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Abstract—Supercomputers can reach an unprecedented degree 

of scale and miniaturization reaches the quantum level of 

manufacturing. Non-regarding this progress, however, 

computing capabilities are and will remain insufficient to meet 

the demands of many compute intensive scenarios. The major 

obstacle thereby consists in the non-deterministic polynomial 

(NP) nature of these problems. Recent research and 

development seems to have almost forgotten about this 

intrinsic problem. With this paper we want to remind of the 

relevance of NP for supercomputing by exploring its impact on 

future computing development and discuss potential 

approaches to relieving (not solving) this issue. 
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I.  INTRODUCTION 

The number of computational units that are available to a 
user increased constantly over the recent years: super-
computing clusters integrate thousands of processors with 
high speed interconnects that allow the user to execute large 
scaling applications. Multicore processors bring parallelism 
to the common desktop PC and even though scale still ranges 
in the area of 4 to 8 cores, manufacturers already plan on 
processors integrating 100s of compute units, so that today’s 
cluster scale will be available for desktop machines in 10 to 
15 years’ time. In addition, the resources available over the 
internet and thus principally available for grid, cloud and 
P2P computing have reached several millions by now [1]. 

Even though the effective global computational power is 
high, there still remains a large set of problems that cannot 
be solved – this includes accurate (long-term) weather 
forecasting, simulation of the human being, astrophysics etc. 
All approaches so far provide approximations rather than 
accurate results – mostly this is due to the size of the 
respective system, which in the case of weather forecasting 
and astrophysics is “open”, meaning that a potentially 
infinite number of parameters impact on the computation - 
classically, this is referred to as dealing with “LaPlace’s 
demon” [2]. It is obvious that “open world” problems are 
unsolvable due to the physical limitations of the resources – 
however, most of these problems can be reduced to a 
subspace in which parameters have only minimal impact 
(e.g. the gravitational forces across large distances) and thus 
can be subsumed to a simpler factor or even neglected.  

As we will show, the actual main computational problem 
however consists in the non-determinism of the respective 

systems, i.e. their “chaotic” nature. Non-regarding the 
wording, this does not imply that the computation is not 
causal, but that there is no functional representation of the 
results for any time t - instead g(t+n) can only be generated 
by (n) stepwise iterations from g(t). Computation of g 
typically involves multiple iterations for approximation, 
which means that the complexity for calculation quickly 
increases beyond the capacities of existing infrastructures 
and, in fact, will always exceed these restrictions (chapter II). 

All current development concentrates on increasing the 
number of computational resources by exploiting parallelism 
– be that on the level of the instructions or on the level of the 
full processing unit, or on increasing the execution speed by 
employing specialized accelerators. In all cases, the 
capabilities effectively increase polynomial whilst the 
requirement growth remains exponential. In chapter III we 
will elaborate why such development is insufficient. 

This restriction is due to the fact that modern computing 
still builds on Turing’s model, which is strictly sequential in 
nature. In order to cope with the NP class of problems, a new 
computing model is required which can deal with the non-
deterministic nature of these tasks. In chapter IV, we will 
discuss what such a model could look like. 

We conclude the paper with a discussion on the obstacles 
towards realizing such a computing model. 

II. NP APPLICATIONS / NON-DETERMINISM 

Simulating real world behavior is essential for both 
academia and industry: not only to understand the mechanics 
of the system examined, but in particular to be able to 
modify or replicate it. Thus enabling for example the 
evaluation of a design prior to its production and to estimate 
(and contain) impact on the environment, such as oil leakage, 
air poisoning etc. This equally affects all disciplines, ranging 
from engineering over natural sciences to social studies. 

These disciplines typically investigate different levels of 
the system, from subatomic (quantum physics) over living 
creatures (biology, sociology etc.) to galaxies and beyond 
(astrophysics). And even though the range seems well 
defined for most disciplines, such as medicine, ranging from 
individual cells to living beings, there is nonetheless an 
important reciprocation between most of these levels. This 
interdependency sometimes leads to the emergence of new, 
merged disciplines, such as biochemistry, and in other cases 
one of the major concerns consists in eliminating all 
influence from other systems, such as in quantum physics. It 
becomes more and more apparent that effectively all levels 
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have to be considered for accurate predictions and 
simulation. For example the virtual physiological human 
(VPH) community aims at simulating the whole human body 
on all levels (i.e. from cell systems down to molecules) in 
order to predict e.g. the spread of medicine in the body.  

