
Understanding Virtualized Infrastructure in Grid Job Monitoring

Zdeněk Šustr
Grid Department – MetaCentrum

CESNET z. s. p. o.
Zikova 4, Prague, 160 00, Czech Republic

Email: zdenek.sustr@cesnet.cz

Jiřı́ Sitera
Grid Department – MetaCentrum

CESNET z. s. p. o.
Zikova 4, Prague, 160 00, Czech Republic

Email: jiri.sitera@cesnet.cz

Abstract—This paper is the first report on a new direction
in the development of the Logging and Bookkeeping service, a
gLite component tracking grid job life cycle. From the early
days, Logging and Bookkeeping tracks not only jobs themselves
but also the wider details of the job execution environment.
Since a great portion of the infrastructure is now virtualized,
the work at hand concerns tracking the virtualized nature
of that runtime environment. With virtualization and cloud
technologies being highly flexible and dynamic, we believe
it is very important to gather and keep status information
for machines used to run the workload. A newly created
monitoring entity (a machine) will be integrated with job state
information and provide an enhanced view of the current state
and history of both the job and the infrastructure. This paper
focuses on motivation, requirements coming from the Czech
National Grid Initiative and possible consequences rather than
the actual implementation. As a report on “work in progress”
it describes an idea that is now being further elaborated and
implemented to provide a solution for monitoring virtualized
resources in the same context as the workload they are
processing.

Keywords-grid; cloud; virtualization; job monitoring.

I. INTRODUCTION

Logging and Bookkeeping (LB), part of the gLite grid
middleware, is a monitoring tool equipped for monitoring
the states of all kinds of processes related to grid com-
puting [1]. Besides traditional gLite Workload Management
System (WMS) [2] jobs and logical groupings thereof such
as oriented graphs (DAGs) or collections it also monitors
input/output data transfers and the states of computing tasks
submitted directly to a resource manager — the CREAM
Computing Element (part of the gLite middleware stack)
[3] or to TORQUE (Terascale Open-Source Resource and
QUEue Manager) [4].

It collects event information from various grid elements
and sums it up to determine the current status of any such
process at the given moment. It is designed to accept ad-
ditional state diagram implementations as required, relying
on essential common features such as event delivery (based
either on LB’s own legacy messaging layer or standard
STOMP/OpenWire messaging) or the querying interface. LB
is highly security-oriented and has proven itself in WLCG
(Worldwide LHC Computing Grid) operations. It is widely
deployed across the European Grid Initiative’s infrastructure.

In this article, Section II explains what the requirements
are and why LB is deemed suitable for monitoring virtu-
alized resources. Section III outlines the proposed solution
to deliver essential functionality, and Section IV discusses
additional issues to consider and focus on in the future.

II. MOTIVATION TO INCLUDE MACHINES IN THE LB
MODEL

Using LB in monitoring virtualized resources is inspired
by obvious similarities with the existing processes, backed
by explicit requirements from infrastructure operators.

A. Virtual Machine as a Job

LB’s main objective is to know everything about job
scheduling and execution, making it possible to analyze the
behavior of the infrastructure (failing components, miscon-
figuration) and possibly even provide job provenance ca-
pability (ensuring repeatability of jobs/experiments, storing
computing environment characteristics and configuration).
In contemporary grids and other computing infrastructures
machines running grid jobs are themselves dynamic entities
following a lifecycle similar to that of the job itself. It
is not unreasonable to expect further blending of cloud
and grid models where grid components run either in a
cloud (StratusLab [5]), or in a mix with cloud services
(MetaCentrum [6], WNoDeS [7]).

All things considered, tracking virtual machines (VMs)
throughout their lifecycle in contemporary grids is as im-
portant as tracking jobs. Moreover there is an added value
to tracking two kinds of entities in a common manner. Not
only does it provide for a better understanding of mutual
relationships and dependencies, but also for a unified view
for users and administrators.

