
.

CUDA Accelerated Entropy Constrained Vector Quantization and Multiple K-

Means

John Ashley

NVIDIA UK Ltd.

London, UK

jashley@nvidia.com

Amy J. Braverman

Jet Propulsion Laboratory

Pasadena, CA, USA

amy.j.braverman@jpl.nasa.gov

Abstract—Multi-trial sampled K-means performance and

scalability is studied as a stepping stone towards a Graphical

Processing Unit implementation of Entropy Constrained

Vector Quantization for interactive data compression. Basic

parallelization strategies and data layout impacts are explored

with K-means. The K-means implementation is extended to

Entropy Constrained Vector Quantization, and additional

tuning specific to the anticipated use case is performed. The

results obtained are sufficiently promising that this will in the

next phase be applied to the interactive exploration and

visualization of very large satellite datasets.

Keywords- K-Mean; Entropy Constrained Vector

Quantization; Graphical Processing Unit; CUDA.

I. INTRODUCTION

This is a work in progress, and is currently in an early
stage. The ultimate goal is to apply k-means or Entropy
Constrained Vector Quantization (ECVQ) to interactive data
compression as a component in a data exploration and
visualization solution. Initially, this would support
exploration of the Multi-angle Imaging SpectroRadiometer
(MISR) Level 3 aerosol data sets. This phase of the work is
intended to create an understanding of the scalability and
performance of simple Graphical Processing Unit (GPU)
accelerated versions of ECVQ and its algorithmically similar
but simpler cousin, k-means clustering. K-means and ECVQ
offer the potential to provide information preserving data
compression on large datasets. Further research will then
apply data visualization and exploration techniques on the
reduced datasets.

In this paper, we first discuss k-means and ECVQ, and
then proceed to an overview of GPUs and CUDA
programming. The structure of the research codes, including
the primary parallelization and tuning options explored, are
presented. A review of some of the prior art is followed by
relative performance results. Conclusions are drawn and the
next steps in the work are briefly discussed.

II. K-MEANS AND ECVQ

The k-means algorithm is familiar in a wide variety of
contexts. In this paper, a relatively simple version of the
algorithm is adopted using sampling and multiple trials to
extend the scalability to large datasets. Interested readers can
consult a variety of texts and surveys of the field [1].

ECVQ can be viewed as a compression or clustering
technique similar to k-means but with information-theoretic
penalties applied to the distance function used to assign
vectors to cluster centroids [7]. Specifically, it adds a
multiple of the absolute value of the log of the fraction of
measurements in a cluster to the L2 distance measure, which
adds computational complexity but minimal additional data
movement to the k-means algorithm. It is useful in a variety
of contexts; this work was motivated by the use of ECVQ in
the production of certain compressed NASA datasets [3].

Ignoring initialization and iteration limits, the basic

algorithm to implement k-means with a number of training

sets, each of a certain sample size, and a testing set is shown

in Fig. 1.

For each training-set
Repeat until labels are stable
 For each sample assign to nearest k
 For each k, calculate new centroid

For each testing set’s final centroids
For each test case assign to nearest k
For each k calculate a quality measure
Aggregate quality measures for the test set

Select best set of k

Figure 1: Algorithm Outline.

In Fig. 1, “nearest” is the L2 norm in the case of k-means

or the L2 norm augmented by the information theoretic
penalty function in the case of ECVQ.

There are several levels of parallelism available in the
algorithm, as evidenced at the highest level by the “for each”
lines of the algorithm. There are also serial data
dependencies between the steps in the repeat loop and before
the selection of the best k at the end.

III. GPUS AND CUDA

The General Purpose Graphics Processing Unit (GPGPU
or usually just GPU) is the evolution of massively parallel
hardware graphics accelerators whose base data types are the
pixel, triangle, and image and whose basic functions were
rasterization and shading. The programming model for these
accelerators and their performance has evolved significantly,
to the point where NVIDIA’s CUDA extensions to C++ and
Fortran have been used in supercomputers and industrial

30Copyright (c) IARIA, 2014. ISBN: 978-1-61208-365-0

INFOCOMP 2014 : The Fourth International Conference on Advanced Communications and Computation

.

systems since 2006. There are numerous resources for
learning more about GPU programming and software that is
already GPU accelerated [4].

