
Minimizing Total Tardiness in a Hybrid Flexible Flowshop

with Sequence Dependent Setup Times

Aymen Sioud, Caroline Gagné, and Marc Gravel
Département d’informatique et de mathématique

Université du Québec à Chicoutimi
Email: asioud@uqac.ca, c3gagne@uqac.ca, mgravel@uqac.ca

Abstract—In this paper, we propose different local search
algorithms to solve a realistic variant of the flowshop problem.
The variant considered here is a hybrid flexible flowshop problem
with sequence-dependent setup times, and with the objective of
minimizing the total tardiness. In this variant of flowshop, stage
skipping might occur, i.e., not all stages must be visited by all jobs.
This scheduling problem is frequently used in batch production,
helping to reduce the gap between research and operational use.
While there is some research on minimizing the makespan, to
our knowledge no work has been reported on minimizing the
total tardiness for this problem. The proposed approaches present
different neighborhood searches. Numerical experiments compare
the performance of the different algorithms on new benchmarks
generated for this problem.

Keywords—hybrid flexible flowshop; sequence dependent setup
times; total tardiness; local search; scheduling.

I. INTRODUCTION

Scheduling problems are decision-making processes with
the goal of optimizing one or more objectives. Indeed, they
deal with the allocation of resources to perform a set of
activities over a period of time [1]. The Flowshop scheduling
problem is one of the most well-studied scheduling environ-
ments in the last decades. In this configuration, all jobs follow
the same operational order, where a set of n jobs need to
be processed in a set of m machines disposed in series. All
jobs follow the same processing route through the machines,
i.e., they are first processed on machine 1, then on machine
2 and so on until machine m. This associated problem can
be considered as the basic model for several variants of real
problems. Moreover, real production systems rarely employ a
single machine at each stage. Therefore, in many situations,
the regular flowshop problem is extended to a set of usually
identical parallel machines at each stage. That is, instead of
having a series of machines, we have a series of stages of
parallel machines. The goal here is to increase the capacity
and reduce the impact of bottleneck stages. Furthermore, it
is frequent in practice that optional treatments are applied on
products, like polishing or additional decorations in ceramic
manufacturing as examples [2][3]. In this latter case, some jobs
will skip some stages. We obtain thereby the hybrid flexible
flowshop.

Moreover, in many industries such as pharmaceutics, met-
allurgy, ceramics and automotive manufacturing, there are
setup times on equipment between two different jobs. Many
papers assume that setup time is negligible, or part of the job
processing time. But explicit setup times must be included in
scheduling decisions in order to model a more realistic variant
of hybrid flowshop scheduling problems. These setup times

may or may not be sequence dependent. Dudek et al. [4]
reported that 70% of industrial activities include dependent
setup times. More recently, Conner [5] pointed out in 250
industrial projects that 50% of these projects contain setup-
dependent times and when these setup times are applied,
92% of the order deadline could be met. Production of good
schedules often relies on good management of these setup
times [6][7].

The present paper considers the hybrid flexible flowshop
problem with sequence dependent setup times (SDST/HFFS)
minimizing the total tardiness. In accordance with the notation
for hybrid flowshops introduced by Vignier et al. [8] who ex-
tended the well-known three fields notation α/β/γ of Graham
et al. [9], this problem is noted as ((PM)(i))

m

i=1/Fj , sijk/ΣTj .
According to Du and Leung [10], the total tardiness minimiza-
tion problem is NP-hard for the specific case of one machine
and therefore the SDST/HFFS total tardiness problem studied
in this article is also NP-hard.

The ((PM)(i))
m

i=1/Fj , sijk/ΣTj problem may be defined
as a set of N jobs, N={1,..., n} available for processing at
time zero on a set of M stages, M={1,..., m}. At every stage
i, i ∈ M, we have a set of Mi, Mi={1,..., mi} of identical
parallel machines. Every machine at each stage can process
all the jobs. Each job has to be processed in exactly one out
of the Mi identical parallel machines at stage i. However,
some jobs will skip some stages. Fj denotes the set of stages
that the job j, j ∈ N has to visit. Furthermore, only stage
skipping is allowed, so it is not possible for a given job to
visit stages {1, 2, 3} and another one to visit stages {3,
2, 1}. pij denotes the processing time of job j at stage i.
Each job have a due date noted as dj . Finally, sijk denotes
the setup time between jobs j and k, k ∈ N at stage i. The
completion time of a given job j at stage i, noted as Cij ,
is calculated as Cij = max{Ci,j−1;Ci−1,j}+ si,j−1,j + pij ,
where Ci,j−1 is the completion time of the previous job in the
sequence that was assigned to the same machine and Ci−1,j