Figure 1 shows a simplified and illustrative example of
the new higher-level view of the infrastructure state. It
maps compute jobs to the underlying VM lifecycle and
provides the user with an overview of its current state and
possible problems. In the case of highly dynamic virtualized
infrastructure it can be used to assess efficiency and induced
tradeoffs. Data collected in this manner can also be used
to produce higher-level statistics and monitoring (mapping

167Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

Figure 1. Viewing compute jobs as payload executing over a VM.

actual hardware resources to jobs), while the low-level in-
formation is still available for detailed inspection if required
for debugging.

Key LB features (re)usable for machines:
• Recording primary events and using a state machine

specific to the given type of process (job, VM) to com-
bine all information contained therein and determine
the current state of a process.

• Providing the ability to get processes grouped or an-
notated/tagged by the infrastructure, administrators or
users.

• Architecture and implementation based on standards
(messaging, authentication and authorization infrastruc-
ture, web services), allowing simple event gathering.

• Essential functions (logging events, querying for basic
information) provided not only by library functions but
also by command line tools.

B. Features Requested by the Czech NGI

MetaCentrum, the Czech National Grid Initiative (NGI),
is designed as a mixed cloud/grid service, where resources
from a single, consistently managed pool can be provided
either as traditional batch system-managed resources or
VMs, depending on current user needs [8]. The scheduler
(Torque) can handle three types of requests:

1) Run a job
2) Run a job in a selected VM image
3) Run a VM

The desired functionality will provide a single, consistent
view of the infrastructure, mapping all user requests to actual
hardware. It should replace currently used data mining tools
providing status feeds to the MetaCentrum portal and to the
long-term usage statistics processor.

Since MetaCentrum is also involved in research of batch
system scheduling strategies, gathering data relevant for this
kind of assessment is another requirement.

Yet another requirement, albeit one that is already fulfilled
by LB’s design, calls for an ability to aggregate information
from diverse sources (scheduler, virtualization hypervisor,
accounting) and even manually triggered state transitions
(for instance putting resources in and taking them out of
maintenance).

C. Similar Works

Infrastructure monitoring tools such as Nagios or Ganglia
focus primarily on the “running” state of the given process,
and using them to monitor short-lived VM instances set up
on demand is on the edge of practicality, anyway. Unlike
them, this work is not intended to monitor infrastructure
health and react to problems. There is just a minor overlap
in that certain aspects of infrastructure health can be seen
in job/VM status statistics provided by LB and we believe
that understanding the relationship between the payload and
VM layers will further improve the informative value of LB
statistics.

Each infrastructure or cloud management tool has its own
way (command line interface, portal) of providing users
with the current VM status. But, we are not aware of any
other work similar to LB – a service combining available
information from different components into one higher-level
view. It is one of the reasons for publishing this Work in
Progress paper.

We expect that major virtualization stack implementations
will be able to send raw status change events via the
messaging infrastructure in the near future (indeed, some of
them already do) and thus there will be interesting potential
in processing them in the proposed way.

III. PROPOSED SOLUTION

The proposed functionality is being implemented in pro-
gressive steps. Early phases are already in progress and can
be discussed in detail, while the later phases consist mostly
of open issues.

A. Implementation Phases

• Pilot implementation with a testbed instance of Open
Nebula, running and keeping track of VMs and sched-
uled Torque jobs at the same time. This phase has
already finished.

• Adjustment to MetaCentrum environment with Torque
scheduling VMs as well as jobs. Making sure that the
solution is adequately robust in all applicable use cases
including those where some of the components (for
instance some of the VMs) operate out of the scope
of MetaCentrum and do not generate events. It is the
current phase as of this publishing.

• Bringing in additional sources of information external
to the batch system and virtualization stack: admi-
nistrative operations, information system, accounting.
Automated processing of information produced by LB:
statistics, dashboards, etc.

B. Architecture for the First Phase

The primary goal of the first phase was to understand
VM lifecycle and its relation to existing job lifecycle. The
particular outcome from this phase consisted in finalizing

168Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

Figure 2. Architecture and components.

VM state machine design and the attribute set for the VM
instance status record.