A. Logical Programming Model-- CUDA

A function to be executed on the GPU is called a kernel.
These kernels are logically composed of many lightweight
threads (frequently thousands to millions) which are
launched as a grid. These threads are grouped together into
blocks. The same kernel code is executed by every thread,
but threads have unique thread and block indices which
means each thread can operate on different data and follow
different paths through the code. Threads within a block can
synchronize with each other and can use a block-wide very
fast pool of shared memory for coordination.

All threads in all blocks have access to fast global device
memory on the accelerator. There are also ways to access the
normal (relatively slow) memory of the host CPU system
that are not important in the context of this problem.

As a programmer, the CUDA logical model guarantees
that all the threads within a block will be assigned to an
active hardware Streaming Multiprocessor with multiple
cores at the same time. It does not guarantee which blocks
will execute in what order.

B. Physical Execution Model

Physically, the GPU uses a hardware block and thread
scheduler to assign blocks to hardware units called
Streaming Multiprocessors (SMs). Depending on the
hardware generation and model of the chip, the GPU may
have one or more (14-16 for high end compute cards on the
Fermi and recent Kepler generation chips) SMs each. In the
latest Kepler generation GPUs, each of these SMs has 192
cores that perform the actual computing.

Because of the very large number of cores, and the way
they are designed, GPUs are also sometimes characterized as
being “throughput oriented” as opposed to traditional serial
CPU cores which are “latency oriented”. A throughput
oriented GPU’s thousands of cores are designed to enable
very large numbers of concurrent threads to execute (or be
ready to execute) simultaneously, thus hiding any latency a
single set of threads might experience with productive work
for other threads. A CPU’s dozen or so cores, in contrast, use
much larger caches, branch prediction, out of order
execution, and other optimizations to prevent latency from
causing a very costly context switch of a very small number
of threads.

GPU cores within an SM are grouped into sets of 32
cores. Threads from a block are assigned to cores in groups
of 32 called warps. Threads within a warp effectively share a
program counter and can follow different branches of code
using hardware managed masking. Note that when a warp
has threads which need to follow multiple paths of a branch
construct, the warp will effectively serialize execution of
each portion of the branch – this is commonly referred to as
branch divergence; the GPU manages all this in hardware
whereas on the CPU, the vector units face the same issue but
have to manage it in software using explicit mask registers.

Blocks which have more than 32 threads require more
than one warp of resources in the SM to execute. SMs have
varying capacities in regards to resources available but
generally are most efficient when running many blocks and
warps on a SM simultaneously; this lets the SM hide the
latency caused by various memory accesses and other
activities by always having one or more warps ready and
waiting to execute.

The memory hierarchy on the GPU, in order of
increasing size and decreasing bandwidth, consists of thread
private registers, block private shared memory, shared L2
cache, and global device memory. Peak bandwidth for global
device memory on recent high end compute GPUs is 288
GB/second, significantly higher than traditional CPU
memory.

The performance numbers in this research were
developed on an NVIDIA K40 GPU with factory (base)
settings, using the CUDA 5.5 toolkit on Linux. The
conclusions should be broadly applicable to other hardware
when scaled appropriately for compute and bandwidth.

IV. CODE STRUCTURE

In the particular implementation strategy we use, which
is modeled after the processing used to create ECVQ
compressed datasets for the MISR and AIRS satellite data,
some number of trials are performed, each using a set of
training vectors sampled from the overall population. These
are clustered to produce candidate cluster centroids.
Candidate cluster centroids are evaluated against a larger
testing set and the final set of cluster centroids are selected.

The focus of this investigation is on the performance of
the three most important and time consuming components of
the solution – steps that will be referred to as Label,
Calculate, and Score.

