
Trans-Organizational Role-Based Access Control in Android

Secure Mechanism for Verifying User-Role Assignments of Organizations

Jason Paul Cruz and Yuichi Kaji

Nara Institute of Science and Technology, Graduate School of Information Science

Nara, Japan

E-mail: jpmcruz@ymail.com, kaji@is.naist.jp

Abstract—The role-based access control (RBAC) is a natural

and versatile model of the access control principle. In the real

world, it is common that an organization provides a service to

a user who owns a certain role that was issued by a different

organization. However, such a trans-organizational RBAC is

not common in a computer network because it is difficult to

establish both the security that prohibits malicious

impersonation of roles and the flexibility that allows small

organizations/individual users to fully control their own roles.

To solve this problem, this study proposes a mechanism that

makes use of the hierarchical ID-based encryption scheme and

the challenge-response authentication protocol. The proposed

mechanism contributes to achieve both the security and the

flexibility and it provides additional features that are common

in physical communication but are not obvious in the

cyberworld. This study also reports a prototyping system that

is implemented on Android-enabled mobile devices. The

proposed system employs the needed cryptographic

mechanisms, and new technologies, namely, near-field

communication and two-dimensional codes, are employed to

realize locally closed communication between devices.

Keywords-role-based access control; trans-organizational

role; information security; ID-based encryption; service

coalition; Android.

I. INTRODUCTION

The role-based access control (RBAC) [1] is a widely
accepted framework that describes the access control relation
among users and services. In RBAC, users are associated
with roles, and roles are associated with services. This
framework is compatible with the access control
requirements of real-world organizations and is employed in
the computer systems of many organizations/companies.
However, it must be noted that RBAC is a versatile
framework, and roles are often used in a trans-organizational
manner. For example, students are often allowed to be
admitted to a museum with discounted admission fee. In this
example, the “student” role that is issued by an organization
(school) is used by another organization (museum) to
determine if a guest is eligible to receive a certain service
(discounted admission). This kind of trans-organizational use
of roles is, unfortunately, not common in computer networks.
Even if one has a certain role that is issued by an
organization, there is no way to convince a third-party
organization that he/she really has that role.

To realize a trans-organizational RBAC mechanism in a
computer network, two issues should be considered; the
security and the flexibility. With regard to security, the
mechanism should prevent malicious users from disguising
their roles. This requirement is naturally accomplished in
real-world services with the use of physical certificates, such
as passports and ID-cards, which are difficult to forge or
alter. This problem, however, is not obvious in a computer
system. Digital certificates [2] can be utilized as an analogue
of physical certificates, but the use of digital certificates is
not favorable from the viewpoint of realization cost, which
can discourage small companies and non-profit organizations
from participating in the framework. Another less
sophisticated approach to the security problem is to let a
service-providing organization (the museum in the above
example) inquire a role-issuing organization (school) about
the user-role assignment. This approach works fine in some
cases [3], but a focal point of this approach is the necessity
for the agreed beneficial relationship among organizations.
Consequently, it is difficult for a new organization to join the
partnership, severely restricting the trans-organizational
utilization of roles.

The current study aims to develop a practical mechanism
that realizes the trans-organizational utilization of roles.
First, we extend the model of RBAC to represent the trans-
organizational usage of roles. This simple extension clarifies
the components and requirements that are needed in the
framework of trans-organizational RBAC. Then, we
investigate a realization of a user-role assignment that is
secure (users cannot disguise roles), user-oriented (users can
disclose their roles to any organization), and open (anyone
can verify if a user has a certain role that is managed and
issued by another organization). The crucial point of this
realization is to make use of hierarchical ID-based
encryption (HIBE) [4][5], which allows an arbitrary string to
be used as a public encryption key. Our key idea is to define
correspondence between the roles and keys of HIBE and to
employ a challenge-response authentication protocol that
will be used for verifying if a user really has an asserted role.
The hierarchical nature of HIBE makes our scheme suitable
for the trans-organizational utilization of roles, and
furthermore, allows flexible role management operations,
such as the endorsement and delegation of roles. A prototype
system of the proposed trans-organizational RBAC will also
be introduced. For the usability of the trans-organizational
RBAC, it is highly desirable for a user to be able to carry

