
FlexRay Static Section Scheduling Using Full Model

Rim Bouhouch, Houda Jaouani, Wafa Najjar, Salem Hasnaoui

SysCom Laboratory

National Engineering School of Tunis

Tunis, Tunisia

{rim.bouhouch@yahoo.fr, jouani_houda@yahoo.fr, wafa_najjar@yahoo.fr, salem.hasnaoui@enit.rnu.tn}

Abstract—In this paper, we propose a new scheduling method

for FlexRay static segment tasks, on the node level. This

method handles the periodic communicating tasks transmitted

on the static segment of the bus and takes into account the

effect of the disruptive tasks, such as interruptions, on the

response time. In this context, our scheduling method is based

on the full model that we evaluate the performance by

calculating the response time of the communicating tasks
using as application model the SAE benchmark.

Keywords-Scheduling; FlexRay Bus; Periodic Tasks; Full

Model; Worst Case Response Time.

I. INTRODUCTION

FlexRay [1] is a new communication system that offers

reliable and real-time capable high-speed data transmission

between electrical and mechatronic components to map
current and future innovative functions into distributed

systems within automotive context. Thanks to its several

features, this communication protocol is meeting safety

critical applications performance requirements (flexibility,

fault-tolerance, determinism, high-speed, etc.). Therefore,

FlexRay is emerging as a predominant protocol for in-

vehicle x-by-wire applications (i.e., drive-by-wire, steer-by-

wire, brake-by-wire, etc.). As a result, there has been a lot

of recent interest in timing analysis techniques in order to

provide bounds for the message communication times on

FlexRay. The real-time Data Distribution Service (DDS)
based on the subscription-publication paradigm offers a

clear distinction between the communicating tasks by

classifying them into DataReaders and DataWriters and that

helps insuring the delivery of the right data on the right

time. One of the most interesting combinations would be

the use of DDS on top FlexRay networks; but the challenge

remains in the scheduling of the DataWriter provided by the

applications and according to DDS specification, to meet

the DataReaders Deadlines.

In this paper, we provide a scheduling method for

periodic tasks on the static segment, based on the full model
taking into account all the disruptive events and their effect

on the response time of the Writers evaluated by the

WCRT.

In the first section, we present the related work dealing

with scheduling in the FlexRay bus; in the second section,

an overview of the FlexRay network and its features is

given; the third section is dedicated to scheduling

parameters in the bus and in the static section; the fourth

section presents the response time calculation using the full

model; in the fifth section we present the application model

on which we have performed our tests, and, in the last

section, we present the results of our tests.

II. RELATED WORK

Tasks in real-time networks such as FlexRay [1] or

CAN [14] are scheduled according to a static or a dynamic
scheduling method. A static scheduler is a time triggered

scheduling based on the Time Division Multiple Access

(TDMA) [14], where each participant is granted a specific

fixed interval in a repetitive time window. TDMA

scheduling guarantees a deterministic transfer of messages,

but has the disadvantage that the bandwidth is not used

efficiently. A dynamic scheduling is an event triggered

scheduling where participants can only send information if

an event occurs, such as new data is ready for transmission.

Our previous researches [2] were interested in

scheduling for the Data Distribution Service (DDS)

architecture over CAN. We have developed in each node a
local scheduling component, the Earliest Deadline First

(EDF) scheduler. The latter, sends scheduling parameters of

tasks to the global scheduling system. Then information is

sent to a distributed information collection service called

the System Information Repository (SIR). In [3], we have

presented how DDS API is implemented on top of FlexRay

Driver. In [4], we have presented a combined scheduling

method that can be applied for both static and dynamic

scheduling in FlexRay.

Related studies to this research include time triggered,

event triggered and automobile protocols.
First studies [5] illustrate how a window-based analysis

technique can be used to find Worst-Case Response time of

a task. It considers bursty sporadic activities, where tasks

arrive sporadically but then execute periodically for some

bounded time.

Hagiescu et al. [6] proposes an analytical framework for

compositional performance analysis of a network of

Electronic Controller Unit (ECU) that communicates via a

FlexRay bus. The main contribution was a formal model of

the protocol governing the static segment of FlexRay.

In this paper, we focus our interest on the static segment
of FlexRay and propose a new scheduling method that

handles all the disruptive tasks and their effects on the

response time, to evaluate the deadline of the

communicating tasks.