A. Parallelization Strategy

Label assigns training vectors to cluster centroids, and
determines if the solution has converged. Each trial is
performed by a single thread block, and each thread within
that block will work on one training vector, evaluating the
distance from each centroid, and performing the assignment.
In cases where there are more training vectors than there are
threads per block, the threads will stride over the set of
vectors until each vector has been updated.

Calculate updates the cluster centroids based on the
training vectors assigned to that cluster centroid. Each trial is
performed by a single thread block, and each thread within
that block will work on one centroid, which it will update. In
cases where there are more centroids than there are threads
per block, the threads will stride over the set of centroids
until each centroid has been updated.

Score will evaluate every testing vector against the set of
centroids from each trial, and produced the per cluster
dispersion. Each thread block will evaluate the set of testing
vectors against the centroids from a single trial. The threads
within the block will each stride over the testing vectors until
all vectors have been evaluated.

31Copyright (c) IARIA, 2014. ISBN: 978-1-61208-365-0

INFOCOMP 2014 : The Fourth International Conference on Advanced Communications and Computation

.

B. K-Means Codes

A basic, “naïve” version of k-means along the lines of the
code described above was created. This version is referred to
as K1. This code attempts to be as simple as possible, and as
straightforward, to reflect code that could be delivered to,
maintained by, and possibly extended by a typical scientific
programmer, if such a person actually exists.

One common performance issue for GPU codes is related
to memory access patterns – memory requests from within a
warp can be combined if they are for adjacent memory
locations. This can drastically increase the efficiency of the
memory subsystem and have substantial performance
impacts on the code. K1 uses the first layout in Fig. 2,
below. A second version of the code, using the second layout
below, called K2, was also tested. This code differs only in
the data layout used, and while perhaps less “natural” to a
scientific programmer, would not be difficult to maintain or
extend.

Figure 2: Memory Layouts.

C. ECVQ Code

One of the versions of the k-means code (K2) was
converted into an ECVQ code via the addition of the
information theoretic penalty functions and associated
bookkeeping. This version is called E2.

A second version of the ECVQ code was also developed
that begins to explore the performance impacts of tuning for
a specific final problem size. This version is called E3, and
the very minor tuning specializations it incorporates are
discussed along with the performance results.

V. PRIOR ART

The motivation for the current work is based firmly in a

selection of the prior art. A technique for displaying large

numbers of weighted clusters of high dimensional data

vectors applied to the AIRS cluster compressed data appears

promising for application to the MISR dataset as well [6].

Current processing of the MISR dataset using ECVQ faces

the same operational limits as the AIRS data, and can take

no more than 2 hours per 5-days of input data per 5
o

x 5
o

earth grid cell but provides excellent compression and

information retention [2,7]. While this performance is

acceptable for offline data processing, allowing interactive

use in visualization will require higher performance.

K-means is closely related to ECVQ [2] and is well

studied on the GPU [5,9,10]. Most prior work has focused

on the relative acceleration with respect to various CPU

only codes. In this work, we explore only the actual

performance of the GPU version of the code, although

absolute performance numbers for earlier generations of

GPUs are available for some problems [10].

 The use of ECVQ in data compression is well

established [2]. There is a small body of work on the use of

ECVQ in satellite data applications [3,7,8]. To date there

appears to be little if any published work on using GPUs to

accelerate computation of ECVQ.

VI. PERFORMANCE RESULTS

 This research is currently using parameterized random
data generation for test purposes. This allows exploration of
the parameter space for performance characterization and
allows the code to be self-contained. The first actual
deployment target of this research will be a MISR aerosol
dataset with 8 data dimensions plus spatial and time
metadata. Current NASA processing on this dataset uses 200
trials each with 200 training vectors, with a maximum K
value of 100. Our basic test case is deliberately chosen to be
similar to these values. Other envisioned uses would be to
apply the technique to NASA AIRS datasets with 32 data
dimensions plus meta-data; this defines the size of one of the
larger test cases.

A. Test Cases

We define a set of parameters which will be varied to
examine the performance of the code over a small range of
values as defined in Table 1.