The interest in such research is due to the cross-impact of 
other domains unto calculations of the respective system. It 
is a specific aspect of natural systems that they are essen-
tially chaotic, meaning that miniscule changes in parameters 
lead to completely different results. In other words, minor 
errors in the data can lead to completely wrong results. Since 
natural systems are also mostly “open”, there is an infinite 
number of impact factors. For example, in order to measure 
an exact kilogram, already the gravity shift due the planetary 
constellation plays a crucial role. The impact of the 
combined two factors – openness and chaotic – is also well 
known as the so-called “butterfly effect” [3]. 

There is no direct determinism in the underlying 
functionality, that allows calculation of f(t) for any t directly. 
This is simply due to this large degree of interactions 
between all parameters, leaving a potentially infinite number 
of equations to be solved in each iteration step. Whilst the 
scope can be reduced according to the number of particles 
considered in the subspace and according to the strength of 
coupling, it still leaves the system essentially unsolvable 
without approximation and optimization. 

A. The Impact Of NP: An Example Application 

Let us examine this in a simple example of particle 
collision in an isolated subspace, where each particle can be 
simulated as (ideal) snooker balls: even though each 
trajectory can be represented as a vector, collisions need to 
be checked with all other particles (leaving mechanisms for 
reducing the search space aside). In the most straight forward 
approach, we would therefore advance the position of each 
particle per time step by a safe distance thereby checking 
with all other particles whether a collision would occur in the 
respective time step, and reflect it accordingly. 

Since at any time a collision may occur (or even several 
at once), the outcome at any time t depends on the 
constellation at t-1. In other words fn(t+1) = g(fn(t)), whereas 
fn(0) is the initial constellation and g(x) is the combined 
collision test and movement over n particles. This means that 
there are n! equations to be solved in g(x) for one time step. 

If each test could be performed by an individual 
computer in order to achieve maximum performance, adding 
only one particle more would require n*n! more resources. 
This can be simply shown: if the complexity for calculating 
fn(t) is n!, then the complexity of fn+1(t) is (n+1)!. Therefore:  

 (n+1)! = n!*(n+1). (1) 

To be more concrete: for 1.000.000 (10
6
) particles, 

8,26*10
5.565.708

 resources would be required. Just adding one 
particle to this would lead to additional(!) 8,26*10

5.565.708+6
 

resources. In one cubic meter of air alone there are more than 
10

25
 molecules and hence particles to be calculated. There 

are multiple methods to reduce the number of calculations, 
such as neighborhood restrictions etc. The main point of this 

example is not so much to show the complexity of the 
calculation itself, but the enormous growth of requirements 
with only slight increments in the problem or data space.  

The usual approach to dealing with this amount of 
equations consists in approximation and result estimation. 
Chaotic non-deterministic systems can however lead to 
enormous result deviation if just a single value is changed 
minimally. In the example of the particle system, we can see 
how errors can sum up over time, assuming that just a single 
particle shows a vector deviation (speed or angle) of ε 
between simulation and real world. We can calculate the 
average time tcol for a collision between two particles to be 

 tcol = V / (ND
2
v) (2) 

with V being the volume of the subspace, N the amount of 
particles within V, D the diameter of the particles and v the 
velocity. For the sake of simplicity, we assume that all par-
ticles have a diameter of 1 angstrom (nitrogen has 1.5 ang-
strom, oxygen 3.6). With a density of 10

25
 molecules/m

3
 and 

the average velocity per particle of 500 m/s (air has roughly 
463 m/s at 20° C), this leads to roughly 157*10

6
 collisions 

per particle and second (for air, this is roughly 5*10
9
).  

Ideal elastic collisions preserve the energy of both 
particles – i.e. given initial vectors v 1o and v 2o of two 
particles, the new vectors v 1n and v 2n sum up to the same 
combined vector. Without going into full detail, one can 
show that an initial error ε of  ust one particle, i.e. v 1real 
 ε v 1simulated is maintained across all collisions and even 
transplanted onto all colliding particles [4]. Due to the 
exponential nature of the collisions, the total (maximum) 
error after one second is ε*2

157*10*6
 ≈ ε*5*10

2835 - for reasons 
of simplification, we ignore the cancellation of two errors, so 
that the total error will be slightly lower. 

Notably, this does not hold equally true for all problem 
fields (see section V). Since the calculations themselves are 
just approximations the effective error is essentially higher. 
Accordingly, one of the major efforts consists in keeping ε 
as small as possible. However, limitation of resources and 
exponential growth of complexity is compensated on cost of 
precision, thus leading to higher, rather than lower ε and thus 
to less precise results. 

