-2695 v2 2.40GHz, InfiniBand ConnectX FDR
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Figure 3. Comparison of the adapted n-way dissemination barrier to the
Intel MPI 4.1.3 barrier implementation on Cluster 1.

Even though from the theoretical side it is not necessary
to adapt the n-way dissemination algorithm for a correct im-
plementation of the barrier operation or idempotent allreduce
functions, the adaption of the last round brings benefits in
the runtime for these routines also. In Figure 2, two MPI
barrier implementations (MVAPICH 2.2.0 and OpenMPI 1.6.5)
are compared to the adapted n-way dissemination barrier on
Cluster 2. The same was done on Cluster 1, the results of
the averaged runtimes are shown in Figure 3. The runtime
of the n-way barrier implementation is not much lower than
that of the MPI implementations on the QDR system but
on the larger FDR system a great improvement to the Intel
MPI implementation can be seen. On the QDR system, the
barrier reaches an average runtime of approximately 8 us
when running on 32 nodes. On the larger system this runtime
decreases to approximately 5 wus. This significant decrease
has to be related to the underlying network and the much
higher message rate available on FDR. Here a higher n can
be chosen, which correspondingly increases the parallelism in
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communication and decreases the number of communication
rounds needed.

In Figure 4, the first comparisons between MPI allreduces
and the adapted n-way dissemination allreduce on the QDR
connected system are plotted. There are two different setups:
In the first case the allreduce routine was called with one
integer as the initial data element to be reduced per process.
(upper plot in Figure 4). While there was some improvement
compared to the MPI implementations when testing the barrier,
in this case no improvement can be seen. This can be explained
through the additional time needed for computation in the
allreduce.

In the second case the reduce operation works element-
wise on an array of 255 elements (lower plot in Figure 4).
Here the difference in the runtimes of the OpenMPI allreduce
and the MVAPICH allreduce are almost neglectable, while the
n-way dissemination allreduce has a much faster averaged
runtime. This seems somewhat surprising, as butterfly-like
algorithms are known for congesting the network. While it is
to be expected that congestion becomes more probable, when
increasing the message size, the opposite seems to be the case.

In both test settings the averaged times of the MPI
implementations seem more uniform than those of the n-
way dissemination algorithm. The main reason for this is
that the n-way algorithm provides a higher parallelism per
communication step and hence is less robust against jitter.

In Figure 5, a similar picture for the allreduce comparisons
on the larger system as for the barrier is seen, i.e., on node
level substantially lower runtimes are achieved by the n-way
dissemination algorithm than those of Intel MPI 4.1.3. Similar
to the tests on the first cluster, the improvements in the barrier
runtimes are much higher than those in the allreduce runtimes.
Potentially even better results can be achieved for the allreduce
operation by internally overlapping the communication and a
computation of partial results. We will investigate this as part
of future work.

While butterfly-like algorithms often suffer from conges-
tion in the network, this problem is mitigated in the adaption
of the n-way dissemination algorithm. The high potential of
congestion especially arises through the normally symmetric
communication scheme of algorithms like the butterfly itself,
the pairwise exchange or the n-way dissemination algorithm
with P = (n+1)*. By using the algorithm for P # (n+ 1)¥,
this symmetry is dissolved. Two further arguments for the use
of this algorithm comes straight from the GASPI specification.
First of all the message sizes are very limited. According to
the GASPI specification the largest messages in an allreduce
may be 255 doubles. This amounts to only 2040B, which is
less than the limit of 4KB of an InfiniBand packet. In addition,
only one allreduce operation may be active per GASPI group
at a time. Assuming that applications will not create multiple
identical groups, the paths for the packets to be transmitted
will not be identical either in multiple allreduces.

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented an adaption to the n-
way dissemination algorithm, such that it is usable for (user-
defined) allreduce operations within GASPI. The main ad-
vantage of this modified algorithm is not just an excellent
performance, but also the smaller depth of the communication
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Figure 4. Comparison of the adapted n-way dissemination allreduce to two
MPI allreduce implementations with one element per rank to be reduced in
the upper plot and 255 elements to be reduce in the lower plot.
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Figure 5. Comparison of the averaged runtimes of the Intel MPI 4.1.3
MPI_Allreduce and the n-way dissemination algorithm based on ibverbs.

tree and the fact that this algorithm allows for a participation
of all ranks in every step of the communication tree. Both

18
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features are key requirements for split-phase collectives and
user-defined allreduces of the GASPI PGAS API. Since the n-
way dissemination algorithm only requires [log,, (P)] com-
munication rounds, a split-phase collective (with progress only
within the call) will achieve faster progress than algorithms
with deep communication trees mentioned in Section I.

While butterfly-like communication schemes have been
abandoned in the past, new hardware with much higher
throughput might again make these algorithms with small
numbers of communication rounds more attractive in the
future. Also, topology developments in high performance
interconnects like the Cray Aries interconnect make these
communication schemes interesting again [17]. Future work
will correspondingly investigate the influence of these new
developments on butterfly-like algorithms.

As already mentioned in Section II, future work will
also deal with an in-depth analysis and comparison of the
adapted n-way dissemination algorithm to other algorithms
with similar communication schemes.
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