114Copyright (c) IARIA, 2014. ISBN: 978-1-61208-365-0

INFOCOMP 2014 : The Fourth International Conference on Advanced Communications and Computation

his/her roles all the time. To verify the practicality of the
proposed scheme, we implemented the proposed system on
Android-enabled mobile devices. The implementation
contains the realization of cryptographic functions that are
essential for handling cryptographic keys and the
development of a scheme that allows two devices to perform
the challenge-response authentication by utilizing local and
closed communication. The prototype demonstrates that the
proposed scheme is simple, lightweight, and completely
practical for realizing the trans-organizational RBAC. The
rest of this paper is organized as follows. Section II
introduces the RBAC and the different models associated
with it. Section III discusses the technical aspects of HIBE.
Section IV presents the structure, procedures, and features of
the proposed framework. Section V discusses the realization
and implementation of the proposed system in Android-
enabled devices. Section VI provides the conclusion and
future work.

II. MODELS FOR THE ROLE-BASED ACCESS CONTROL

In the simplest model of the RBAC [1], the access
structure is defined by three sets and two relations. In this
paper, we use 𝑈 for the set of users, 𝑅 for the set of roles,
and 𝑆 for the set of services. A user-role assignment, UA, is a
subset of 𝑈 × 𝑅 , and a role-service assignment, SA , is a
subset of 𝑅 × 𝑆. A user 𝑢 is eligible to access a service 𝑠 if
and only if there is a role 𝑟 such that (𝑢, 𝑟) ∈ UA and
(𝑟, 𝑠) ∈ SA. The access control should be made in such a
way that services are provided to eligible users only. In
general, the user-role assignment UA is defined by an entity
that issues roles in 𝑅, and the role-service assignment SA is
defined by an entity that provides the services in 𝑆. In this
paper, the former is called a role-issuing entity, and the latter
is called a service-providing entity. If RBAC is utilized in a
single organization, then we can regard that the role-issuing
entity and the service-providing entity are the same identical
organization, and that the service-providing entity should
have no difficulty referring to the user-role assignment. In
this case, the eligibility of a user 𝑢 to a service 𝑠 can be
easily determined.

On the other hand, in the real world, there are many cases
wherein a service-providing entity is a different organization
from a role-issuing entity. As stated in the previous section, a
school issues the “student” role to its students, and an
external organization, such as a museum, provides services
to users who hold the “student” role. In this case, the service-
providing organization (museum) is a completely
independent organization from the role-issuing organization
(school), and the service-providing organization is not
expected to refer to the user-role assignment that was defined
by the role-issuing organization. To discuss such a situation,
we first consider an extended model of RBAC.

The trans-organizational RBAC is defined similarly to
the usual RBAC, but a set 𝑂 of organizations is defined in
addition to the sets of users, roles, and services. Furthermore,
the set 𝑅 of roles is partitioned into several subsets, with
each subset of 𝑅 associated with an element in 𝑂 , that is,
𝑅 = 𝑅𝑜1

∪ ⋯ ∪ 𝑅𝑜𝑛
, where 𝑜1, … , 𝑜𝑛 ∈ 𝑂 and 𝑜𝑖 ∩ 𝑜𝑗 = ∅ if

𝑖 ≠ 𝑗. To make the relation among roles and organizations

explicit, a role 𝑟 in 𝑅𝑜𝑖
 is written as 𝑜𝑖 . 𝑟. Similarly, the user-

role assignment UA is partitioned into disjoint subsets; UA =
UAo1

∪ ⋯ ∪ UA𝑜𝑛
, where UA𝑜𝑖

⊂ 𝑈 × 𝑅𝑜𝑖
. Obviously,

𝑜𝑖 . 𝑟 ∈ 𝑅𝑜𝑖
 means that the role 𝑜𝑖 . 𝑟 is managed by the

organization 𝑜𝑖 , and the assignment of users to 𝑜𝑖 . 𝑟 is fully
controlled by that organization 𝑜𝑖 . In the trans-organizational
RBAC, upon a request from a user 𝑢 to a service 𝑠 , the
service-providing organization needs to check if there is an
organization 𝑜𝑖 ∈ 𝑂 and a role 𝑜𝑖 . 𝑟 ∈ 𝑅𝑜𝑖