is the completion time of job j at the previous stage that this
job visited. The tardiness of a job j noted as Tj is calculated as
Tj = max{0, Cmj − dj} where Cmj is the completion time
of the job j on the last stage. The optimization criterion is the
minimization of the total tardiness of all the jobs, which will
be expressed as

∑n
j=1 Tj .

This problem is a significant one in real production cases
commonly found in various types of manufacturing systems,
such as ceramics [11] and the production of printed circuit
boards [12]. In addition, the total tardiness minimization
is an optimization criterion of strategic importance. Indeed,

13Copyright (c) IARIA, 2014. ISBN: 978-1-61208-365-0

INFOCOMP 2014 : The Fourth International Conference on Advanced Communications and Computation

Allahverdi et al. [6] highlight the consequences that order
tardiness may present, such as the cost of lost sales and
even penalties in a sales contract. To the best of our knowl-
edge, there has been no study on the SDST/HFFS problem
minimizing the total tardiness, but we can find in the literature
some papers proposing heuristics and/or metaheuristics for
the SDST/HFFS problem minimizing the makespan (Cmax),
such as [13]–[17], and studies about related problems, such as
[2][11][18]–[20], also minimizing the makespan.

Concerning the total tardiness minimization, there are
papers about variations of the SDST/HFFS problem. Indeed,
Ruiz et al. [21] introduce two iterated greedy heuristics
(IGH) for a hybrid flowshop problem with the objectives
of minimizing the makespan and the weighted tardiness. In
this paper, we consider release dates for machines, machine
eligibility, possibility of the setup times to be both anticipatory
and non-anticipatory, precedence constraints and time lags.
Mainieri et al. [22] propose five heuristics to solve a hybrid
flowshop without setup times. The heuristics are based on list
scheduling algorithms. Naderi et al. [18] present a simulated
annealing to solve a hybrid flowshop with setup-dependent and
transportation times. They used the well known NEH heuristic
[23] and three different neighborhood structures based on the
swap, shift and inversion operators. Jungwattanakit et al. [24]
consider the flexible flowshop problem with both sequence-
and machine-dependent setup times. They propose constructive
heuristics, shift neighborhood search and a genetic algorithm.
Finally, we refer the reader to a detailed literature revue about
the hybrid flowshop in [25], where the authors highlight the
lack of studies dealing with the setup times and the total
tardiness in general.

In this work, to solve the SDST/HFFS problem, we intro-
duce different local search algorithms tested on a new bench-
mark. The body of this paper is organized into five sections.
Section II describes the proposed resolution approaches. The
computational testing, benchmark and discussion are presented
in Section III. Finally, we conclude with some remarks and
future research directions.

II. HEURISTICS FOR THE SDST/HFFS TOTAL TARDINESS
PROBLEM

Heuristic algorithms can be classified into dispatching
rules, constructive and improvement heuristics. Dispatching
rules, also called greedy algorithms, are algorithms for which
the decision about which job to scheduled next is made based
on the jobs or/and the time in greedy way. Constructive heuris-
tics build a schedule from empty or partial solution by making
a series of passes through the list of unscheduled jobs, where
at each pass one or more jobs are selected and scheduled. In
this case, the selection of the job to be scheduled can be done
using the history of jobs running, or by computing tentative
schedules. Contrary to constructive heuristics, improvement
heuristics start from an existing solution and apply some
improvement procedure. We present in the following subsec-
tions the retained dispatching, constructive and improvement
heuristics.

A. Dispatching rules and Constructive heuristics

According to Pinedo [1], dispatching rules are used very of-
ten in practice and as an initial sequence in some improvement

heuristic and metaheuristic methods. They are useful when one
attempts to find a reasonably good schedule. Let Cj(S) be
the completion time of job j /∈ S if it is scheduled at the end
of a sequence S. We consider in this paper :

- Early Due Date (EDD) : At time t, the job with
minimum dj value is selected.