TABLE 1. TEST SCALE PARAMETERS.

Variable Description

N Data dimensions

K Maximum number of clusters

T Trials

S Training Vectors (Sample Size)

V Testing Vectors

We use these parameters to both define test cases and set

expectations on the performance of each problem phase
(Label, Calculate, Score) for each test. The phases are
sensitive to the Test Scale Parameters as shown in Table 2.

TABLE 2. PERFORMANCE SENSITIVITY EXPECTATIONS.

Phase/Value N K T S V

Label X X X X

Calculate X X X X

Score X X X X

32Copyright (c) IARIA, 2014. ISBN: 978-1-61208-365-0

INFOCOMP 2014 : The Fourth International Conference on Advanced Communications and Computation

.

Given that there is going to be some overhead in each
phase, we expect good code to have better than linear
response to an increase in the appropriate parameters, unless
we exceed the capacity of some resource (such as cache) that
was not exhausted at the lower scale. More specifically, if we
increase N by a factor of 4, we would expect all phases to
show execution time increases of something somewhat less
than four.

Test cases were defined with Test Case 1 as a “base”
case, with each of cases 2-6 testing the scaling of a different
parameter. Test Case 7 shows the scaling on a larger
problem. Details of each test case are in Table 3.

TABLE 3. TEST CASES.

Test
Case

N K T S V

1 8 128 256 256 100,000

2 8 256 256 256 100,000

3 8 128 512 256 100,000

4 8 128 256 512 100,000

5 8 128 256 256 200,000

6 32 128 256 256 100,000

7 8 128 1024 1024 1,000,000

B. Scaling with K1 Across Cases

The first round of testing verified the expected scaling
behavior of the K1 “naïve” version of the code across the
various test cases. The actual timing results for 100 iterations
of Label and Calculate, and one final round of Scoring, on
Test Case 1, are in Table 4.

TABLE 4. MEAN EXECUTION TIMES.

Execution 100xLabel 100xCalculate Score

Time 104.1ms 129.3ms 2.58s

The Score phase is far longer than the other phases, as

would be expected, as V >> S. All performance charts
following this express performance relative to the values in
Table 4. For the K1 code, performance is broadly in line with
expectations, as can be seen from Fig. 3.

Figure 3. Relative performance of K1 across test cases.

We see roughly expected scaling except that Calculate

doesn’t see as much impact in Test Case 2 as might be
expected, since it should have runtime proportional to the
Label step. The actual code in K1 is quite naïve, and
launches more threads per trial than are needed for K=128;
specifically, it launches 256 threads. In cases with less than
256 clusters, some threads start and exit, doing no effective
work. In Test Case 2, these threads work and then exit, and
so have minimal impact on the runtime. The Label and
Score steps, in Test Case 6, seem to be running longer than
expected. This appears to be because more registers spill to
cache with D=32 than with D=8, causing some additional
impact.

C. Relative Performance of Codes in Test 7

In Test Case 7, we would expect to see any impact from
improvements in code or increases in the complexity of
calculations to be magnified by the scale of the problem. To
that end, codes K2 and E2 were tested against Test Case 7,
with the results shown in Fig. 4.

Figure 4. Relative Performance of Code Versions.

33Copyright (c) IARIA, 2014. ISBN: 978-1-61208-365-0

INFOCOMP 2014 : The Fourth International Conference on Advanced Communications and Computation

.

As we discussed earlier in sections IV.B and IV.C, the

K2 version of the K-means code uses a more GPU
performance friendly data layout than K1. This code is
actually slower than the naïve code for Label and Calculate,
which appears to be due to cache and compiler generated
code optimization interactions, but the additional efficiency
of the memory layout pays significant dividends on the much
longer Score phase. Because the overall runtime is
significantly reduced, the code for the first ECVQ version
(E2) was based on the K2 code and data layout.