 such that

(𝑢, 𝑜𝑖 . 𝑟) ∈ UA𝑜𝑖
 and (𝑜𝑖 . 𝑟, 𝑠) ∈ SA. Assuming that the user

𝑢 declares the role 𝑜𝑖 . 𝑟 to utilize, then all the service-
providing organization needs to do is check if (𝑢, 𝑜𝑖 . 𝑟) ∈
UA𝑜𝑖

 or not. However, it should be noted that the role-issuing

organization 𝑜𝑖 can be a different organization from the
service-providing organization in general. The confirmation
of (𝑢, 𝑜𝑖 . 𝑟) ∈ UA𝑜𝑖

, which is sometimes called an

authentication, is not as obvious for the service-providing
organization as in the single-organization case. If the
confirmation cannot be established, then a malicious user
may try to access a service by asserting a role that the user
does not actually have.

It is essential in the trans-organizational RBAC to realize
a secure authentication mechanism, and this problem can be
solved using two approaches. The first approach is to utilize
digital certificates that are protected by the digital signatures
of the role-issuing entities. This kind of certificate is
sometimes called an attribute certificate [2] and is regarded
as a digitalized version of physical certificates, such as ID-
cards. The problem in this approach is the maintenance cost
of the public-key infrastructure (PKI) [6][7]. Different from
written signatures, continuous efforts are essential to keep
digital signatures secure and functional. PKI is widely
recognized as expensive, and this cost issue prevents small
organizations from participating in a PKI-based framework.
The second, rather political, approach to the authentication
problem is to arrange a mutual agreement between role-
issuing organizations and service-providing organizations. If
several organizations share an identical benefit, then they can
set up a partnership and mutually disclose their user-role
assignments. A good example of this approach can be found
in the Shibboleth project [3], but we need to remark that this
framework is essentially a semi-closed one. An organization
will not be allowed to join the partnership if that organization
cannot offer recognizable benefits to the organizations
involved, consequently limiting the trans-organizational
utilization of roles.

III. HIERARCHICAL ID-BASED ENCRYPTION

A public-key encryption is a cryptography that utilizes
two different keys for encryption and decryption. In a typical
public-key encryption, such as RSA [8], a user sets up
his/her key pair by himself/herself. One of the keys in the
key pair is called an encryption key and is disclosed to the
public. The other key is called a decryption key and is kept
secretly by the user. In many cases, the keys are constructed
from randomly selected information, which means that the

115Copyright (c) IARIA, 2014. ISBN: 978-1-61208-365-0

INFOCOMP 2014 : The Fourth International Conference on Advanced Communications and Computation

keys look like random data. A separate mechanism, such as
PKI, is needed to associate public encryption keys with
users. However, PKI makes the system complicated and
costly [6][7].

An ID-based encryption [4] is a special public-key
encryption. Different from the usual public-key encryption, a
user first chooses his/her encryption key. An interesting point
in the ID-based encryption is that, under an appropriate
setting, one’s identity, such as an e-mail address, can be used
as an encryption key. After choosing the encryption key, the
user submits the encryption key to a trusted authority which
we call a key generator. The key generator examines the
eligibility of the user and then, upon confirmation of the
user’s eligibility, computes the decryption key that
corresponds to the submitted encryption key. Different from
the usual public-key encryption, the correspondence between
users and encryption keys becomes obvious if the identities
of users are chosen as the encryption keys. Consequently, the
costly mechanism of PKI is not needed in the framework of
ID-based encryptions [4].