- SLACK : At time t, the job with the minimum value
of dj − Cj(S) is selected.

- Modified due date (MDD): At time t, the job with the
minimum value of max{dj − Cj(S)} is selected.

Pinedo [1] mentions other dispatching rules, but states that
the three aforementioned rules are common for total tardiness
minimization.

Concerning constructive heuristics, the NEH heuristic [23]
is regarded as the best heuristic for the permutation flowshop
scheduling problem with the makespan minimization criterion
[2]. In the original version of NEH, the jobs are sorted in
non-increasing order of the sum of processing times on all
machines. In the presence of due dates, several methods can
be used to sort the jobs, such as the EDD or SLACK rules.

B. Improvement heuristics

An improvement heuristic algorithm starts with a solution
and iteratively tries to obtain a better solution. Neighborhood
search algorithms (alternatively called local search algorithms)
are a wide class of improvement heuristics where at each
iteration an improved solution is found by searching the
neighborhood of the current solution. A comprehensive sur-
vey on neighborhood search algorithms (NSAs) is given by
Prandtstetter and Raidl [26]. An outline of the local search
minimization algorithm is given in Figure 1 where the eval-
uation function f is the total tardiness in our case. As we
can see from a Current solution we generate a neighborhood
N (Current) of feasible solutions achievable from Current.
Then, from this generated neighborhood, we select a solution
which will become the Current solution. The choice of the
neighborhood structure and the selection scheme will be very
important in finding a good solution [26]. We describe in the
next subsections a variety of proposed strategies to solve the
SDST/HFFS total tardiness problem.

Require: Current, an initial solution
Require: Next, a solution

repeat
Generate N (Current) a neighborhood of Current
Next← Select a solution ∈ N (Current)
if f(Next) ≤ f(Current) then
Current← next

end if
until Achieving a stopping criterion

Fig. 1. Local Search minimization algorithm

1) Neighborhood search structure: Several neighborhood
search structures have been applied to scheduling problems
[26]. In this section, we introduce some of them that have
been extracted from published works and used in this paper.

14Copyright (c) IARIA, 2014. ISBN: 978-1-61208-365-0

INFOCOMP 2014 : The Fourth International Conference on Advanced Communications and Computation

Swap move: The positions of two randomly chosen jobs
are swapped. An example of the swap operator is presented
below where the jobs at position 3 and 8 are swapped:

Before swap: 4 5 7 3 2 9 6 1 8

After swap: 4 5 1 3 2 9 6 7 8

Inversion move: The inversion move is a unary operator
where the elements between two random crosspoints are
reversed. An example of the inversion operator is presented
below where the job block (2, 3, 9, 6) is inverted:

Before inversion: 4 5 7 | 3 2 9 6 | 1 8

After inversion: 4 5 7 | 6 9 2 3 | 1 8

Insertion move: In this scheme, a randomly chosen job is
inserted in another random position, different from its initial
position. It is also possible to move a job block. Finally, Or
[27] introduces the OrOpt move where k consecutive jobs with
k ∈ {1,2,3} are moved from one position to another.

Shift move: Two shift moves can be defined depending on
the displacement of the affected job: backward shift (noted as
SHIFT B) and forward shift (noted as SHIFT F) moves. In
a backward shift move the current sequence configuration at
position j is moved to position i with i < j, whereas all jobs
at locations k, with k = i, ..., j − 1, are shifted one position
backward. An example of the backward shift move is presented
below with i = 3 and k = 8 :

Before backward shift: 4 5 7 3 2 9 6 1 8

After backward shift: 4 5 3 2 9 6 1 7 8

Also, an example of the forward shift move is presented
below with i = 8 and k = 7 :

Before forward shift: 4 5 7 3 2 9 6 1 8

After forward shift: 4 5 1 7 3 2 9 6 8

2) Neighborhood size and selection scheme: If we consider
a sequence S of n jobs and we generate a neighborhood
using the swap move where we interchange only job i and
job i + 1 in the sequence without disturbing the remaining
jobs, we can generate (n-1) different solutions. Hence, using
a swap move and considering all the possible moves, the
neighborhood of S have a size of n∗(n-1). For this purpose, we
generally generate only a subset of the neighborhood noted as
the k-move neighborhood where k represents the neighborhood
size [26]. In this latter case, the neighborhood can be visited
randomly (i.e., one among all randomly generated) or in an
oriented way (i.e., the best one). Indeed, the selection scheme
will choose the next solution to be selected and different
schemes can be used [26], such as Best-Improve (the best in
the neighborhood), First-Improve (the first solution improving
current in the neighborhood), k-Improve (a set of k solutions),
etc.