III. FLEXRAY NETWORKS

FlexRay has been developed by the FlexRay consortium
since 2000 for safety related applications in the automotive

industry [1]. It is today applied in real-time application and

as a replacement of CAN when higher data rates are

required.

74Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

mailto:rim.bouhouch@yahoo.fr
mailto:jouani_houda@yahoo.fr
mailto:wafa_najjar@yahoo.fr

FlexRay has been developed to support x-by-wire

applications such as steer-by-wire or brake-by-wire. These

are replacements of the traditional mechanical and

hydraulic control systems through electronic control

systems.

FlexRay features two communication channels, each

with a data rate of 10 Mbits/s, and payloads of frames up to

254 Bytes. Furthermore, the communication is time

triggered in contrast to the event triggered CAN protocol.
This is why FlexRay guarantees fixed communication

latencies and a global synchronous time basis for all

participating electronic control units.

A. Topologies

A FlexRay cluster consists of several nodes and two

communication channels, channel A and channel B. In

order to provide reliable communication, a node must be

connected to both communication channels. To reduce cost

using only one channel can be sufficient.

FlexRay supports both bus and star topologies. To

increase the communication distance between two nodes

they have to be connected via star couplers [7].

B. Hierarchical Network Timing

The communication scheme of a FlexRay cluster is built

up of communication cycles that are repeated over again

from startup of the network until it is shutdown. A

communication cycle consists of the network

communication time and the network idle time.

The communication time includes a mandatory static

segment, an optional dynamic segment, and the symbol

window.
In the static segment, deterministic communication

ensures constant latency. FlexRay adheres to a time

division multiple access method (TDMA), which means

that there are equally sized slots and that the point of time is

fixed when a frame is transmitted on the channel.

In the dynamic segment event driven communication

takes place. This is usually used for low priority data, for

example for the transmission of diagnosis information [8].

C. Electronic Control Unit (ECU)

The software application is executed on a host processor

which is connected to a dedicated communication controller

that executes the FlexRay protocol. The transmission from

digital signals of the communication controller to analog

signals on the bus is accomplished by the bus driver.

Figure 1. FlexRay Node (ECU)

IV. SCHEDULING PARAMETERS IN FLEXRAY NETWORKS

A. FlexRay Bus

FlexRay is a real time communication bus [1] designed
to operate at speeds of up to 10 Mbits/s. He was developed
by a consortium that includes automobile builders. It offers
time-triggered and an event triggered architecture. Data is
transmitted in payload segment containing between 0 and
254 bytes of data, 5 bytes for the Header segment and 3
bytes for the trailer segment. The topology may be linear
bus, star or hybrid. This bus contains two channels; each
node could be connected to either one or both channels.

 FlexRay bus contains a static segment for time triggered
messages and a dynamic segment for event triggered
messages. In time triggered networks, nodes only obtain
network access at specific time periods, also called time
slots. In event triggered networks nodes may obtain network
access at any time instant. The static (ST) segment and the
dynamic (DYN) segment lengths can differ, but are fixed
over the cycles. Both the ST and DYN segments are
composed of several slots. The first two bytes of the payload
segment are called message ID, this is used only in dynamic
segment. The message ID can be used as a filterable data.

In this paper, we will study the transmission parameters
of DDS nodes on a FlexRay bus. During any slot, only one
node is allowed to send on the bus, and that is the node
which holds the message with the frame identifier (Frame
ID) equal to the current value of the slot counter. There are
two slot counters, corresponding to the ST and DYN
segments, respectively. The assignment of frame identifiers
to nodes is static and decided offline, during the design
phase. Each node that sends messages has one or more ST
and /or DYN slots associated to it. The bus conflicts are
solved by allocating offline one slot to at most one node,
thus making possible for two nodes to send during the same
ST and DYN slot. FlexRay allows the sharing of the bus
among event driven (ET) and time driven (TT) messages.

For a distributed system based on FlexRay, task
scheduling can be SCS (Static Cyclic Scheduling) or FPS
(Fixed Priority Scheduling). For the SCS tasks and ST
messages, the schedule table could be built. For FPS tasks
and DYN messages, the worst-case response times had to be

determined.