The HIBE [5] is an extension of the ID-based encryption
wherein identities and functions of the key generator are
realized in a hierarchical manner. In this paper, we write a
hierarchical identity (abbreviated simply as ID) by a
sequence of strings 𝑆 = 𝑠1. 𝑠2. … . 𝑠𝑛 , where 𝑛 is a non-
negative integer called a level of 𝑆, and 𝑠𝑖 with 1 ≤ 𝑖 ≤ 𝑛 is
a string. If an ID 𝑆 = 𝑠1. 𝑠2. … . 𝑠𝑛 is a prefix of 𝑆′ =
𝑠′1. 𝑠′′ . … . 𝑠′𝑛′ , then we say that 𝑆 is a super-ID of 𝑆′ and 𝑆′
is a sub-ID of 𝑆 . In HIBE, an ID can be regarded as an
encryption key by itself, although, it is sometimes convenient
to distinguish IDs from encryption keys explicitly. In the
following discussion, we write ek𝑆 and dk𝑆 for the
encryption and decryption keys that correspond to the
identity 𝑆, respectively. In the original ID-based encryption,
all decryption keys are solely generated by a trusted key
generator. In HIBE, however, the generation of decryption
keys is made in a hierarchical manner; the key pair
(ek𝑆, dk𝑆) for a level-one ID 𝑆 = 𝑠1 is generated by a
designated key generator which we call a root key generator
and is issued to an appropriate user who is eligible to hold
the key pair. A user who has a key pair (ek𝑆, dk𝑆) for an ID
𝑆 can generate a key pair (ek𝑆′, dk𝑆′) for an ID 𝑆′ that is a
sub-ID of 𝑆 . The functions used in HIBE are described
below. There is complicated mathematics behind these
functions, but we omit them because they are not the subject
of this study. The main body of HIBE consists of the
following four procedures:

Initialize() is a procedure that is executed by the root key
generator in the initialization of the HIBE system. This
procedure determines the public and secret parameters used
in the system. The secret parameter is kept secretly by the
root key generator, and the public parameter is disclosed to
the public. The value of the public parameter is used in the
following three procedures, although we do not write them
explicitly in the notation for simplicity.

KeyGenerate(𝑺 , (𝐞𝐤𝑺′ , 𝐝𝐤𝑺′)) is a procedure that
computes the decryption key for the given ID 𝑆 . More
precisely, the procedure generates dk𝑆 if 𝑆 is a sub-ID of 𝑆’
and dk𝑆′ is a correct decryption key of 𝑆′ . If not, the

procedure fails to compute dk𝑆. We remark that dk𝑆 cannot
be computed if one does not know a correct decryption key
of a super-ID of 𝑆.

Encrypt(𝒌, 𝒎) encrypts data 𝑚 by using 𝑘 as an
encryption key.

Decrypt(𝒌, 𝒄) decrypts data 𝑐 by using 𝑘 as a decryption
key.

If (ek𝑆, dk𝑆) is a key pair that is correctly generated by
KeyGenerate and 𝑐 = Encrypt(ek𝑆, 𝑚) is an encryption of
𝑚 constructed by using the encryption key ek𝑆 , then
Decrypt(dk𝑆, 𝑐) returns 𝑚.

HIBE is useful when used in a challenge-response
authentication protocol. Consider a scenario that involves
two people, a prover and a verifier. The prover asserts
himself/herself as a genuine user with an identity 𝑆, but the
verifier is not sure if this assertion is true or not. In this case,
the verifier can determine if the prover is genuine or not by
executing the following steps. First, the verifier chooses a
random message 𝑚 , and then encrypts 𝑚 by using the
encryption key ek𝑆 for the asserted ID 𝑆 . The obtained
ciphertext 𝑐 = Encrypt(ek𝑆, 𝑚) , which is called a
challenge, is passed to the prover. The prover is requested to
decrypt 𝑐 by using the decryption key dk𝑆 that a genuine
user should possess. If the prover returns 𝑚 as the result of
the decryption, then he/she succeeds to make a correct
response and is authorized as a user with the identity 𝑆. If the
response is wrong, then the prover is rejected. Through this
challenge-response protocol, the verifier is able to determine
if the prover has the ID 𝑆. At this point, it should be noted
that the ID 𝑆 is indeed a hierarchical identity; the fact that the
prover posseses the decryption key dk𝑆 means that
somebody who had a certain super-ID of 𝑆 authorizes the
prover to have the identity 𝑆 . In other words, with the
challenge-response protocol, the prover confirms a “chain of
trust” that originates from the root key generator. This
scenario is favorable in an open system with many
unspecified users.