If we consider a maximum number of evaluations as the
stopping criterion, we present below two generalizations of

the selection scheme that have been extracted from published
works and used in this paper.

- Descent Algorithm: This algorithm is also known as
the Hill Climbing Algorithm. In this algorithm, as
shown in Figure 2, using a move operator, we gen-
erate only one solution in the neighborhood and the
Current solution will be updated only if the total
tardiness will be improved.

k ← 0
while k ≤MAX EV ALUATIONS do
Next← move(Current)
if TT (Next) < TT (Current) then
Current← Next

end if
k ← k + 1

end while

Fig. 2. Descent Algorithm

- Neighborhood Move Algorithm: In this algorithm,
using a move operator, we generate NEIGHBOR-
HOOD SIZE solutions representing the neighbor-
hood N (Current), as shown in Figure 3. Then,
we choose the Next solution which represents the
best(N (Current)), i.e., the best solution in the neigh-
borhood, or the first one, or a random one. We can
also add some perturbation policies, such as randomly
assigning the best solution to the Current solution.

k ← 0
while k < MAX EV ALUATIONS do
Generate N (Current)
Next← best(N (Current))
if TT (Next) < TT (Current) then
Current← Next

end if
k ← k +NEIGHBORHOOD SIZE

end while

Fig. 3. Neighborhood Move Algorithm

III. EXPERIMENTAL EVALUATION

A. Data generation

The benchmark problem set consists of 160 problem tests.
The instances are combinations of N and M, where N = {20,
50, 80, 120} and M = {2, 4, 8}. The processing times are
generated from a uniform [1, 99] distribution. The setup times
are generated according to two distributions [1, 25] and [1,
50]. This corresponds to a ratio between setup and processing
times of 25% and 50% respectively. The number of parallel
machines at each stage is sampled from a uniform distribution
in the range [1, 4]. The probability of skipping a stage for each
job is set at 0.10 and 0.40. Finally, due dates are uniformly
distributed between P(1-T - R/2) and P(1-T + R/2) [28], where
T and R are the tardiness factor of jobs and the dispersion
range of due dates, respectively, while P is a lower bound of
the makespan proposed by Santos et al. [29]. The pair (T, R)
has values (0.3, 0.3) and (0.6, 0.3).

15Copyright (c) IARIA, 2014. ISBN: 978-1-61208-365-0

INFOCOMP 2014 : The Fourth International Conference on Advanced Communications and Computation

B. Computational results and discussion

All the experiments were run on an Intel Core i7 2.8 GHz
processor with 8 GB of main memory. Each instance was ex-
ecuted 10 times. Since the evaluation of the SDST/HFFS total
tardiness problem is very time consuming, all the experiments
were done with a stopping criterion set to 1000 evaluations. To
evaluate the different algorithms we use the relative percentage
deviation (RPD) as shown in Equation 1.

RPD =
Heusol −Bestsol

Bestsol
× 100 (1)

where Heusol is the best total tardiness obtained by a given
algorithm and Bestsol is the best total tardiness obtained by
the whole experiment. The response variable is the minimum
of the 10 executions for the considered heuristic.