B. Communication Cycle

The FlexRay protocol organizes time into
communication cycles, every cycle is organized into four
parts, segments of configurable duration: The static segment
is used to send critical, real-time data, and is divided into

75Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

static slots, in which the electronic control units (ECUs) can
send a frame on the bus. These frames consist of a header,
payload and trailer and are assigned to the slots according to
a static, TDMA-based schedule. Channel idle time is
enforced between frames to prevent overlapping consecutive
frames. The dynamic segment enables event-triggered
communication. The lengths of the mini slots in the dynamic
segment depend on whether or not an ECU sends data. The
symbol window is used to transmit special symbols, for
example to start up the FlexRay cluster. The network idle
time interval is used by the nodes to allow them to correct
their local time bases in order to stay synchronized to each
other.

The length of an ST slot is specified by the FlexRay
global configuration parameter gdStaticSlot. The length of
the DYN segment is specified in number of mini-slots
gNumberOfMinislots.

C. Static segment parameters

In a general communication process, response time can be

divided in four pieces, as shown in Fig. 1: generation delay,

queuing delay, transmission delay and reception delay [9].

Generation delay is started when the transmitting node

received the request of sending from a frame until the data is

written into the buffer and ready for being sent. Queuing

delay is started when generation delay ended until the frame

acquires the occupation of the bus and begins to be sent.

Transmission delay is the time during which the frame is

being transmitted on the bus. Reception delay is started

when the frame gets off the bus and goes into the receiving
node until the frame accomplishes its task.

Figure 1. Communication Model between DataReader and DataWriter

Note that the generation delay and reception delay are not

related to the FlexRay network characteristics, but related to

the given MCU performance. Therefore, these two parts of

delay should not be taken into account. In FlexRay protocol
the average response time Rm of a given frame is the sum of

queuing delay average (tm) and transmission delay average

(Cm):

 (1)

Since the static segment is transmitting at fixed time points

in each FlexRay communication cycle without any queuing

delays, the response time can be approximated by Cm.

 (2)

Transmission delay Cm refers to the time interval between

being on the bus and completion of sending process. It

depends on the frame itself as well as bus parameters.

 ()
() (3)

TSS is the Transmission Start Sequence (3~15 bits). FSS

is the Frame Start Sequence (1 bit). FES is the Frame End

Sequence (2 bits). td is the delay related to sending and

receiving nodes, which is around 2~3 bits. Sm represents the

data field length (number of bytes) of the data frames. In
addition, two BSS (Bit Start Sequence) are added before

each byte. The constant “8” added to the data field length

Sm refers to the sum of the FlexRay Header Segment (HS:

5) and Trailer Segment (TS: 3) lengths (number of bytes).

Finally, refers to the one bit transmission delay.

V. RESPONSE TIME CALCULATION

The full model is inspired from the FPS (First Priority

Scheduling) approach [10], which is the most widely used

approach in the computing world. In this case, each task has

a fixed static priority, which is ECU pre-run-time. The

runnable tasks are executed in the order determined by their
priority, knowing that in real-time systems, the “priority” of

a task is derived from its temporal requirements, not its

importance to the correct functioning of the system or its

integrity.

The full model was conceived to be used in an industrial

context [10], the temporal overheads of implementing the

system must be taken into account such as:

 Context switches (one per job)

 Interrupts (one per sporadic task release)

 Real-time clock overheads

In this case, the Response time equation is rather than:

 ∑ ⌈

⌉ () (4)

where hp(i) is the set of tasks with priority higher than

task i, is the worst case computation time of the task i

and is the minimum time between task releases, jobs or

task period.

The new equation is:

 ∑ ⌈

⌉ () ()

 (5)

where the new terms and are the cost of
switching to the task, and the cost of switching away from

it. And the term is the cost of the task worst case

blocking time.

The cost of handling interrupts is:

∑ ⌈

⌉
 (6)

where is the set of sporadic tasks and IH is the cost of a

single interrupt (which occurs at maximum priority level).
There is also a cost per clock interrupt, a cost for moving

one task from delay to run queue and a (reduced) cost of

moving groups of tasks

Reception

delay
DR

Queuing

delay

Transmission delay

DW
Generation

delay

76Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

Let be the cost of a single clock interrupt, be the set

of periodic tasks, and be the cost of moving one task.