D. Initial Exploration of Problem Specialization

The code in E2 is already almost fast enough for
interactive use on real problems, but it would be better if it
were even faster. Earlier we admitted that unlike typical
“finished” work, this code was relatively general and made
relatively few concessions to what is sometimes called “ninja
tuning”. We did, however, explore a very simple
specialization to the problem using a very simple
performance enhancer, namely, a “#pragma unroll” directive.
This directive, embedded in a comment before a loop,
instructs the compiler to rewrite the loop to have more copies
of the code inside it and make correspondingly less trips
through the loop. Our code E3 is optimized for values of D
that are a multiple of 8, with one inner loop in each phase
unrolled by a factor of 8. The performance impact on Test
Case 1, the test case closest to our envisaged real world
workload, is significant, as can be seen in Fig. 5.

The Score phase, in particular, benefited greatly from this
very minor optimization.

Figure 5. Relative performance including tuned code.

Additional, possibly more code invasive tuning should

allow for further improvements.

VII. CONCLUSIONS AND FUTURE WORK

We set out to explore the suitability of K-means or
ECVQ for interactive data compression in support of data

exploration of a specific NASA dataset. Scalability testing
on synthetic data showed that the code has relatively
predictable and linearly bounded performance. Conversion
of the compression from K-means to ECVQ was shown to
have minimal impact to overall performance.

Finally, with even very simple performance tuning that
specializes the solution to the anticipated problem,
significant performance gains were observed, with overall
execution times approach one second, which would be
sufficient for many interactive uses.

Next steps for this research include exploring some
additional tuning to reflect the anticipated problem sizes and
then to do performance and quality testing with real data.
These next steps will then be incorporated into a data
exploration environment for the MISR data.

ACKNOWLEDGMENT

John Ashley would like to thank Dr. Daniel Carr at
George Mason University, for his support and insights
during this work. John Ashley would also like to thank my
employer, NVIDIA, for their support.

REFERENCES

[1] R. Xu and D. Wunsch, “Clustering,” IEEE Press Series on

Computational Intelligence, 2009.

[2] P. A. Chou, T. Lookabaugh, and R. M. Gray, “Entropy-
constrained vector quantization,” IEEE Trans. on Acoustics,
Speech, and Signal Processing, Jan 1989, Vol 37, Issue 1,
1989, pp.31- 42.

[3] A. J. Braverman, E. J. Fetzer, B. H. Kahn, E. M. Manning, R.
B. Oliphant, and J. P. Teixeira, “Massive dataset analysis for
NASA’s Atmospheric Infrared Sounder,” Technometrics,
2012 [b], 54:1, pp. 1-15.

[4] NVIDIA Corporation, “http://docs.nvidia.com/cuda,”
2014.03.12, unpublished.

[5] B. Catanzaro, “https://github.com/BryanCatanzaro/kmeans,”
2014.03.12, unpublished.

[6] J. Ashley, “Techniques for exploring cluster compressed
geospatial-temporal satellite datasets,” Ph.D. Dissertation,
George Mason University, 2013.

[7] A. Braverman, ‘‘Compressing massive geophysical datasets
using vector quantization,” Journal of Computational and
Graphical Statistics, 2002, 11, pp. 44–62.

[8] A. Braverman, E. Fetzer, A. Eldering, S. Nittel, and K. Leung,
‘‘Semi-streaming quantization for remote sensing data,”
Journal of Computational and Graphical Statistics, 2003, 12
(4), pp. 759–780.

[9] S. A. Arul Shalom, M. Dash, and M. Tue, “Efficient k-
means clustering using accelerated graphics processors,” Data
Warehousing and Knowledge Discovery Lecture Notes in
Computer Science Volume 5182, 2008, pp. 166-175.

[10] K. J. Kohlhoff, V. S. Pande, and R. B. Altman, “K-means for
parallel architectures using all-prefix-sum sorting and
updating steps,” IEEE Transactions on Parallel and
Distributed Systems, Aug 2013, Vol 24, No. 8, pp. 1602-
1612.

34Copyright (c) IARIA, 2014. ISBN: 978-1-61208-365-0

INFOCOMP 2014 : The Fourth International Conference on Advanced Communications and Computation