B. Dealing With NP Applications 

There are multiple ways to address problems with 
exponential complexity – typically these consist in restricting 
the problem space, subsuming multiple equations under one, 
reducing the precision, using approximation calculations etc. 
Given the potential error introduced through these methods, 
the major interest is obviously to employ means that are 
more precise, thus reducing the risk of an increasing error.  

Much effort is vested into finding a representation of the 
according task in the polynomial problem space, in other 
words to reduce the specific element of NP to a respective 
representation in P which would reduce the resource need 
and complexity by an exponential factor. HPC programmers 
spend much effort into finding such a reduction, yet that 
effort is exponential in itself. Even though there is a set of 
problems which can clearly not be reduced to P, how much 
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of the NP space is identical to P is unsolved as yet [5]. 
Ideally, the set of NP problems equals the set of P, in which 
case all major mathematical problems could be calculated in 
polynomial time. 

In addition to “ordinary” NP problems, there is a set of 
problems which cannot be reduced to P, generally referred to 
as “NP-hard”. Any problem belonging to this space will 
exponentially grow in complexity with the degree of desired 
granularity, respectively data size. In these cases, desired 
accuracy must be weighed against computational effort. 
Higher accuracy and larger data set are nonetheless urgent 
demands from industrial and academic research. 

III. THE DEFICIENCIES OF CURRENT DEVELOPMENT 

The classical approach to increasing the performance of a 
processing unit consists in increasing its execution clock 
rate, e.g. by higher settling rates or extended instruction level 
parallelism allowing for execution of more operations at 
once [6]. However, these approaches face multiple problems 
and effectively do not really improve performance any more 
[7]. Much optimization is nowadays handled by the 
compiler, rather than the hardware, even though specialized 
processing units that offer application specific optimization 
capabilities are growing in interest (see below). 

Current manufacturers extend parallelism on a higher 
level by exploiting principles that have long been employed 
in high performance computing: parallel processing units. As 
opposed to ILP, parallelization on this level implies 
effectively complete replication of the whole processor, 
including the logical unit, cache and I/O. Modern multicore 
processors are thus exactly that: multiple full units within a 
confined space, though the architecture of interconnects etc. 
has slightly changed in order to maximize performance. 

A. The Limitations of Scale (or Why Multicores Are Not 

The New Messiah) 

Multicores thereby face the same issues as cluster 
computing: applications simply do not scale to the amount of 
available resources. In other words, we already have access 
to more compute units than most programs can effectively 
use. This is due to two major constraining factors: Amdahl’s 
law and messaging overhead.  

Amdahl’s law generally states that the speedup of parallel 
program execution is limited by its sequential aspects, or in 
other words: there are functions and code segments in any 
program that simply cannot be parallelized. This statement 
was later turned into a general formula for speedup: 

 speedup = 1 / (rs + rp/n) (3) 

whereas rs denotes the sequential and rp the parallel 
portion of a program and n the number of parallel processes, 
i.e. compute units. Plotting this function clearly reveals how 
the speedup gained by parallelization saturates with a 
specific number of compute units (cf. Figure 1. ) 

It is notable that only applications with a very high 
degree of scalability (> 90%) can actually make use of the 
number of processing units offered in large scale clusters and 
even there, the actual gain is comparatively low. This 

calculation however does not even consider the impact of 
messaging overhead or the sequential properties of the 
individual processes themselves, let alone the ratio between 
messaging and workload of the processes. 

 
Figure 1.  Speedup of an application according to Amdahl’s law 

Messaging Overhead thereby is the major problem for all 
parallel programs – this includes data exchange between 
processes as much as access to (remote) resources, such as 
memory or hard drive. Whilst access to memory is 
specifically defined by the limitations of cache per 
processing unit, the impact of data exchange between 
processes is particularly dependent on the distribution of 
tasks and / or data across processing units: 

Let us assume that a given task consists of n iterations 
(per value) on a dataset with m values. In a straightforward 
algorithm this means that n*m iterations have to be 
processed. Assuming that a single processor would take texec 
seconds to execute this task, ptotal processors would take 
texec/ptotal seconds without overhead for distribution and 
synchronization. In the ideal case, we have n*m resources 
available, each thus only processing one iteration for one 
datum. Leaving aside the fact that data needs to be passed 
between iterations, this distribution is only sensible if the 
time for gathering the results tmsg is higher than the time for 
execution of one iteration texec/(n*m). Otherwise, 
pideal=[(n*m)*tmsg]/texec defines the number of iterations per 
processing unit that should at least be executed in order to 
not reduce performance through messaging – just for result 
gathering, i.e. for embarrassingly parallel tasks. 

