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Abstract— This paper explores signal response and methods 

for extracting the desired digital signal, from gas sensor 

arrays, while maintaining the shape and resolution of that 

signal. A comparative evaluation of Savitzky–Golay 

smoothing, moving average, local regression and robust local 

regression filters for cleaning signals obtained from gas sensor 

devices during the pre-processing phase is provided. It was 

found that the Savitzky–Golay smoothing filtering method 

provided the best approximation of the sensor response. 
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I.  INTRODUCTION  

Typically, raw signals acquired from gas sensors are 
contaminated by noise and outliers and as a result the signal 
is occluded to a significant degree making accurate 
measurement of a sensor’s response impossible. Noise in 
sensor systems has several possible sources and is introduced 
at various stages in the measurement process. Several forms 
of noise, including thermal and shot noise, are irreducible 
because they are inherent to the underlying physics of the 
sensors or electronic components. Other forms of noise 
which could be avoided originate from processes, and 
include 1/f noise, transmission, and quantization noise [1]. 
Noise introduced in the early measurement stages is 
considered to be the most harmful as it propagates and can 
be amplified through subsequent stages in the signal pathway 
[2].  

While physical filters have been found to be successful in 
producing a cleaner signal they do not cover the full 
resolution and shape of the curve. In order to improve the 
interpretability, sensitivity and selectively of gas sensor array 
signals it is preferable to use the full resolution and coverage 
of the signal.  

Several signal processing approaches have been 
investigated as an approach to reducing noise levels [3]. 
However, these approaches are typically static or steady state 
approaches and therefore do not encompass the full temporal 
signal [4]. 

In this paper we report on an evaluation of methods for 
feature extraction and denoising the digital signal from thin 
film zinc oxide and tin dioxide composite gas sensor devices. 
The aim was to find a method that not only cleaned the 
signal but that also maintained the shape, precision and 
resolution of the signal regardless of sensor composition. In 
Section II the stages of gas sensor array signal processing is 
outlined. Details of various approaches to signal pre-
processing are then discussed in Section III. In Section IV 
the signal pre-processing methods evaluated are detailed. 

Section V gives the results of applying each of these signal 
denoising methods. Finally, Section VI provides a summary 
of our results and suggests possible avenues for future work. 

II. GAS SENSOR ARRAY SIGNAL PROCESSING  

The signal processing of gas sensor data can be divided 
into four steps [5]: (1) pre-processing, for further processing 
of the sensor signal (e.g., denoising, drift compensation, 
concentration normalization); (2) dimensionality reduction 
(of the input signal to avoid problems associated with high 
dimensionality data); (3) prediction (of the interesting 
properties of the sample, e.g., class membership, related 
odour samples); and (4) validation, where model and 
parameter settings are selected in order to optimize a 
criterion function (e.g., classification rate, mean-squared 
error). A useful summary of statistical and optimization 
methods that have been used to process gas sensor array 
signals is provided by Gutierrez-Galvez [6]. The work 
reported here focuses on improving existing pre-processing 
techniques used to eliminate noise, smooth and filter data, 
enhance sensor signals and ultimately improve measurement.  

III. SIGNAL PRE-PROCESSING 

Signal pre-processing facilitates noise elimination, data 
smoothing/filtering and signal enhancement, with the sole 
aim of increasing the signal-to-noise ratio without greatly 
distorting the signal. The choice of signal pre-processing 
method is known to have a significant impact on the results 
and performance of the pattern analysis system [1][7].When 
developing a pre-processing method three criteria should be 
considered [8]. The algorithm must: preserve the chemical 
selectivity differences between different profiles and limit 
run-to-run retention/migration time shift, be fast and less 
memory-demanding to deal with large numbers of data sets 
in a short period of time, and the resulting precision of 
retention/migration time estimation should be significantly 
improved in comparison with that initially provided by the 
instrumentation [1][7]. We propose that wavelet transform 
smoothing filters, for this purpose, should meet all three 
criteria.  

