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Abstract— The problem on non-homogeneous shear flows 

over the rough terrain is considered semi-analytically. 

Mathematical modelling of these flows is interesting due to 

important applications in meteorology and oceanography. 

Known results presumably refer to the wave phenomena 

appearing in the flows over single bell-shaped obstacle. 

Presently, most intrinsic problem is to describe a complicated 

interference patterns which can be forced by multiple-ridged 

topography. In this paper, a non-linear model of a stratified 

flow over combined obstacle is constructed under the small 

amplitude assumption for the topography. Attention is focused 

on the stationary wave patterns formed directly above the hill 

range. Wave solutions corresponding to the topography with a 

finite number of peaks are calculated. These solutions predict 

rigorously the splitting of a near-field flow to the separate wave 

zones having different spatial scales. 
Keywords-semi-analytical mode; perturbation method; 

stratified flows. 

I.  INTRODUCTION  

Modeling of stratified flows plays a significant role in 
several environmental disciplines, especially in meteorology 
and oceanography [1][2]. Internal waves in the non-
homogeneous atmosphere and ocean are generated 
frequently from the interaction of the mean flow with 
orographic obstacles, such as mountains and submarine 
ridges. Lee waves arise downstream of the obstacle under 
appropriate upwind conditions. These waves possess 
horizontal lengths amounting to tens of kilometers and 
typical magnitudes of vertical displacement are on the order 
of hundreds of meters. Therefore, they can present a hazard 
to air traffic and sub-sea operations.  

The theory of lee waves deals with the mathematical model 

of inviscid incompressible non-homogeneous fluid. Long’s 

model is based on the linear Helmholtz equation for a steady 

stream function which should satisfy appropriate boundary 

conditions and radiation condition at infinity (we refer to the 

paper [3] for a mathematical details of the Long’s theory). 
This linear partial differential equation arises as a 

leading-order approximation to more general non-linear 
Dubreil-Jacotin – Long equation of stratified fluid [4]. 
Despite the linearity, explicit analytic solutions are known 
only for the simplest topographies, such as a single semi-
circular obstacle [5][6]. Numerical solutions to Long’s 

theory also encounter substantial difficulties due to the 
specific form of a boundary condition for arbitrary 
topography [7][8]. 

We develop a semi-analytical approach [9] involving the 
von Mises transformation of both dependent and independent 
variables in the non-linear version of the Dubreil-Jacotin – 
Long equation. The main idea of this method is to satisfy the 
exact topography condition by solving approximate 
equations in an auxiliary rectangular domain. The impact of 
the non-linearity is analyzed by the perturbation procedure 
with a small parameter which characterizes typical height of 
an obstacle. Our attention is focused on the fragmentation 
effects for the near-field wave patterns forced by the rough 
topography of finite extension.  

This paper is organized as follows: Section II describes 
the mathematical setup, including the formulation of a basic 
model; Section III characterizes the perturbation procedure 
combined with the Fourier method to construct an analytical 
solution; Section IV illustrates preliminary results of 
numerical modelling of stratified flows. Discussion and 
conclusions are presented in Section V. 

II. MATHEMATICAL FORMULATION 

The mathematical model of a steady stratified 2-D flow 

over an uneven bottom is formulated as the boundary value 

problem for a second-order elliptic partial differential 

equation, i.e., DJL (Dubreil-Jacotin – Long) equation, which 

has the form 
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Here, the unknown function ),( yx  is the stream 

function and the constants 0  and 0 are the 

Boussinesq parameter and the inverse densimetric Froude 

number, respectively. These dimensionless parameters are 

defined by the formulae 
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where g is the gravity acceleration, h  is the total depth of 

the stratified fluid layer, N  is the constant Brunt–Väisälä 

frequency (i.e., the buoyancy frequency of air or ocean 

water), and c is the speed of the far-upstream flow. Quantity 

  determines the slope of the density profile for a 

uniformly stratified fluid being at rest and λ indicates the 

value of the sub- or super-criticality of the upstream flow 

with respect to the phase speed of infinitesimal internal 

waves. Finally, the small parameter   characterizes a 

typical height of the bottom topography )(0 xyy   towered 

above the ground level y=0.  

From the mathematical point of view, problem (1) is a 

non-linear eigenvalue problem with spectral parameter  as 

the bifurcation parameter. A non-trivial wave solution can 

bifurcate from the wave-less regimes if the magnitude of 

topography   is sufficiently small. Bifurcation occurs by   

belonging to a continuous spectrum of linear waves (see 

Fig. 1). 

  

 
Figure 1. The spectrum of normal modes. 

 

A parametric range of m-modal lee waves is formed by 

the sub-critical spectral domain determined by the 

inequalities  
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Based on that, a non-trivial solution should have periodic 

asymptotics with respect to spatial variable x far-

downstream the obstacle. In that sense, problem (1) can be 

also considered as the non-linear diffraction problem. The 

main difficulty is that the amplitude of stationary wave 

forced behind the obstacle is unknown a priory.  