 
Figure 2.  Speedup of program parallelization in relationship to the 

overhead produced by messaging for synchronization purposes 

In real cases, the degree of messaging is obviously 
defined by the dependency between and across iterations, i.e. 
which data is required for a single iteration and which is 
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carried across. Typically, a kind of synchronization step is 
required at least once per iteration. Therefore if the execution 
of a single iteration becomes too small, messaging produces 
more load than process execution itself.  

Without specifying a concrete unit, as this depends on the 
respective use case, we can therefore say that performance 
increases with parallelization up to the point where the 
messaging overhead exceeds the optimal ratio of workload to 
messaging of an individual processor. This leads to a 
effective speedup figure as depicted in Figure 2.  

In fact few applications scale well over a few dozen 
processing units and the best scaling applications are denoted 
by very little communication. This is particularly true for 
embarrassingly parallel jobs, such as rendering. 

B. Not Enough Resources? 

Performance of parallel applications and hence 
usefulness of large scale supercomputer is naturally limited, 
basing on the type of calculation to be performed. But it is 
exactly this type of highly dependent calculations that need 
to be executed with higher accuracy and over larger datasets 
in order to satisfy industrial and academic needs. By 
increasing the workload per processor, by improving the 
interconnect and by reducing the sequential portion of the 
program, this saturation point can be pushed to higher 
scalability numbers - however, an even more common 
approach consists in combining different levels of process 
interdependency by linking simulations of different scale [8]. 
This is in principle identical to segmenting the problem 
space into sub spaces, thus improving data correctness on a 
large scale, i.e. across the individual simulations’ boundaries, 
but not within the given segment. 

Even if manufacturers could reduce the interconnect 
problem and the sequential workload, problems with 
exponential complexity growth would still exceed the 
number of available resources. As noted, current manufac-
turers all aim at increasing the number of resources rather 
than increasing the performance of the individual processing 
unit – however, the effective gain of this approach decreases 
with the number of resources, as the amount of data that can 
be processed in a given timeframe is in direct relationship to 
the performance of the system. One can interpret Figure 2. 
also as the process-able size of the dataset over the amount 
of cores: it can be clearly seen that an increase in the amount 
of cores in small scale processing systems leads to a stronger 
increase than in larger scaled ones (gray boxes in the figure).  

As opposed to this, increase in clock rate leads to a 
uniform increment in data-size that can be processed by 
factor n. More concretely, an increment of the clock rate by 
factor c also increases the amount of process-able data by c. 
However, due to the power wall issue, manufacturers must 
decrease the clock rate when integrating more compute units 
into a single processor [9] – the main problem for 
manufacturers is therefore to find the best relationship 
between amount of cores and clock rate of the individual 
units. As this relationship is strongly application dependent, 
there is no clear solution as yet. 

Leaving aside the effect of messaging overhead, jitter, 
limitations of scale etc. and assuming an ideal scalability 

performance, i.e. where the combined performance is 
defined over the sum of all processing units’ clock-rates: 

 pcomb = npn (4) 

(with n being the number of processing units and pn the 
respective performance / clockrate), we can easily show that 
the effective (combined) performance in current systems 
does not grow according to Moore’s law anymore. Instead 
the growth has effectively decreased from exponential to 
linear. Mapping this to the complexity to size ratio (Figure 3. 
), it is obvious that as we advance the performance of 
computing systems basically linear (following classical 
mechanisms), the complexity these systems can handle 
grows linear too. Implicitly, the size of the according 
problem space grows only logarithmically. 

To summarize: 

 the number of necessary resources grows 
exponentially to the complexity in NP problems 

 the performance increase through current large scale 
systems is naturally limited 

 most applications do not meet the scaling 
capabilities of the underlying hardware 

IV. NP PROCESSING 

As the interest in more accurate processing of larger data 
sets increases, so does the pressure on computer 
manufacturers and application developers to deal with large 
scale. However, as can be clearly seen from the discussion 
above, the growth of resources needed exceeds the 
capabilities exponentially over time – in other words, whilst 
manufacturers and developers try to push the degree of 
scalability further up the scale, the need for scale and 
efficient usage thereof grows faster than manufacturers and 
developers can achieve. As all the major improvement steps 
have been taken, the impact of all the minor adjustments that 
can still be taken in order to increase scalability constantly 
decreases and becomes more and more use case dependent.  

