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Abstract—Multi-trial sampled K-means performance and 

scalability is studied as a stepping stone towards a Graphical 

Processing Unit implementation of Entropy Constrained 

Vector Quantization for interactive data compression. Basic 

parallelization strategies and data layout impacts are explored 

with K-means.  The K-means implementation is extended to 

Entropy Constrained Vector Quantization, and additional 

tuning specific to the anticipated use case is performed. The 

results obtained are sufficiently promising that this will in the 

next phase be applied to the interactive exploration and 

visualization of very large satellite datasets. 

Keywords- K-Mean; Entropy Constrained Vector 
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I.  INTRODUCTION 

This is a work in progress, and is currently in an early 
stage. The ultimate goal is to apply k-means or Entropy 
Constrained Vector Quantization (ECVQ) to interactive data 
compression as a component in a data exploration and 
visualization solution. Initially, this would support 
exploration of the Multi-angle Imaging SpectroRadiometer 
(MISR) Level 3 aerosol data sets. This phase of the work is 
intended to create an understanding of the scalability and 
performance of simple Graphical Processing Unit (GPU) 
accelerated versions of ECVQ and its algorithmically similar 
but simpler cousin, k-means clustering. K-means and ECVQ 
offer the potential to provide information preserving data 
compression on large datasets. Further research will then 
apply data visualization and exploration techniques on the 
reduced datasets.  

In this paper, we first discuss k-means and ECVQ, and 
then proceed to an overview of GPUs and CUDA 
programming. The structure of the research codes, including 
the primary parallelization and tuning options explored, are 
presented. A review of some of the prior art is followed by 
relative performance results.  Conclusions are drawn and the 
next steps in the work are briefly discussed.  

II. K-MEANS AND ECVQ  

The k-means algorithm is familiar in a wide variety of 
contexts.  In this paper, a relatively simple version of the 
algorithm is adopted using sampling and multiple trials to 
extend the scalability to large datasets. Interested readers can 
consult a variety of texts and surveys of the field [1].  

ECVQ can be viewed as a compression or clustering 
technique similar to k-means but with information-theoretic 
penalties applied to the distance function used to assign 
vectors to cluster centroids [7].  Specifically, it adds a 
multiple of the absolute value of the log of the fraction of 
measurements in a cluster to the L2 distance measure, which 
adds computational complexity but minimal additional data 
movement to the k-means algorithm. It is useful in a variety 
of contexts; this work was motivated by the use of ECVQ in 
the production of certain compressed NASA datasets [3].  

Ignoring initialization and iteration limits, the basic 

algorithm to implement k-means with a number of training 

sets, each of a certain sample size, and a testing set is shown 

in Fig. 1. 
 

For each training-set 
Repeat until labels are stable 
 For each sample assign to nearest k 
 For each k, calculate new centroid 

For each testing set’s final centroids 
For each test case assign to nearest k 
For each k calculate a quality measure 
Aggregate quality measures for the test set 

Select best set of k 
 

Figure 1: Algorithm Outline. 

  
 
In Fig. 1, “nearest” is the L2 norm in the case of k-means 

or the L2 norm augmented by the information theoretic 
penalty function in the case of ECVQ.    

There are several levels of parallelism available in the 
algorithm, as evidenced at the highest level by the “for each” 
lines of the algorithm. There are also serial data 
dependencies between the steps in the repeat loop and before 
the selection of the best k at the end. 

III. GPUS AND CUDA 

The General Purpose Graphics Processing Unit (GPGPU 
or usually just GPU) is the evolution of massively parallel 
hardware graphics accelerators whose base data types are the 
pixel, triangle, and image and whose basic functions were 
rasterization and shading.  The programming model for these 
accelerators and their performance has evolved significantly, 
to the point where NVIDIA’s CUDA extensions to C++ and 
Fortran have been used in supercomputers and industrial 
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systems since 2006. There are numerous resources for 
learning more about GPU programming and software that is 
already GPU accelerated [4].  

A. Logical Programming Model-- CUDA 

A function to be executed on the GPU is called a kernel. 
These kernels are logically composed of many lightweight 
threads (frequently thousands to millions) which are 
launched as a grid. These threads are grouped together into 
blocks.  The same kernel code is executed by every thread, 
but threads have unique thread and block indices which 
means each thread can operate on different data and follow 
different paths through the code. Threads within a block can 
synchronize with each other and can use a block-wide very 
fast pool of shared memory for coordination.  