The first experiments are done to compare the different
heuristics and neighborhood search structures. In Table I,
we compare different neighborhood search structures with
the EDD, SLACK, MDD and NEH heuristics. The different
neighborhood search algorithms use algorithm in Figure 3 with
the neighborhood size equal to 20. Note that the choice of
this size was made following other numerical experiments not
reported in this paper. The considered neighborhood search
structures are swap, OrOpt, shift backward, shift forward,
inversion and insertion moves noted as SWAP, ORPT, SH B,
SH F, INV and INS, respectively in Table I. The results are
grouped by n and m and the best results are shaded

TABLE I. COMPARISON OF THE BEST RESULT AVERAGES OF
DISPATCHING RULES, CONSTRUCTIVE HEURISTICS AND NSA

Instances EDD SLACK MDD NEHT SWAP ORPT SH_B SH_F INV INS
20×2 52.75 142.17 97.81 105.25 2.59 2.71 6.71 4.58 10.36 3.14
20×8 36.62 107.33 66.69 89.10 2.03 1.82 4.04 1.55 7.91 1.97
50×2 56.01 108.27 80.21 88.55 3.50 6.12 8.23 10.13 15.02 6.34
50×4 48.00 108.24 78.29 88.27 4.03 4.52 9.07 5.59 15.85 4.63
50×8 40.44 83.31 65.11 73.49 4.04 3.70 8.92 3.42 15.91 3.47
80×2 41.41 66.93 62.48 66.35 4.35 6.51 10.52 8.49 16.49 8.11
80×4 44.94 69.89 56.85 61.97 5.34 6.27 11.13 8.29 17.76 6.65
80×8 29.62 51.59 36.31 41.93 3.12 4.36 7.48 4.48 11.46 4.37
120×2 47.77 66.79 58.47 61.45 7.16 9.07 13.84 12.60 22.39 11.38
120×4 27.77 47.82 40.35 44.63 3.90 5.75 9.16 6.49 11.84 7.57
120×8 47.03 63.38 59.51 58.53 7.69 7.51 13.93 9.51 24.04 9.54

Average 42.94 83.25 63.83 70.87 4.34 5.30 9.37 6.83 15.37 6.11

Table I show us that the swap neighborhood provides the
best results among the tested algorithms, with an average RPD
value of 4.34%, and the best RPD average for all the group
instances except for the 20×8, 50×8 and the 120×8. The
worst performing algorithms are the dispatching rule (EDD,
SLACK, MDD) and the NEH algorithm with RDP averages of
42.94%, 83.25% 63.83% 70.87%, respectively. As the problem
is very complex, it was expected that these latter algorithms
give similar results.

After comparing the neighborhood structure, we evaluate
different neighborhood search algorithm strategies. We present
here three different strategies:

- The first strategy, noted S1, is that defined by algorithm
in Figure 3 and its results are presented above in Table
I.

- The second strategy, noted S2, is defined by a modifi-
cation at the selection scheme in Figure 3. Indeed, the
neighborhood can be generate from the best solution in
the last neighborhood or from the best solution found
by the algorithm. The choice of the solution is made
randomly, i.e., by a fair coin toss.

- The third strategy, noted S3, evaluates the algorithm
in Figure 2 which, as a reminder, represents a hill
climbing algorithm.

Furthermore, we can improve the neighborhood search us-
ing simultaneous different moves [30]. Indeed such approaches
can diversify the solution search space. For this purpose we
retain the swap and the OrOpt moves. Thereby, we obtain
9 different algorithms whose results are presented in Table
II. Under each strategy column there are three subcolumns :
SWAP, ORPT and S/O representing the swap moves, the OrOpt
moves and the algorithm which chooses the move randomly at
each time by a fair coin toss. The results are also grouped by
n and m and the best results are also shaded.

TABLE II. COMPARISON OF THE BEST RESULT AVERAGES OF
DIFFERENT NEIGHBORHOOD SEARCH ALGORITHM STRATEGIES.

Instances SWAP ORPT S/O SWAP ORPT S/O SWAP ORPT S/O
20×2 2.59 2.71 2.45 4.09 3.66 5.20 2.85 4.36 1.39
20×8 2.03 1.82 6.31 2.73 5.97 1.97 2.02 1.86 1.29