One reason for this deficiency is caused by the 
limitations of current processors in terms of dealing with 
non-deterministic problems. More specifically, the strict 
“sequentiality” and determinism of the Turing machine 
prevents current computer models to deal with NP problems 
and the implicit communication. Given the effort to replace a 
current, well-established computing model with a potentially 
non-interoperable alternative model, the major question to 
pose is: what would be the benefit of having machine that 
can deal (better) with NP? 

A. The Impact of Reducing NP to P 

As noted above, the hard task for HPC developers 
consists in finding a representation of the NP problem in the 
polynomial time space, or at least an approximation. One 
principle thereby consists in subsuming multiple equations 
into more global, general equations that, even though they 
disrespect e.g. interactions between particles in the subspace, 
still deliver results accurate enough for the purposes of the 
task. The actual error may be quite substantial in such an 

97Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation



environment, where not only the individual deviations sum 
up, but also the additional error for aggregation and 
approximation of multiple equations contribute to the overall 
deviation. In other words the result becomes inaccurate by 
the factor of potential deviation as calculated above. 

If, however, an accurate representation of the respective 
problem in P space can be found, the error (and hence 
accuracy) of the result is maintained, i.e. not increased 
further by the according subsumation and approximation. 
Since many problems in NP actually belong to the P space, 
this is frequently possible, though very difficult to achieve. 
There is furthermore no proof whether all NP problems can 
thus be represented as P tasks. 

Nonetheless, the gain achieved by this complexity 
reduction is obvious. Figure 3. depicts the complexity 
reduction and hence the decrease in time to complete the 
task. It can be noted that for small n (and small c), the 
complexity of NP problems is actually lower than that of 
polynomial tasks – this however is quickly surpassed (note 
the logarithmic scale) with growing n. 

 
Figure 3.  The complexity of nc versus cn. The striped area denotes the 

overhead of NP over P. In the left area, P exceeds NP in complexity 

In our particle collision example, the complexity of the 
original function is n!. Reducing this to a set of equations of 
complexity n

c
 would reduce the complexity by factor 

 n! / n
c
 = (n-1)! / n

c-1
 (5) 

Whereby we must assume that c is comparatively high, 
so that an improvement is notable only for large datasets (cf. 
Figure 3. ). However, as noted, it is not always possible, let 
alone easy to find a P representation for an NP problem, so 
that ideally, the task is approached the other way round: 

B. Classical Approaches to NP Computing 

Essentially, if the processing unit itself can process non-
deterministic tasks, an NP task on top of it will essentially be 
executed in order of complexity P. Obviously, this is easier 
said than done, as otherwise NP processors would have long 
since emerged on the market. Nonetheless it needs to be 
stressed again, that the according industrial interest has 
simply not arisen so far – instead primary focus rested on 
advancing existing computing types, i.e. Turing machines. 

Back in the seventies and eighties, some attempts have 
been made to instigate “unconventional” processors and in 
particular to examine the capabilities for NP processing via 

other means, such as biochemical computing etc. The 
lacking success is thereby less due to the lack of quality of 
the results, but rather again for the lacking interest from 
industrial side: switching from the successful Turing model 
to an architecture that has neither proven successful nor can 
be easily applied to common problems would imply too 
many manufacturing costs and risks.  

Many of the according approaches based on the increased 
scalability of the system rather than the respective 
capabilities to deal with non-determinism. Reduction in size 
in comparison to electronic PCs often provokes the mis-
conception that the according capability to deal with NP 
problems is higher. This builds on the same mis-
understanding as the assumption that multicore processors 
and large scale systems can solve the resource need of the 
NP space – as has been shown, this is not the case though. 

On a similar basis, it is often assumed that quantum 
computing (QC) would essentially enable non-deterministic 
computing, and thus solve the NP issue. However, QCs like 
normal desktop PCs are purely deterministic and sequential 
in their processing. Even though quantum processes are non-
deterministic in nature, the according effects are not 
exploited in QCs. Miniaturisation and interconnectivity 
reaches a peak in QC, thus allowing for enormous scale and 
in theory, quantum processers could perform calculations 
over full real time numbers as opposed to pure bitwise 
operations on PCs – however, this faces the same obstacles 
as analog computing did during the 60ies and 70ies, and is 
unlikely to be successful due to the same issues [10]. It must 
be expected though that quantum computers (if ever 
realized) represents one of the upmost boundaries of 
scalability or rather of miniaturization. 