Wavelets are a family of wavelet transforms that are 
considered to be a time-frequency representation for 
continuous-time (analog) signals [9]. They have a compact 
support (i.e., they differ from zero only in a limited time 
domain) and easily represent the different features of a 
signal, especially sharp signals and discontinuities. When 
applied to analytical signal processing wavelet transforms 
provide a simple procedure with short operation time, low 
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memory requirements, high precision, and good 
reproducibility [10]. Examples of wavelet transforms for 
denoising signals include the Savitzky–Golay Smoothing 
Filter (SGF) [11], Fast Fourier transform (FFT), Multivariate 
Wavelet Denoising (MWD), Discrete Wavelet Transform 
(DWT) [12], and Continuous Wavelet Transform (CWT) [2].  

For this work, we have elected to evaluate the use of an 
SGF by comparing its performance with moving average 
filter and local regression methods. SGF is known to be 
superior to other adjacent averaging FIR filters because it 
tends to preserve the features of the data in the signal, such 
as peak height and width. Moreover, when using SGF it is 
possible to increase the smoothness of the result by changing 
the window size, or increasing the number of data points 
used, in each local regression. Although SGFs are considered 
to be less successful than standard averaging FIR filters at 
eliminating noise, they are more effective at preserving the 
pertinent high frequency components of the signal [4], and 
are optimal in minimising the least-squares error in fitting a 
polynomial to frames of noisy data. Moreover, SG filters can 
preserve more of the high-frequency content of a signal, but 
this is at the expense of reduced noise elimination. 

Therefore, an SGF might prove to be a good choice for 
gas senor signal cleaning where it is important to preserve 
the height, width, amplitude and overall profile of the signal. 

IV. METHODOLOGY 

In order to evaluate the usefulness of wavelet transforms 
for preprocessing gas sensor arrays we elected to investigate 
the performance of an SGF, using tin dioxide (SnO2) and 
zinc oxide (ZnO) sensor devices.  

For a given experiment E, a response matrix R is usually 
obtained in which each column represents a response matrix 
associated with the concentration of the target gas produced  
C at operating temperature T and the rows give the response 
matrices of each individual sensor (1). 
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For this work we opted, as a preliminary investigation, to 
evaluate the signal cleaning methods using two sensor 
devices rather than an array of sensors. Thus the 
experimental matrix E can be represented as vector Rq = 
(R1q, R2q, Rpq... RCq)

T
. Each of these sensor devices were 

individually primed with 150ppm methanol at 250°C and 
operated at three different temperatures [150, 250 and 350 
ºC] for the target gas, methanol, at three different 
concentrations [100, 150 and 200 ppm]. 

The data were visualised and smoothed using multiple 
fitting algorithms. The parameters of the curve after residual 
analysis were then analysed and fits generated. Then the 
curve was reconstructed to determine the accuracy of the 
models. Subsequently, an optimal model was selected for 
generating the best polynomial model.  

The performance of the SGF was then compared with a 
moving average filter, lowess, loess, rlowess, and rloess 
methods. Details of these six methods and the results of the 
experiments are provided in the following sections. 

A. Moving Average Filtering 

A moving average filter, equivalent to low pass filtering, 
can be used to smooth data by replacing each data point with 
the average of the neighbouring data points within a 
specified span of data points. This process is described by 
the difference equation (2) [13], where ys(i) is the smoothed 
value for the i

th
 data point, N is the number of neighbouring 

data points on either side of ys(i), and 2N+1 is the span. 
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�
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�
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B. Local Regression Smoothing: rLowess & rLosess 

The names lowess and loess are derived from the term 
"locally weighted scatter plot smooth," as both methods use 
locally weighted linear regression to smooth data.  

The smoothing process is considered local because each 
smoothed value is determined by neighbouring data points 
defined within the span. The process is weighted because a 
regression weight function is defined for the data points 
contained within the span. The local regression first and 
second degree polynomial models are lowess and loess, 
respectively.   The robust local regression method (rlowess 
and rloess) assigns a lower weight to outliers in the 
regression and assigns a zero weight to data outside six mean 
absolute deviations. 

Like the moving average method, the lowess and loess 
smoothed value is determined by neighbouring data points 
defined within a span [14]. However, in this case the process 
is weighted by a regression weight function that is defined 
for all the data points contained within the specified span. In 
addition to the regression weight function, a robust weight 
function can be used; this makes the process resistant to 
outliers.  

Lowess and loess are differentiated by the model used in 
the regression: lowess uses a linear polynomial, while loess 
uses a quadratic polynomial. 