S1 Strategy S2 Strategy S3 Strategy

50×2 3.50 6.12 4.83 2.73 4.35 4.58 0.96 3.36 1.96
50×4 4.03 4.52 4.10 0.92 3.80 1.52 1.90 2.07 2.42
50×8 4.04 3.70 6.73 4.13 11.10 5.33 1.36 2.33 1.12
80×2 4.35 6.51 6.00 6.93 5.44 6.57 0.85 2.60 1.25
80×4 5.34 6.27 4.82 4.00 2.78 3.24 1.03 1.76 1.0580 4 5.34 6.27 4.82 4.00 2.78 3.24 1.03 1.76 1.05
80×8 3.12 4.36 3.64 2.86 3.17 3.60 1.01 1.43 1.29
120×2 7.16 9.07 5.14 7.72 7.06 4.56 1.72 2.19 0.46
120×4 3.90 5.75 5.93 4.54 5.63 6.35 0.79 1.87 1.19
120×8 7.69 7.51 5.95 7.18 7.06 6.68 1.50 1.05 0.97

Average 4.34 5.30 5.08 4.35 5.46 4.51 1.45 2.26 1.31Average 4.34 5.30 5.08 4.35 5.46 4.51 1.45 2.26 1.31

The first observation is that the S3 strategy obtains the best
average with 1.45%, 2.26%, 1.31% for the SWAP, ORPT and
S/O, respectively. Moreover, the S3 strategy SWAP and S/O
algorithms provide 10 of the 11 best group instance averages.
Indeed, the S/O algorithm averages are better than the ORPT
ones, but not as good as the SWAP ones. In fact, the results are
very similar. Thus, neither changing the replacement scheme
or using two different neighborhoods have made effective
improvements, in general. With the S1 strategy, S/O improves
on SWAP and ORPT in only 4 and 8 instances, respectively,
and with the S2 strategy, S/O improves on the other two
algorithms in only 5 instances. Furthermore, the SWAP, ORPT
and S/O results are better with S2 than with S1 in 5, 8 and 7
instances respectively

We now analyze the S3 strategy results. The first interesting
conclusion is that the hill climbing algorithm significantly
improves most of the results, outperforming the other two
strategies in 9, 9 and 10 instances, for SWAP, ORPT and S/O,
respectively. We believe that the S1 and S2 strategies cannot
perform better because the 1000-evaluation stopping criterion
is not sufficient to reach good sequences. Moreover, with S3,
the S/O algorithm improves on SWAP and ORPT in 5 and
10 instances, respectively. We can conclude that using these
two neighborhoods together enhances the search results with

16Copyright (c) IARIA, 2014. ISBN: 978-1-61208-365-0

INFOCOMP 2014 : The Fourth International Conference on Advanced Communications and Computation

the S3 strategy. Also, as we can see in Figure 4, both S3-S/O
and S3-SWAP perform better than the other S/O algorithms
strategies, in general and especially for larger instances.

8,0

6,0

7,0

4 0

5,0

PD S1-S/O

3,0

4,0

R
P S1 S/O

S2-S/O

S3-SWAP

1,0

2,0 S3-S/O

0,0

20
×2

20
×8

50
×2

50
×4

50
×8

80
×2

80
×4

80
×8

12
0×

2

12
0×

4

12
0×

8

1 1 1

Group instances

Fig. 4. Comparison of different neighborhood search algorithm strategies
RPD.

It is also necessary to analyze the efficiency of the different
algorithms. We measured the time in seconds that a given
method needs in order to provide a solution. We remarked
that all the neighborhood search algorithms have very similar
CPU times, i.e., less than 1 second of deviation. Therefore,
we report in Table III only the S/O algorithm with S3 strategy,
noted NSA. We also summarize there the CPU times of EDD,
SLACK, MDD and NEHT grouped by n and m.

TABLE III. AVERAGE CPU TIMES OF THE DISPATCHING RULES,
CONSTRUCTIVE HEURISTICS AND NSA.

Instances EDD SLACK MDD NEHT NSA

20*2 0.00 0.00 0.07 0.07 0.36

20*8 0.01 0.01 0.12 0.81 4.19

50*2 0.00 0.01 0.18 3.90 3.31

50*4 0.01 0.02 0.20 13.75 9.54

50*8 0.04 0.04 0.35 44.58 34.68

80*2 0.02 0.03 0.25 32.34 9.94

80*4 0.05 0.04 0.28 113.09 36.41

80*8 0.17 0.17 0.45 470.76 130.81

120*2 0.03 0.04 0.26 190.43 29.62

120*4 0.12 0.11 0.41 681.66 97.34

120*8 0.49 0.45 1.24 1490.41 362.27

Average 0.09 0.08 0.35 276.53 65.32

The first observation is that the NEHT, executing n ∗
(n − 1)/2 evaluations, is very time consuming. Furthermore,
concerning the NSA algorithms, we remark that dealing with
the 8 stage instances notably increase the CPU time due to the
evaluation of the SDST/HFFS total tardiness problem.