All threads in all blocks have access to fast global device  
memory on the accelerator. There are also ways to access the 
normal (relatively slow) memory of the host CPU system 
that are not important in the context of this problem.  

As a programmer, the CUDA logical model guarantees 
that all the threads within a block will be assigned to an 
active hardware Streaming Multiprocessor with multiple 
cores at the same time. It does not guarantee which blocks 
will execute in what order.   

B. Physical Execution Model 

Physically, the GPU uses a hardware block and thread 
scheduler to assign blocks to hardware units called 
Streaming Multiprocessors (SMs). Depending on the 
hardware generation and model of the chip, the GPU may 
have one or more (14-16 for high end compute cards on the 
Fermi and recent Kepler generation chips) SMs each. In the 
latest Kepler generation GPUs, each of these SMs has 192 
cores that perform the actual computing.  

Because of the very large number of cores, and the way 
they are designed, GPUs are also sometimes characterized as 
being “throughput oriented” as opposed to traditional serial 
CPU cores which are “latency oriented”. A throughput 
oriented GPU’s thousands of cores are designed to enable 
very large numbers of concurrent threads to execute (or be 
ready to execute) simultaneously, thus hiding any latency a 
single set of threads might experience with productive work 
for other threads. A CPU’s dozen or so cores, in contrast, use 
much larger caches, branch prediction, out of order 
execution, and other optimizations to prevent latency from 
causing a very costly context switch of a very small number 
of threads.  

GPU cores within an SM are grouped into sets of 32 
cores. Threads from a block are assigned to cores in groups 
of 32 called warps. Threads within a warp effectively share a 
program counter and can follow different branches of code 
using hardware managed masking. Note that when a warp 
has threads which need to follow multiple paths of a branch 
construct, the warp will effectively serialize execution of 
each portion of the branch – this is commonly referred to as 
branch divergence; the GPU manages all this in hardware 
whereas on the CPU, the vector units face the same issue but 
have to manage it in software using explicit mask registers.  

Blocks which have more than 32 threads require more 
than one warp of resources in the SM to execute. SMs have 
varying capacities in regards to resources available but 
generally are most efficient when running many blocks and 
warps on a SM simultaneously; this lets the SM hide the 
latency caused by various memory accesses and other 
activities by always having one or more warps ready and 
waiting to execute.  

The memory hierarchy on the GPU, in order of 
increasing size and decreasing bandwidth, consists of thread 
private registers, block private shared memory, shared L2 
cache, and global device memory. Peak bandwidth for global 
device memory on recent high end compute GPUs is 288 
GB/second, significantly higher than traditional CPU 
memory.  

The performance numbers in this research were 
developed on an NVIDIA K40 GPU with factory (base) 
settings, using the CUDA 5.5 toolkit on Linux.  The 
conclusions should be broadly applicable to other hardware 
when scaled appropriately for compute and bandwidth. 

IV. CODE STRUCTURE 

In the particular implementation strategy we use, which 
is modeled after the processing used to create ECVQ 
compressed datasets for the MISR and AIRS satellite data, 
some number of trials are performed, each using a set of 
training vectors sampled from the overall population. These 
are clustered to produce candidate cluster centroids. 
Candidate cluster centroids are evaluated against a larger 
testing set and the final set of cluster centroids are selected.  

The focus of this investigation is on the performance of 
the three most important and time consuming components of 
the solution – steps that will be referred to as Label, 
Calculate, and Score.  

A. Parallelization Strategy   

Label assigns training vectors to cluster centroids, and 
determines if the solution has converged. Each trial is 
performed by a single thread block, and each thread within 
that block will work on one training vector, evaluating the 
distance from each centroid, and performing the assignment.  
In cases where there are more training vectors than there are 
threads per block, the threads will stride over the set of 
vectors until each vector has been updated.  

Calculate updates the cluster centroids based on the 
training vectors assigned to that cluster centroid. Each trial is 
performed by a single thread block, and each thread within 
that block will work on one centroid, which it will update. In 
cases where there are more centroids than there are threads 
per block, the threads will stride over the set of centroids 
until each centroid has been updated.  

Score will evaluate every testing vector against the set of 
centroids from each trial, and produced the per cluster 
dispersion. Each thread block will evaluate the set of testing 
vectors against the centroids from a single trial. The threads 
within the block will each stride over the testing vectors until 
all vectors have been evaluated.  
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B. K-Means Codes  

A basic, “naïve” version of k-means along the lines of the 
code described above was created. This version is referred to 
as K1. This code attempts to be as simple as possible, and as 
straightforward, to reflect code that could be delivered to, 
maintained by, and possibly extended by a typical scientific 
programmer, if such a person actually exists.  