In this phase, the VM lifecycle was controlled solely by a
single instance of the Open Nebula cloud computing toolkit,
managed manually by administrators, while jobs were being
assigned to VMs by a standard grid computing element
through an instance of Torque. All job-related functionality
was already in place (LB-aware Torque). The following
sources of events were used to govern the VM lifecycle:

• Open Nebula—providing hooks for call-out scripts ac-
tivated on any relevant state change

• Hypervisor, (Specifically Xen)—generating events
showing the current VM state and parameters at
hypervisor level

• Hosted worker nodes—Operating System running the
Worker Node was instrumented (init scripts) to provide
independent information from the running VM

The combination of events from all the above components
into one higher-level view is a key role of LB in this concept.
It makes the system more precise and robust, which has
been well tested in the context of gLite job monitoring.
Obviously on certain occasions, all three sources generate
almost identical, i.e., redundant events. But there is still
value in receiving almost identical events multiple times.
It improves reliability, and the comparison between the
three events provides for fine-grained job status tracking and
simplifies troubleshooting. Besides that, different sources
often provide values for different attributes unknown to the
others.

System architecture for the initial implementation is
shown in Figure 2. In that design, the only new feature
that had to be implemented was VM instance support in LB
(state machine, attributes, event types). Relationship to other
relevant components of the system (virtual image identifica-
tion, physical machine identification) is stored in the form
of attributes in that instance. There are other attributes to
cover the network status of the VM such as domain name,
type of network connectivity (VLAN, private/public) and
of course even more attributes identified as useful in the
design/implementation process. The complete set of desir-

able attributes did not need to be pre-determined, though.
LB allows any kind of additional attribute to be simply
stored with the instance’s status (functionality referred to
as User Tags) with only slight limitations. One cannot, for
instance, use relations such as “greater than” or “lower than”
when querying for instances with a given value of such
attribute. Since LB does not know the type of that attribute
and cannot decide. The only comparison supported is string
(in)equivalence.

Each instance is identified by a string constructed in the
same manner as Job IDs currently used in LB, consisting
of the LB server’s identification, a short literal denoting the
process type, and a random unique string. Domain names
are not suitable for use as identifiers since they are often
recycled (re-used by another instance) or even used by
multiple VM instances at once.

Any event received by LB may or may not trigger a
change in the state and/or attribute values of an instance.
Thus the instance’s current state and attributes constitute
the most up-to date information set as collected from all
the various sources mentioned above. LB is designed to
overcome obstacles such as events delivered out of sequence,
intermediate events not delivered at all, or events received
from different sources with clocks skewed in different direc-
tions. This is achieved by relying on arbitrary hierarchical
message sequence codes rather than time stamps in event
sorting.

IV. FURTHER IDEAS AND OPEN ISSUES

Given that this is still work in progress there are many
concepts and ideas that deserve further investigation. Some
of them, such as virtual cluster support, are necessities
that must be addressed. Others fall into the “nice to have”
category. They will receive attention at a later stage.

• State Machine for Physical Machines?—At the very
least VM instance attributes will refer to a physical
machine by name. But there is an obvious similarity
between physical and virtual machines and a VM state
diagram is easily applicable to physical machines. So
the option is to register physical resources as “VM”
instances as well, and reference the identifier instead.
Then the same level of detail could be provided for
virtual and physical machines alike, although some
supported states will probably remain unused in the
physical world.

• Support of User Workflows—Compared to traditional
computing jobs, VMs are a little specific in that they
always need to be assigned workload when running
(i.e., having started for the first time, recovered from
a downtime or finished migration), which makes them
actually very similar to pilot jobs. Many user groups
rely on their own workload management systems to dis-
tribute payload and it may be very convenient for them
to receive notifications of relevant VM status changes.

169Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

That could be easily achieved with LB notifications
generated on pre-determined conditions and sent out
over LB’s own legacy messaging chain or through
a STOMP/OpenWire-enabled messaging broker. Users
may choose, for instance, to be notified any time any
of their machines reaches state running. More elaborate
sets of conditions are also supported. The resulting
notification contains the full VM status information
and, if requested on registration, also the full history
of events for that machine so far.