IV. CONCLUSION

In this work, we have introduced several algorithms to
solve the hybrid flexible flowshop problem with sequence
dependent setup times, which minimizes the total tardiness. We
remind readers that this problem has never been addressed. We
compare the behavior of different approaches as dispatching
rules, constructive heuristics and a neighborhood search on
the new introduced benchmarks. The results support our claim

that stage skipping and setup times need to be specifically
considered in the solution methods if high performance is
desired, considering that this problem is very time consuming.

A perspective of this work is to enhance proposed ap-
proaches, such as parallelizing them, and to introduce a more
robust algorithm such as metaheuristics.

REFERENCES

[1] M. Pinedo, Scheduling Theory: Algorithm and Systems. Prentice-Hall,
2002.

[2] R. Ruiz and C. Maroto, “A genetic algorithm for hybrid flowshops
with sequence dependent setup times and machine eligibility,” European
Journal of Operational Research, vol. 169, no. 3, March 2006, pp. 781–
800.

[3] A. Allahverdi and H. Soroush, “The significance of reducing setup
times/setup costs,” European Journal of Operational Research, vol. 187,
no. 3, 2008, pp. 978 – 984.

[4] R. Dudek, M. Smith, and S. Panwalkar, “Use of a case study in
sequencing/scheduling research,” Omega, vol. 2, no. 2, 1974, pp. 253–
261.

[5] G. Conner, “10 questions,” Manufacturing Engineering Magazine, 2009,
pp. 93–99.

[6] A. Allahverdi, C. Ng, T. Cheng, and M. Y. Kovalyov, “A survey of
scheduling problems with setup times or costs,” European Journal of
Operational Research, vol. 187, no. 3, 2008, pp. 985 – 1032.

[7] X. Zhu and W. E. Wilhelm, “Scheduling and lot sizing with sequence-
dependent setup: A literature review,” IIE Transactions, vol. 38, no. 11,
2006, pp. 987–1007.

[8] A. Vignier, J. C. Billaut, and C. Proust, “Scheduling problems of hybrid
flowshop type : state of the art,” RAIRO - Operations Research, vol. 33,
no. 2, 1999, pp. 117–183.

[9] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. G. H. R. Kan, “Opti-
mization and approximation in deterministic sequencing and scheduling:
a survey,” Annals of Discrete Mathematics, vol. 5, 1979, pp. 287–326.

[10] J. Du and J. Y. T. Leung, “Minimizing total tardiness on one machine
is np-hard,” Mathematics and Operations Researchs, vol. 15, 1990, pp.
438–495.

[11] R. Ruiz, F. S. Serifoglu, and T. Urlings, “Modeling realistic hybrid
flexible flowshop scheduling problems,” Computers and Operations
Research, vol. 35, no. 4, 2008, pp. 1151 – 1175.

[12] Z. H. Jin, K. Ohno, T. Ito, and S. E. Elmaghraby, “Scheduling hybrid
flowshops in printed circuit board assembly lines,” Production and
Operations Management, vol. 11, no. 2, 2002, pp. 216–230.

[13] M. Zandieh, S. Fatemi Ghomi, and S. Moattar Husseini, “An immune
algorithm approach to hybrid flow shops scheduling with sequence-
dependent setup times,” Applied Mathematics and Computation, vol.
180, no. 1, 2006, pp. 111 – 127.

[14] H. Mirsanei, M. Zandieh, M. Moayed, and M. Khabbazi, “A simulated
annealing algorithm approach to hybrid flow shop scheduling with
sequence-dependent setup times,” Journal of Intelligent Manufacturing,
vol. 22, 2011, pp. 965–978.

[15] B. Naderi, R. Ruiz, and M. Zandieh, “Algorithms for a realistic variant
of flowshop scheduling,” Computers and Operations Research, vol. 37,
no. 2, Feb. 2010, pp. 236–246.