C. Savitzky–Golay Smoothing Filter (SGF) 

The SGF is based on local least-squares polynomial 
approximation [11]. It is a generalization of the finite-
impulse response (FIR) or moving average filter with filter 
coefficients determined by an unweighted linear least-
squares regression and a polynomial model of specified 
degree. The process, equivalent to discrete convolution with 
a fixed impulse response, involves fitting a polynomial to a 
set of input data and evaluating the resulting polynomial at a 
single point within the approximation interval. The SG 
smoothing procedure consists of replacing the central point 
of a window (containing an odd number of points, 2p + 1) 
with the value obtained from the polynomial fit. The window 
is moved one data point at a time until the whole signal is 
scanned; thus, creating a new, smoothed value for each data 
point. The smoothed signal g(t) is then calculated by 
convolving the signal f(t) with a smoothing (or convolution) 
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function h(t) [9] for all observed data points p where f(m) is 

the curve function at point m and h(m - t) ≠ 0 (3). The 
convolution function h(t) is defined for each combination of 
degree of the polynomial and window size. 

 �(�) = 	�(�) ∗ ℎ(�) = ��(�)�(�	�	�)

��(�)
 (3) 

A typical digital filter can be applied to a series of 
equally spaced data values fi ≡ f(ti), where ti ≡ t0 + i∆ for 
some constant sample spacing ∆ and i = …-2, -1, 0, 1, 2, …. 
Therefore, the SG smoothing operations consist of the 
replacement of each data point fi with a linear combination 
of gi and a number of nearby neighbours n [10] where nL is 
the number of neighbouring points prior to the data point i 
and nR is the number of neighbours after data point i (4) 

 �� = ∑ !"��
""#
"$�"%  (4) 

and where the coefficients cn are the weights of the linear 
combination and a causal filter would have an nR of zero 
[2][15][16]. For the simplest possible averaging smoothing 
filter (similar to the moving average window), the smoothed 
point is the average of an odd number of neighbouring data 
points. This moving window average (5) is computed as gi, 
i.e., as the average of the data points from fi-nL to fi+nR, for 
some fixed nL = nR = M; and the weights cn = 1/(nL + nR + 
1) [12]: 

 �� = ∑
�&'(
�)
�

)
"$�)  (5) 

The weights !"  are chosen in such a way that the 
smoothed data point gi is the value of a polynomial fitted by 
least-squares to all (nL + nR + 1) points in the moving 
window. That is, for the group of 2M+1 data centered at n = 
0, and the coefficient of the polynomial is obtained as (6) 
[15][16]. 

 !" = *(+) = ∑ ,-+-	
-$.  (6) 

This minimises the mean-squared approximation error 
(7) for the group of input samples centred on n = 0: 

    ( ) [ ]( ) [ ]( )∑ ∑∑ −= =−= −=−= M

Mn

k

k

k

k

M

Mnn
nxnanxnp

2

0

2ε  (7) 

Therefore, the smoothed data point gi by the Savitzky–
Golay algorithm [10] is given by (8): 

 �� =
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 (8) 

 

V. RESULTS 

A. Smoothing 

Local regression smoothing (lowess and loess) and robust 
local regression (rlowess and rloess) were carried out using a 
span of 10% of the data points. Moving average and SGFs 
were used to smooth the data using a span of 5 and 55. These 
values were chosen because they gave comparable results. 

The results from smoothing the raw data using local 
regression smoothing and robust local regression were found 
to give essentially the same shape resolution (Fig. 1). With 

the moving average and SGFs, using a span of 55 gave better 
smoothing/shape resolution than using a span of 5, as shown 
in Fig. 2. For the ZnO device rloess, rlowess, and losses gave 
improved smoothing over lowess (Fig. 3). Moving average 
and SGF with a span of 55 gave better smoothing than with a 
span of 5 as shown in Fig. 4. 

However in all cases, although smoothing was improved, 
the approximation of the curve was poorer because less raw 
data points were fitted. 

 

 

Figure 1.  SnO2 Sensor Local Regression Smoothing (a) Lowess, (b) 
rLowess and Robust Local Regression Smoothing; (c) Loess (d) rLoess. 

 

Figure 2.  SnO2 Sensor (a) MA, span = 5, (b) MA span = 55, (c) SGF, 

span = 5, and (d) SGF, span = 55. 