One common performance issue for GPU codes is related 
to memory access patterns – memory requests from within a 
warp can be combined if they are for adjacent memory 
locations. This can drastically increase the efficiency of the 
memory subsystem and have substantial performance 
impacts on the code.   K1 uses the first layout in Fig. 2, 
below. A second version of the code, using the second layout 
below, called K2, was also tested. This code differs only in 
the data layout used, and while perhaps less “natural” to a 
scientific programmer, would not be difficult to maintain or 
extend. 

 

 
 

Figure 2: Memory Layouts. 

  
 

C. ECVQ Code  

One of the versions of the k-means code (K2) was 
converted into an ECVQ code via the addition of the 
information theoretic penalty functions and associated 
bookkeeping. This version is called E2.   

A second version of the ECVQ code was also developed 
that begins to explore the performance impacts of tuning for 
a specific final problem size. This version is called E3, and 
the very minor tuning specializations it incorporates are 
discussed along with the performance results.  

  

V. PRIOR ART  

The motivation for the current work is based firmly in a 

selection of the prior art.  A technique for displaying large 

numbers of weighted clusters of high dimensional data 

vectors applied to the AIRS cluster compressed data appears 

promising for application to the MISR dataset as well [6].  

Current processing of the MISR dataset using ECVQ faces 

the same operational limits as the AIRS data, and can take 

no more than 2 hours per 5-days of input data per 5
o 

x 5
o
  

earth grid cell but provides excellent compression and 

information retention [2,7]. While this performance is 

acceptable for offline data processing, allowing interactive 

use in visualization will require higher performance.  

K-means is closely related to ECVQ [2] and is well 

studied on the GPU [5,9,10].  Most prior work has focused 

on the relative acceleration with respect to various CPU 

only codes. In this work, we explore only the actual 

performance of the GPU version of the code, although 

absolute performance numbers for earlier generations of 

GPUs are available for some problems [10].  

    The use of ECVQ in data compression is well 

established [2]. There is a small body of work on the use of 

ECVQ in satellite data applications [3,7,8].  To date there 

appears to be little if any published work on using GPUs to 

accelerate computation of ECVQ.  

VI. PERFORMANCE RESULTS 

 This research is currently using parameterized random 
data generation for test purposes.  This allows exploration of 
the parameter space for performance characterization and 
allows the code to be self-contained. The first actual 
deployment target of this research will be a MISR aerosol 
dataset with 8 data dimensions plus spatial and time 
metadata. Current NASA processing on this dataset uses 200 
trials each with 200 training vectors, with a maximum K 
value of 100. Our basic test case is deliberately chosen to be 
similar to these values.  Other envisioned uses would be to 
apply the technique to NASA AIRS datasets with 32 data 
dimensions plus meta-data; this defines the size of one of the 
larger test cases.  

A. Test Cases 

We define a set of parameters which will be varied to 
examine the performance of the code over a small range of 
values as defined in Table 1.  

 
TABLE 1. TEST SCALE PARAMETERS. 

 

Variable Description 

N Data dimensions 

K Maximum number of clusters 

T Trials 

S Training Vectors (Sample Size) 

V Testing Vectors 

 
We use these parameters to both define test cases and set 

expectations on the performance of each problem phase 
(Label, Calculate, Score) for each test.  The phases are 
sensitive to the Test Scale Parameters as shown in Table 2.  

  
TABLE 2. PERFORMANCE SENSITIVITY EXPECTATIONS. 

 

Phase/Value N K T S V 

Label X X X X  

Calculate X X X X  

Score X X X  X 
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Given that there is going to be some overhead in each 
phase, we expect good code to have better than linear 
response to an increase in the appropriate parameters, unless 
we exceed the capacity of some resource (such as cache) that 
was not exhausted at the lower scale. More specifically, if we 
increase N by a factor of 4, we would expect all phases to 
show execution time increases of something somewhat less 
than four.  

Test cases were defined with Test Case 1 as a “base” 
case, with each of cases 2-6 testing the scaling of a different 
parameter. Test Case 7 shows the scaling on a larger 
problem. Details of each test case are in Table 3. 

 
TABLE 3. TEST CASES. 