IV. PROPOSED SCHEME

A. Overview

We now consider an authentication mechanism that is
suitable for the trans-organizational utilization of roles. Our
idea is to represent roles by hierarchical identities that work
as encryption keys of HIBE. For example, if we would like
to define a “student” role of A-university, then a hierarchical
identity, such as “A-univ.student”, is introduced and used as
an encryption key of HIBE. Decryption keys are managed so
that users with a role 𝑟 possess the correct decryption key
dk𝑟 of 𝑟 . A service-providing organization can verify if a
user has the role 𝑟 by examining the user by using the
challenge-response protocol with 𝑟 used as an encryption
key of HIBE. Note that the service-providing organization
does not have to know anything about 𝑟 beforehand and does
not have to make any contract or inquiry to the role-issuing
organization that has assigned 𝑟 to the user because 𝑟 itself is
used as an encryption key. This feature makes it easy to
verify the user-role assignment of users even if the role is
issued by another organization. In the proposed framework,

116Copyright (c) IARIA, 2014. ISBN: 978-1-61208-365-0

INFOCOMP 2014 : The Fourth International Conference on Advanced Communications and Computation

there is no essential difference between users and role-
issuing organizations because they both receive valid key
pairs from superordinate entities and they both have the
ability to generate new roles and corresponding key pairs by
utilizing their keys in possession. However, for an easy
understanding of the proposed framework and for simplicity,
we will distinguish users from role-issuing organizations and
introduce three component procedures that are needed for
defining a user-role assignment. In the following, we extend
the hierarchical notions of IDs to roles. If 𝑟1 is a super-ID of
another ID 𝑟2, then the role represented by 𝑟1 is a super-role
of the role represented by 𝑟2. The term sub-role is defined in
the same way.

B. Procedures

Fig. 1 shows the overall structure of the proposed model.
In this model, we assume the existence of a designated root
key generator that is trusted by all users and organizations.
The root key generator executes Initialize() of HIBE and
determines the public and secret parameters. The public
parameter is disclosed to the public and should be accessible
to all users and organizations. The root key generator secures
the secret parameter and uses it to generate key pairs for
level-one roles.

1) Setting up an organization

An organization 𝑜1 chooses its identity string, say 𝑆𝑜1
,

and requests the root key generator to approve that the
organization uses 𝑆𝑜1

 as its identity. If the root key generator

approves the request, it computes the decryption key dk𝑆𝑜1

and sends this key to 𝑜1 by using a secure communication
channel. As a result, 𝑜1 possesses a correct key pair
(ek𝑆𝑜1

, dk𝑆𝑜1
) of its identity 𝑆𝑜1

. The organization 𝑜1 then

defines the set 𝑅𝑜1
 of roles it should manage. All roles in 𝑅𝑜1

must be sub-roles of 𝑆𝑜1
, where the identity 𝑆𝑜1

is regarded as

a “role”. Note that 𝑜1 can compute the decryption key of any

role 𝑜1. 𝑟 ∈ 𝑅𝑜1
 by utilizing the function of

KeyGenerate(𝑜1. 𝑟, (ek𝑆𝑜1
, dk𝑆𝑜1

)) , because 𝑜1 knows the

correct key pair (ek𝑆𝑜1
, dk𝑆𝑜1

) and 𝑜1. 𝑟 is a sub-ID of 𝑆𝑜1
.

On the other hand, organizations other than 𝑜1 cannot
compute the decryption key of the role 𝑜1. 𝑟 because the
trusty key generator does not disclose dk𝑆𝑜1

 to other

organizations. Identities of roles in 𝑅𝑜1
 can be open to the

public, but the corresponding decryption keys must be kept
secret by organization 𝑜1.

2) Defining a user-role assignment
To assign a role 𝑜1. 𝑟 to a user 𝑢 , the organization 𝑜1

gives the key dko1.𝑟 to user u by using a secure

communication channel. User 𝑢 records dko1.𝑟 as the

decryption key of the role 𝑜1. 𝑟, and keeps the key secure.