[16] P. Gomez-Gasquet, C. Andres, and F. Lario, “An agent-based genetic
algorithm for hybrid flowshops with sequence dependent setup times to
minimise makespan,” Expert Systems with Applications, vol. 39, no. 9,
2012, pp. 8095 – 8107.

[17] A. Sioud, M. Gravel, and C. Gagne, “A genetic algorithm for solving
a hybrid flexible flowshop with sequence dependent setup times,” in
Evolutionary Computation (CEC), 2013 IEEE Congress on, June 2013,
pp. 2512–2516.

[18] B. Naderi, M. Zandieh, and V. Roshanaei, “Scheduling hybrid flowshops
with sequence dependent setup times to minimize makespan and maxi-
mum tardiness,” The International Journal of Advanced Manufacturing
Technology, vol. 41, 2009, pp. 1186–1198.

17Copyright (c) IARIA, 2014. ISBN: 978-1-61208-365-0

INFOCOMP 2014 : The Fourth International Conference on Advanced Communications and Computation

[19] F. Jabbarizadeh, M. Zandieh, and D. Talebi, “Hybrid flexible flow-
shops with sequence-dependent setup times and machine availability
constraints,” Computers and Industrial Engineering, vol. 57, no. 3, Oct.
2009, pp. 949–957.

[20] N. Javadian, P. Fattahi, M. Farahmand-Mehr, M. Amiri-Aref, and
M. Kazemi, “An immune algorithm for hybrid flow shop scheduling
problem with time lags and sequence-dependent setup times,” The
International Journal of Advanced Manufacturing Technology, vol. 63,
2012, pp. 337–348.

[21] R. Ruiz and T. Stutzle, “An iterated greedy heuristic for the sequence
dependent setup times flowshop problem with makespan and weighted
tardiness objectives,” European Journal of Operational Research, vol.
187, no. 3, 2008, pp. 1143 – 1159.

[22] G. Mainieri and D. Ronconi, “New heuristics for total tardiness min-
imization in a flexible flowshop,” Optimization Letters, vol. 7, no. 4,
2013, pp. 665–684.

[23] M. Nawaz, E. E. Enscore, and I. Ham, “A heuristic algorithm for the m-
machine, n-job flow-shop sequencing problem,” Omega, vol. 11, no. 1,
1983, pp. 91 – 95.

[24] J. Jungwattanakit, M. Reodecha, P. Chaovalitwongse, and F. Werner,
“Algorithms for flexible flow shop problems with unrelated parallel
machines, setup times, and dual criteria,” The International Journal of
Advanced Manufacturing Technology, vol. 37, no. 3-4, 2008, pp. 354–
370. [Online]. Available: http://dx.doi.org/10.1007/s00170-007-0977-0

[25] R. Ruiz and J. A. Vzquez-Rodrguez, “The hybrid flow shop scheduling
problem,” European Journal of Operational Research, vol. 205, no. 1,
August 2010, pp. 1–18.

[26] M. Prandtstetter and G. R. Raidl, “An integer linear programming ap-
proach and a hybrid variable neighborhood search for the car sequencing
problem.” European Journal of Operational Research, vol. 191, no. 3,
2008, pp. 1004–1022.

[27] I. Or, “Traveling salesman-type combinatorial problems and their re-
lation to the logistics of regional blood banking,” Ph.D. dissertation,
Northwestern University, Illinois, 1976.

[28] C. Potts and L. V. Wassenhove, “A decomposition algorithm for the
single machine total tardiness problem,” Operations Research Letters,
vol. 1, no. 5, 1982, pp. 177 – 181.

[29] D. Santos, J. Hunsucker, and D. Deal, “Global lower bounds for
flow shops with multiple processors,” European Journal of Operational
Research, vol. 80, no. 1, 1995, pp. 112 – 120.

[30] N. Mladenovic and P. Hansen, “Variable neighborhood search,” Com-
puters and Operations Research, vol. 24, no. 11, 1997, pp. 1097 – 1100.

18Copyright (c) IARIA, 2014. ISBN: 978-1-61208-365-0

INFOCOMP 2014 : The Fourth International Conference on Advanced Communications and Computation