C. Alternative Paths to Computing 

The main reason for this failure to cope with NP consists 
in our restricted way of thinking in terms of computation, 
which is still essentially Turing in nature. Processes in nature 
are therefore examined for how they can be converted into 
Turing machines, not how they functionally behave. In other 
words, the processes are interpreted deterministically, 
without actually exploiting their non-deterministic nature.  

Alternative paths to computing must therefore focus on 
exactly this rather than forcing determinism onto these 
processes. Instead of exploiting particle collision for message 
transaction, it can instead be considered as a segment in a 
chain of non-deterministic events that can be expressed as 
particle collisions. In the simplest case, a well-defined sub 
space of particles can simulate the overall behavior of 
aerodynamics in a larger space etc. Only few approaches try 
to address the computational nature, in the sense of the 
underlying processing logic: 

A spin-off of MIT for example investigates into pro-
cessors that replace the underlying binary logic with a 
probabilistic logic [11]. This does not address non-
determinism in the actual processing, yet it allows for more 
efficient computation of all probabilistic problems, as 
involved in most NP tasks.  

Some natural systems are not only non-deterministic, but 
are capable of dealing with it. These involve swarms, neural 
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networks and other self-organising systems which are 
capable of solving problems, such as finding shortest routes 
towards a food source etc., which belong to NP and lead to 
high complexity when simulated. Such systems effectively 
employ mechanisms of dealing with imprecision and fast 
adaptation in order to approximate a locally optimal solution. 
A certain degree of scale allows improving optimality further 
through redundancy, where by it must be noted that the scale 
is essentially polynomial to the complexity. 

Also, the principles of molecular computing are capable 
of dealing with bounded NP problems in a polynomial 
number of steps and a limited size of scale [12]. 

In such systems the problem (and hence the goal) is 
either implicitly encoded, such as finding the food source for 
a swarm system, or needs to be painstakingly trained, such as 
for neural networks. In both cases it generally limits the 
system to the specific problem domain. The effort of 
“coding” the problem is hence in most cases NP itself which 
considerably restricts its applicability. 

V. CONCLUSIONS: NEXT COMPUTING MODELS? 

Complexity is a growing problem for computing, that is 
often ignored or considered to be a pure problem of scale, i.e. 
that can be overcome by future large scale computing 
systems. However, this is building on the – generally wrong 
– assumption that problem complexity scales linear (or 
polynomial) with the problem space and that performance 
grows linear and unbounded with the amount of compu-
tational resources. Whilst the NP problem space and its 
implications are actually well known, the actual 
consequences of it are often ignored or simply forgotten.  

The seeming unboundedness of performance through 
scale however only arises from the fact that many 
supercomputing problems still move within the area of a 
positive scale to performance ratio (left gray area in Figure 2. 
) in the last years, but reaching its peak (right gray area). 
Personal computers on the other hand just only have reached 
the beginning of the scale to performance curve, so that still 
considerable improvements can be achieved through 
increasing the amount of computational resources [13]. 

Investing in scale rather than in complete new computing 
systems is also economically more viable and less disruptive 
in the short run. As we reach the peak of performance, such a 
disruptive paradigm switch will become imminent. Current 
approaches to improving the performance over scale, in 
particular by reducing the impact of messaging or exploiting 
more concurrency / asynchronicity, and even quantum 
computing will only help delaying this problem, i.e. 
stretching the scale to performance ratio. The main problem 
can however not be overcome this way, as messaging will 
always create delay in execution with a certain point of scale 
(“speed of light is not fast enough” [14]) and the resource 
need of NP problems grows exponentially and unbounded. 
Nonetheless, first attempts in that direction need to be 
seriously undertaken within the near future in order to 

compensate for the delay in research and development, until 
more long-term results have been achieved. 

That some systems principally can deal better with the 
NP problem space has already been shown through attempts 
already initiated back in the 1970ies and 1980ies which base 
in particular on self-adaptation under uncertain conditions. 
But also stochastic mechanisms, combinatorial optimization, 
elastic scale, bounded non-determinism, dynamic 
segmentation etc. all have introduced principles that 
significantly contribute to the capability of dealing better 
with the complexity of such problems and reducing the 
impact of NP. This however is far from maturity as yet. 
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