3) Verifying a user-role assignment
Assume that a user 𝑢 visits a service-providing

organization 𝑜2 and asserts that he/she has the role 𝑜1 . 𝑟 that
was assigned by the role-issuing organization 𝑜1 . The
organization 𝑜2 needs to verify if the assertion of user 𝑢 is
true or not. The verification can be done by using the
challenge-response protocol; the organization 𝑜2 chooses a
random data 𝑚 and requests user 𝑢 to decrypt 𝑐 =
Encrypt(eko1.𝑟 , 𝑚). Note that we are using HIBE, and the

encryption key eko1.𝑟 is the same as (or easily derived from)

the hierarchical identity 𝑜1. 𝑟 of the asserted role. If the user
really has the role 𝑜1. 𝑟 , then he/she must possess the

decryption key dko1.𝑟 that is provided by the organization 𝑜1

and should be able to decrypt the challenge 𝑐. Remark that
the service-providing organization 𝑜2 can verify if the user 𝑢
holds the role 𝑜1. 𝑟 without querying the role-issuing
organization 𝑜1 and that user 𝑢 has little chance to disguise
his/her role.

C. Managing Roles

1) Personalization of roles
In the proposed framework, the relation between users

and roles is represented by the possession of cryptographic
keys by users. This approach involves a possible security
risk; a leakage of keys. If, for example, a role 𝑟 is assigned to
several users, then all those users have the same key dk𝑟. If
one of those users is unconscious of security, then he/she
may let other persons use the key dk𝑟. Such an inappropriate
usage of keys can obstruct fair and reliable access control.
To deter such irresponsible behavior of users, a role-issuing
organization can “personalize” a role by appending an
additional string to the identity of roles. Assume for example
that there are several students in A-university. In this case,
instead of using a general role, such as “A-univ.student”, the
university can define personalized roles, such as A-
univ.student.Alice and A-univ.student.Bob, and provide

Figure 1. Overview of the proposed structure.

117Copyright (c) IARIA, 2014. ISBN: 978-1-61208-365-0

INFOCOMP 2014 : The Fourth International Conference on Advanced Communications and Computation

decryption keys of these roles to Alice and Bob, respectively.
With this kind of personalization, a student will be more
conscious of leaking/losing his/her key to another person
because he/she will have the risk of being identified and
subsequently punished for irresponsible behavior. The
theft/loss of keys remains a risk, but such risk also exists for
ID-cards used in the real world. We cannot say that the
proposed framework is “more secure than” but we may say it
is “as secure as” the real-world role management.

2) Hierarchical issuance of roles
In the proposed scheme, there is no essential difference

between organizations and users. A user can compute
decryption keys from the key that he/she already has and
issue a new sub-role of the role that he/she already has. This
function can be used to realize some personal activities that
are not considered in the conventional RBAC approach. One
possible example is the endorsement of another person. In
the real world, an endorsement among individuals sometimes
plays an important role. Semi-closed organizations, such as
academic societies and golf clubs, have the tradition or
policy that a newcomer must be endorsed or referred by a
current member. This mechanism can be realized using the
proposed scheme. Consider for example that Alice is an
authorized member of XYZ golf club and is given a
personalized role “XYZ-golf.member.alice” and its
corresponding decryption key. If Alice would like to endorse
Bob to the club, then she can generate a new sub-role “XYZ-
golf.member.alice.endorsed” and its corresponding
decryption key. By providing the decryption key to Bob, Bob
can demonstrate that he is really endorsed by Alice. Using
the HIBE and the challenge-response authentication, the club
does not have to inquire Alice for the verification of the
endorsement. Besides personal endorsement, we conjecture
that a broad range of personal relations can be implemented
by utilizing the hierarchical roles.

V. REALIZATION

The proposed scheme was implemented in Android-
enabled mobile devices. In the proposed scheme, the user-
role assignments are represented by possession of decryption
keys by users. A role-issuing organization does not have to
construct and maintain large databases for recording the
user-role assignments, and it does not have to be bothered by
inquiries of other organizations with regard to user-role
assignments. The created Android application implements all
the functions of the HIBE and the proposed scheme for ease
of use and accessibility.