III. ANALYTIC SOLUTION 

We apply a semi-analytical approach involving von 

Mises transformation of the DJL equation. Namely, we seek 

the streamlines in the form ),( xYy   with a new 

independent ),( x -variables so that the flow domain 

transforms to the unit strip .10   This transformation 

does not permit overhanging streamlines which are typical 

for developed structures of lee waves of large amplitude. 

However, such a geometric assumption allows to satisfy the 

exact topographic boundary condition at leading order 

approximate solution. 

By given σ and λ, we construct solution ),( xY  with 

small  as the power series 
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The leading-order coefficient 
0w should satisfy both the 

homogeneous linear partial differential equation and the 

non-homogeneous topographic boundary condition at the 

bottom line ;0 such that we have a linear elliptic 

boundary value problem  

 

,10,00000    wwww xx  

.0)1,(),()0,( 000  xwxyxw  

 

Certainly, this approximation corresponds to the 

familiar equations of the Long’s model. The difference is 

that here this model involves a more convenient 

topographic boundary condition than usual.   

For Froude number  belonging to the sub-critical 

spectral range of m-modal lee waves, we obtain the leading-

order solution as follows: 
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Here, function )(W  corresponds to the hydrostatic mode 

of the flow over uneven bottom. This function is given by 

the formula 
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The wave number 
0k  here is real while parameter  is sub-

critical and Fourier-coefficients )()(

0 xw n  are determined by 

the shape of the obstacle only.  
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Similarly, we can construct the second-order solution, 

which takes into account a non-linear correction of the flow 

by solving the boundary value problem 
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Here, the right-hand side involves the non-linearity, which 

has the form 
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For known 
0w , solution 

1w can also be presented as an 

infinite modal Fourier-series (2) with separated variables 

x and  . 

IV. EXAMPLES OF CALCULATED WAVE PATTERNS  

Wolfram Mathematica® [10] was used at all stages of 

semi-analytic calculations. Symbolic computer algebra was 

applied to present truncated solution (2), which provides 

fast convergence. Most of the numerical simulations used 

the series for coefficients 
0w and 

1w with ten basic 

harmonics. Computational flow domain involved the 

discretization with 50 points in horizontal direction x and 

10 points in ψ. The calculation of a non-linear second-order 

solution used a numerical result for a leading-order linear 

solution presented by 6-order interpolation splines. Multiple 

series of calculations were carried out on the two node 

computer cluster at Novosibirsk State University.   

Figure 2 and Figure 3 demonstrate some examples of 

the calculated 1-mode lee wave patterns, which appear in 

the flow region over the finite number of obstacles. 

Parameters   and λ are taken as  =0.04 and λ=15 in all 

cases. The Boussinesq parameter σ is chosen as σ =0.2.  

 

 
Figure 2. Lee waves over two bell-shaped obstacles. 

 

Figure 2 illustrates the influence of the non-linearity on 

the stratified flow formed over the double bell-shaped 

topography. The non-linearity essentially corrects only the 

wave column immediately above the second obstacle but 

the downstream wave-tail still remains non-perturbed 

behind the obstacles.  

 
Figure 3. Separation of stratified flow. 

 

Figure 3 illustrates an interesting effect of the wave 

interference, which can be observed in the near-bottom 

region of the boundary-trapped waves over a multi-hill 

topography. The near-bottom flow is clearly separated from 

the upper region of slowly modulated waves having the 

maximum amplitude at the mid-height of the fluid layer. 

The separation between lower and upper wave zones occurs 

at the height predicted by the zero points of the hydrostatic 

mode. 

V. CONCLUSION AND FUTURE WORK  

In this paper, we outline semi-analytic approach 

assigned to simulate atmospheric stratified flows over 

combined 2D topography. The method exploits calculation 

the Fourier series which present modal decomposition of the 

waves forced by localized multi-bumped obstacle. Such an 

analytic solution of fluid mechanics is constructed by the 

perturbation procedure taking into account the non-linearity 

of mathematical problem. As noted, the limitations can arise 

by modelling the flows with overturning streamlines above  

the sharp-crested terrain with high peaks. However, the 

method seems to be well-conditioned while it predicts 

realistically the fragmentation of wave patterns due to 

interference of lee waves from adjacent ridges. Preliminary 

results demonstrate the ability to provide fast computations 

of the flows even for irregular-shaped topography. From a 

geophysical viewpoint, an efficient method is also needed to 

provide accurate computation of the fronts of separated 

wave zones. This work is in progress now. Next technical 

steps will operate with obtained Fourier solutions in order to 

evaluate analytically the impact of modal decomposition on 

the fragmentation effect observed by numerical 

experiments. Furthermore, we also plan to extend this 

method to modelling of stratified air flows over topography 

in local regions being of interest from meteorological 

viewpoint. By that, important issue is to estimate the 

computation requirements which are asserted to the 

algorithm by such a real topography. 
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