 

Test 
Case 

N K T S V 

1 8 128 256 256 100,000 

2 8 256 256 256 100,000 

3 8 128 512 256 100,000 

4 8 128 256 512 100,000 

5 8 128 256 256 200,000 

6 32 128 256 256 100,000 

7 8 128 1024 1024 1,000,000 

 

B. Scaling with K1 Across Cases 

The first round of testing verified the expected scaling 
behavior of the K1 “naïve” version of the code across the 
various test cases. The actual timing results for 100 iterations 
of Label and Calculate, and one final round of Scoring, on 
Test Case 1, are in Table 4.  

 
TABLE 4. MEAN EXECUTION TIMES. 

 

Execution 100xLabel 100xCalculate Score 

Time 104.1ms 129.3ms 2.58s 

 
The Score phase is far longer than the other phases, as 

would be expected, as V >> S.  All performance charts 
following this express performance relative to the values in 
Table 4. For the K1 code, performance is broadly in line with 
expectations, as can be seen from Fig. 3.  
 

 
 

Figure 3. Relative performance of K1 across test cases. 

 
We see roughly expected scaling except that Calculate 

doesn’t see as much impact in Test Case 2 as might be 
expected, since it should have runtime proportional to the 
Label step.  The actual code in K1 is quite naïve, and 
launches more threads per trial than are needed for K=128; 
specifically, it launches 256 threads. In cases with less than 
256 clusters, some threads start and exit, doing no effective 
work. In Test Case 2, these threads work and then exit, and 
so have minimal impact on the runtime.  The Label and 
Score steps, in Test Case 6, seem to be running longer than 
expected. This appears to be because more registers spill to 
cache with D=32 than with D=8, causing some additional 
impact. 
 

C. Relative Performance of Codes in Test 7 

In Test Case 7, we would expect to see any impact from 
improvements in code or increases in the complexity of 
calculations to be magnified by the scale of the problem. To 
that end, codes K2 and E2 were tested against Test Case 7, 
with the results shown in Fig. 4. 

 

 
 

Figure 4. Relative Performance of Code Versions. 
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As we discussed earlier in sections IV.B and IV.C, the 

K2 version of the K-means code uses a more GPU 
performance friendly data layout than K1. This code is 
actually slower than the naïve code for Label and Calculate, 
which appears to be due to cache and compiler generated 
code optimization interactions, but the additional efficiency 
of the memory layout pays significant dividends on the much 
longer Score phase.  Because the overall runtime is 
significantly reduced, the code for the first ECVQ version 
(E2) was based on the K2 code and data layout.   

  

D. Initial Exploration of Problem Specialization 

The code in E2 is already almost fast enough for 
interactive use on real problems, but it would be better if it 
were even faster. Earlier we admitted that unlike typical 
“finished” work, this code was relatively general and made 
relatively few concessions to what is sometimes called “ninja 
tuning”.  We did, however, explore a very simple 
specialization to the problem using a very simple 
performance enhancer, namely, a “#pragma unroll” directive. 
This directive, embedded in a comment before a loop, 
instructs the compiler to rewrite the loop to have more copies 
of the code inside it and make correspondingly less trips 
through the loop. Our code E3 is optimized for values of D 
that are a multiple of 8, with one inner loop in each phase 
unrolled by a factor of 8. The performance impact on Test 
Case 1, the test case closest to our envisaged real world 
workload, is significant, as can be seen in Fig. 5. 

The Score phase, in particular, benefited greatly from this 
very minor optimization.  

 

 
 

Figure 5. Relative performance including tuned code. 

 
Additional, possibly more code invasive tuning should 

allow for further improvements.   

VII. CONCLUSIONS AND FUTURE WORK 

We set out to explore the suitability of K-means or 
ECVQ for interactive data compression in support of data 

exploration of a specific NASA dataset. Scalability testing 
on synthetic data showed that the code has relatively 
predictable and linearly bounded performance. Conversion 
of the compression from K-means to ECVQ was shown to 
have minimal impact to overall performance.  

Finally, with even very simple performance tuning that 
specializes the solution to the anticipated problem, 
significant performance gains were observed, with overall 
execution times approach one second, which would be 
sufficient for many interactive uses.  

Next steps for this research include exploring some 
additional tuning to reflect the anticipated problem sizes and 
then to do performance and quality testing with real data. 
These next steps will then be incorporated into a data 
exploration environment for the MISR data.   
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