The prototype contains several functions that correspond
to components in Fig. 1. The functions of the root key
generator mainly consist of two operations: GenParams and
RKeyGenerateMaster. GenParams utilizes the Initialize()
function of HIBE and generates the public and secret
parameters, where the public parameter is disclosed to the
public. An organization 𝑜𝑖 that would like to participate in

this system chooses its identity, say 𝑆𝑜𝑖
, and asks the root key

generator to compute the decryption key dk𝑆𝑜𝑖
. The root key

generator utilizes RKeyGenerateMaster to compute dk𝑆𝑜𝑖
,

which needs the information of the secret parameter and

hence this function is accessible to the root key generator
only. The generated key dk𝑆𝑜𝑖

 is transferred to the

organization 𝑜𝑖 through general communication means, such
as Wi-Fi, Bluetooth, Android Beam, and NFC. The role-
issuing organization 𝑜𝑖 now has the key pair (ek𝑆𝑜𝑖

, dk𝑆𝑜𝑖
)

for the ID 𝑆𝑜𝑖
. By using the function of RKeyGenerate, this

key pair, and the public parameter that has been disclosed,
the organization 𝑜𝑖 can compute valid key pairs of sub-IDs of

𝑆𝑜𝑖
. A user receives, possibly many, keys from organizations,

each of which corresponds to a role in an organization. The
user safely stores these keys in his/her device and accesses
them for the RKeyGenerate and RoleResponse functions.
RoleResponse provides the function of the prover for the
challenge-response authentication and interacts with the
RoleChallenge function that is invoked by a service-
providing organization.

The cryptographic operations used in these functions are
performed using the Java Pairing-Based Cryptography
(JPBC) library [9], which is a collection of classes and
methods for handling underlying pairing-based
cryptosystems. Over JPBC, we implemented the HIBE that
was proposed by Gentry [5].

The most complicated but important communication in
the proposed scheme is the challenge-response
authentication between a user and a service-providing
organization. Several messages must be exchanged between
two devices, and we provide two different schemes to realize
this communication, namely, the use of near-field
communication (NFC) and quick-response (QR) codes.

NFC is a contactless technology used to transmit small
amounts of data across short distance. NFC has three modes
of operation, and this study tackles only P2P mode. NFC
messages in Android are handled using the NFC Exchange
Format (NDEF). In the proposed Android application, the
Intent Filters that listen to the intent action of
NfcAdapter.ACTION_NDEF_DISCOVERED were added to
the RoleChallenge and RoleResponse activities to be able to
receive NFC data [10][11]. Only the MIME type of text/plain
was included in the application as we are only concerned
with passing and receiving data of type string. Given that at
least two activities have the same intent filter that responds
to an NFC tap, users are, by default, prompted to select
which application in the mobile device to use, making the
application tedious to use. To solve this problem, the
foreground dispatch system was utilized. The foreground
dispatch system is used to make a particular activity have
priority over other activities. This allows a particular activity
to become the default receiver when it is on the foreground.

QR Code is a type of 2D barcode that is capable of
handling different types of data [12]. This code can
accommodate high capacity of data in a small area, which is
sufficient to include the challenge-response data in one code
symbol. The camera hardware of mobile phones can be used
as scanners for QR codes generated for the
challenge/response actions. For this implementation, the
camera hardware of the device was programmed and the
ZXing (“zebra crossing”) library, which is an open-source
library that supports the decoding and generation of

118Copyright (c) IARIA, 2014. ISBN: 978-1-61208-365-0

INFOCOMP 2014 : The Fourth International Conference on Advanced Communications and Computation

barcodes, was used to obtain the data [13]. This feature
allows the interaction of two users without NFC-capable
devices and without the Internet.

Typically, the challenge-response authentication is
carried out as follows:
1. A user, the prover, opens the application and goes to the

“Role Response” option. Then, the prover selects the
base file that contains the public parameter and the role
file that contains the role he/she wants to use.

2. A service-providing organization, the verifier, opens the
application and goes to the “Role Challenge” option. To
start the verification process, the verifier selects the
same base file and either types the role indicated by the
prover or obtains the role automatically via NFC (first
tap). Once the role is received, a random challenge data
is created.