 

Figure 3.  ZnO Sensor Local Regression Smoothing (a) Lowess, (b) 

rLowess and Robust Local Regression Smoothing; (c) Loess (d) rLoess. 
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Figure 4.  ZnO Sensor (a) Moving Average (Span = 5), (b) Moving 

Average (Span = 55), (c) SGF, span = 5, and (d) SGF, span = 55. 

It was also found that using SGF, the height and width of 
narrow peaks is accurately captured by higher degree 
polynomials, but wider peaks are poorly smoothed. For 
optimality, a polynomial degree of three was applied for the 
implementation of the SG filtering. 

B. Curve Fitting Accuracy 

Curve fitting was undertaken for each of the smoothing 
processes and the coefficient of determination (R-squared 
(R

2
)) was calculated using a polynomial of three (9). 
R-squared indicates how well data points fit a statistical 

model and provides a measure of how well observed 
outcomes are replicated by the model, as the proportion of 
total variation of outcomes explained by the model [17]. In 
other words, R

2 
is proportional to the variability of the 

response signal in the polynomial model. 
In our case, R

2 
indicates the proportionate amount of 

variation in the response signal explained by the independent 
variables t in the polynomial model where SSE is the sum of 
squared error, SSR is the sum of squared regression, and 
SST is the sum of squared total.  

 4� =	 55#
556

= 1 − 557

556
   (9) 

In all cases, the R
2
 value for the SnO2 device was greater 

than that observed for the ZnO device indicating that a better 
fit of the model is obtained for the SnO2 device (Fig. 5)  

The best value of R
2
 was obtained using the moving 

average smoothing method with a span of 55, followed 
closely by the lowess local regression for both the SnO2 and 
ZnO devices. 

However, visual observation of the smoothing results 
indicates that the SGF and the loess methods gave better 
shape resolution. The norms of residuals were found to be 
the same regardless of the smoothing method for each device 
(5.25E-04 and 3.62E-06 for SnO2 and ZnO, respectively).  

 

Figure 5.  Coefficient of Determination vs. the Curve Fitting Process. 

 

Figure 6.  Polynomial Fit with Confidence Bounds and Smoothed SnO2 
Device Data: (top) Loess, (bottom) SGF-55. 

 

Figure 7.  Polynomial Fit with Confidence Bounds and Smoothed ZnO 
Device Data: (top) Loess, (bottom) SGF-55. 

 

Figure 8.  Fitting the Confidence Bounds over the SnO2 Device Raw Data: 

(top) Loess, (bottom) SGF. 
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Figure 9.  Fitting the Confidence Bounds over the ZnO  Device raw data: 

(top) Loess , (bottom) SGF. 

C. Model Calibration 

To calibrate the model, different polynomial models were 
tested on the raw data to determine the best fit within the 
confidence bounds. An attempt to fit the data using a higher 
degree polynomial is presented using the SGF (span = 55) 
and the loess (span = 10%) methods. The best fit was found 
to occur using a polynomial degree of nine for both the loess 
and the SGF methods. For the SnO2 device, the norms of 
residuals were 1.8034E-04 for loess and 1.714E-04 for the 
SGF respectively (Fig. 6). For the ZnO device, the norms of 
residuals were 8.47E-07 and 8.27E-07 for the loess and SGF 
methods, respectively (Fig. 7). Further analysis of the raw 
data and the fitted data showed that the two smoothing 
methods (loess and SGF) present very good confidence 
bounds when fitted over the raw data for both devices (see 
Fig. 8 and Fig. 9).  

VI. CONCLUSION AND FUTURE WORK 

This study has explored signal response, and methods for 
extracting the desired digital signal while maintaining the 
shape and resolution of that signal. A simple procedure to 
test different polynomial models, with confidence bounds, on 
the raw data was developed for easy application to quantised 
gas sensor response data. Curve fitting approaches were used 
to validate the results of three possible methods. 

Of the six methods investigated, and as expected, it was 
found that the SGFs give the best resolution and best 
maintain the shape of the signal and therefore provided the 
best approximation of the sensor response. After testing SGF 
with various polynomial models, the ninth degree of the 
polynomial model was observed to provide the best fit to the 
raw data for both the SnO2 and ZnO sensor devices. For 
both sensor devices, the raw data were observed to fall 
within the confidence bounds simulated from the polynomial 
models. This is a promising result and future work will 
involve testing the SGF signal pre-processing method on 
signals produced from an array of sensors. 
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