• Virtual Cluster Implementation—The Virtual Cluster
service provided by MetaCentrum can create multiple
VM instances per request [6]. All the resulting VMs
have common attributes (type of network connection)
and are closely related. It may be a good idea to
reuse the “collections” functionality in LB, typically
applied to grid jobs or sandbox transfers. From the
user’s point of view the state of the collection combines
the states of all its members. Individual VM details are
still accessible under the VM instance’s own ID – the
collection functionality simply adds another identifier
(collection ID) to access aggregate information such as
child status histograms.

• Heterogeneous Environment (multiple hypervisors and
cloud managers)—LB should be able to provide a uni-
fied view of VMs running on different implementations
of hypervisors or even cloud managers. The situation
is similar to that of a unified state machine used for
different job managers – CE implementations.

• VLAN Status—The Virtual Cluster service offered by
MetaCentrum provides not only sets of machines but
also networking connections in the form of virtual
Ethernet (VLAN) [9]. The VLANs have their own
lifecycle managed by a purpose-built VLAN manager
(SBF). An ability to track the state of the network
together with its attributes (private/public, additional
service such as tunnel/NAT/FW) could be valuable in
many scenarios.

V. CONCLUSION

Although this work is primarily driven by the Czech
NGI’s requirements, it will be found useful at a much wider
scope. With instances of LB currently deployed at dozens of
gLite-enabled grid sites across the European Grid Initiative’s
infrastructure, the VM monitoring feature – once released –
will become available to a wide base of users, not only those
already relying on LB for monitoring their own computing
jobs, but also to those exploring the potential use of cloud
services on grid-based platforms.

This paper’s main goal was to show how the potential of
job monitoring infrastructure can be reused in the virtualized
world. Many cloud-oriented initiatives are currently looking
for solutions enabling resource federation. LB, with its cur-
rent presence resulting in easy adoption, will be a reasonable
candidate for a monitoring and notification service.

ACKNOWLEDGMENT

This work is part of the National Grid Infrastructure Meta-
Centrum, provided under the programme “Projects of Large
Infrastructure for Research, Development, and Innovations”
(LM2010005).

Fundamental development and maintenance of the Log-
ging and Bookkeeping service is co-funded by the European
Commission as part of the EMI project under Grant Agree-
ment INFSO-RI-261611.

REFERENCES

[1] MetaCentrum Project, Logging and Bookkeeping, CESNET,
2008. [Online]. Available: http://egee.cesnet.cz/en/JRA1/LB/
[Accessed: August 28, 2012].

[2] M. Cecchi et al., The gLite Workload Management System, J.
Phys.: Conf. Ser., vol. 219, 2010.

[3] P. Andreetto et al., Status and Developments of the CREAM
Computing Element Service, J. Phys.: Conf. Ser., vol. 331,
2011.

[4] G. Staples, TORQUE resource manager, Proceedings of the
2006 ACM/IEEE conference on Supercomputing, ser. SC ’06,
2006, ISBN 0-7695-2700-0.

[5] StratusLab Project, StratusLab, StratusLab, 2012, [Online].
Available: http://stratuslab.eu/ [Accessed: August 28, 2012].

[6] M. Ruda et al., Virtual Clusters as a New Service of
MetaCentrum, the Czech NGI, CESNET, 2009. [Online].
Available: http://www.cesnet.cz/doc/techzpravy/2009/virtual-
clusters-metacentrum/ [Accessed: August 28, 2012].

[7] D. Salomoni et al., “WNoDeS, a tool for integrated Grid and
Cloud access and computing farm virtualization,” J. Phys.:
Conf. Ser. 331 052017, Dec 2011.

[8] J. Sitera, M. Ruda, P. Holub, D. Antoš, and L. Matyska,
MetaCentrum Virtualization – Use Cases, CESNET, 2010.
[Online]. Available:
http://www.cesnet.cz/doc/techzpravy/2010/metacentrum-
virtualization-use-cases/ [Accessed: August 28, 2012].

[9] D. Antoš, L. Matyska, P. Holub, J. Sitera, “VirtCloud: Virtu-
alising Network for Grid Environments – First Experiences”
in The 23rd IEEE International Conference on Advanced In-
formation Networking and Applications AINA. Bradford, UK,
2009.

170Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