3. The verifier then sends this challenge data to the prover
via NFC (second tap) or by generating a QR code for
the prover to scan.

4. After receiving the challenge data via NFC or scanning
of the Challenge QR Code, a random response data is
calculated and created in the prover’s device based on
the role file selected.

5. The prover then sends this response data to the verifier,
again, via NFC (third tap) or by generating a QR code
for the verifier to scan.

6. After receiving the response data via NFC or scanning
of the Response QR Code, the Role Challenge indicates
if the assumed role is verified or is a mismatch.
Several screen shots of the prototype are shown in Fig. 2.

Another possibility for the realization of the user-side system
is through the use of smartcards that are compatible with the
NFC technology [14].

VI. CONCLUSION AND FUTURE WORK

A trans-organizational RBAC is considered and extended
to represent the trans-organizational usage of roles. The
proposed scheme provides a secure mechanism for verifying
the user-role assignments of organizations. The proposed
scheme was developed on Android-enabled mobile devices
for ease of use and accessibility. Compared to other similar
approaches, the proposed scheme provides more flexibility
and autonomy while maintaining security. This mechanism
allows the realization of many collaborative right
managements that are common in physical communication
but are difficult to implement over computer networks. Even

with the given advantages, the proposed scheme remains
subject to the classical issue of compromised secret keys; the
proposed scheme is based on the assumption that keys are
managed appropriately and protected well. If dk𝑆 is
compromised for an unfortunate reason, the keys of the sub-
roles of S should be redeployed. This problem can be
mitigated by utilizing the personalized and fixed-term roles,
but it is encouraged in general to provide more protection for
the keys of roles of higher-level. Taking such issue into
consideration, future research will focus on the inclusion and
integration of expiration dates on the roles. Moreover, the
prototype will be expanded to non-Android devices, such as
iPhones and Windows mobile devices, for interoperability.

REFERENCES

[1] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman,
“Role-based access control models,” IEEE Computer, 29, 2,
pp. 38–47, 1996.

[2] S. Farrell and R. Housley, “An internet attribute certificate
profile or authorization,” RFC 3281, 2002.

[3] The Shibboleth System, accesible online:
http://shibboleth.internet2.edu/ [accessed: 2014-05-08].

[4] D. Boneh and M. Franklin, “Identity-based encryption from
the Weil pairing,” Proc. of the Advances in Cryptology
(CRYPTO) 2001, pp. 213–229, 2001.

[5] C. Gentry and A. Silverberg, “Hierarchical ID-based
cryptography,” Proc. of the Advances in Cryptology
(ASIACRYPT) 2002, pp. 548–566, 2002.

[6] C. M. Ellison et al., “SPKI certificate theory,” RFC 2693,
1999.

[7] P. Gutmann, “Simplifying public key management,” IEEE
Computer, 37, 2, pp. 101–103, 2004.

[8] R. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,”
Communications of the ACM, 21, 2, pp. 120–126, 1978.

[9] A. De Caro and V. Iovino, “jPBC: Java pairing based
cryptography,” Proc. Of the IEEE Symposium on Computers
and Communications (ISCC) 2011, pp. 850–855, 2011.

[10] R. Meier, “Professional Android 4 Application
Development,” John Wiley & Sons, Inc., Indianapolis, pp.
693–700, 2012.

[11] S. Komatineni and D. MacLean, “Pro Android 4,” Apress, pp.
858–870, 2012.

[12] http://www.qrcode.com/en/ [accessed: 2014-05-08].

[13] https://github.com/zxing/zxing [accessed: 2014-05-08].

[14] M. Scott, N. Costigan, and W. Abdulwahab, “Implementing
cryptographic pairings on smartcards,” Proc. of the
Cryptographic Hardware and Embedded Systems, pp. 134–
147, 2006.

(a) (b) (c) (d)

Figure 2. (a) RkeyGenerate, (b) Role Response, (c) Role Challenge, and (d) QR Code functions of the application.

119Copyright (c) IARIA, 2014. ISBN: 978-1-61208-365-0

INFOCOMP 2014 : The Fourth International Conference on Advanced Communications and Computation