The following equation can be derived

 ∑ ⌈

⌉ () ()

∑ ⌈

⌉ ⌈

⌉ ∑ ⌈

⌉

 (7)

Within the static segment a static time division multiple

access scheme is applied to coordinate transmissions. In the
static segment all communication slots are of identical,
statically configured duration and all frames are of identical,
statically configured length. In order to schedule
transmissions each node maintains a slot counter state
variable vSlotCounter for channel A and a slot counter state
variable vSlotCounter for channel B. Both slot counters are
initialized with 1 at the start of each communication cycle
and incremented at the end boundary of each slot.

In the Implementations of the FlexRay bus, the periodic

and safety-critical data is scheduled on the static time-

triggered segment so the tasks in the static segment are
periodic tasks that have the same priority per

communication cycle.

Considering these facts the equation (7) applied on the static

segment context becomes:

 ∑ ⌈

⌉ ⌈

⌉

∑ ⌈

⌉

 (8)

VI. APPLICATION MODEL

To illustrate the utility of our Comprehensive

Scheduling Strategy, we have chosen to work within a

platform of a vehicular network based on the SAE standard.

In this system, a set of network processors subsystems

produces routing data. This data must be distributed along
the vehicular network.

In fact, we will apply the studied approaches on a new
vehicle benchmark developed in [11] and based on the SAE
Benchmark [15]. We added to the original benchmark a
number of nodes and messages to better represent the
complexity of today’s vehicles and to model some added
options responsible for improving vehicle safety, reliability,
cost, and luxury.

However, this Benchmark was designed to best fit the
CAN network and it needs major modifications to be
adapted to the FlexRay protocol. Hence, later in this paper,
we will explain how to introduce adjustments to that model
and we will apply our scheduling algorithm and present our
results for the new model. The resulting architecture is
composed of 15 nodes connected by the FlexRay bus.
According to the FlexRay specification, each node consists
of a host (CPU) that processes incoming messages and
generates outgoing messages, a communication controller
(CC) that independently implements the FlexRay protocol
services, and a two-way controller-host interface (CHI) that
serves as a buffer between the host and the CC.

The main goal of the proposed architecture is to insure

better performance of the vehicular network and to

guarantee the arrival of the right data on the right time by
meeting the tasks deadline. The framework architecture is a

set of nodes connected via FlexRay Real-Time Transport

protocol. In each node is embedded a Real-Time Operating

System μCOSII and a publish/subscribe middleware.

VII. RESULTS AND COMMENTS

In this section, we propose an algorithm to calculate the

response time of the DataWariters tasks.

The equation (8) gives us the needed parameters to

determine the response time for both static and dynamic

segments tasks:

 the computing time is equivalent to the

transmission delay and , because the execution of

a message relative to a writing task is the fact to transmit

data on the bus.

 The worst blocking time Bi is defined as follows:

 (9)

This equation is true for the CAN case; but. in the FlexRay

case:

 is the cost of switching to the task. This
parameter is given by the used real-time operating system

µCOSIII [12].

 is the cost of switching away from the task,

this parameter is also given by the used real-time operating

system µCOSIII [12].

 is the cost of executing an interrupt service

routine. This interrupt is supposed to be at the maximum

priority level. The number of STATUS registers present in

the system determines the time taken by the handler to

execute the interrupt routine. The FlexRay driver interrupt
routine takes more time in response to the status of

receiving communications data. For our study we

approximate this parameter as follow:

 is the cost of a single clock interrupt for the
microcontroller MB91F465X we have approximated its

value:

 

 is the cost of moving one task, which is
equivalent to switching a task.

 is the clock period calculated for a given core
frequency.

The response time calculation process is described by the

following algorithm:

Algorithm Worst Case Response Time Computing

for i in 1..N loop

 n := 0

 loop

 Calculate Ci for periodic tasks

 Calculate Ci for sporadic tasks

 n := n + 1

 end loop

77Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

end loop

for i in 1..N loop

 n := 0

n

i iW C

 loop

 calculate new
1n

iw 

 if
1n n

i iw w  then
n

i iR w

 exit value found

 end if

 if
1n

i iw T  then

 exit value not found

 end if

 n := n + 1

 end loop

end loop

For the simulation, we consider a set of FlexRay nodes

the sending 36 messages on the FlexRay bus. Since each

node in the system that generates static messages needs at

least one static slot, the minimum number of static slots is
the number of nodes (nodesST) sending static messages [1].

In the extended benchmark [11], there are 15 nodes

sending 36 messages; among them, 30 are periodic

messages that need to be scheduled on the FlexRay static

segment. We will regroup these nodes into 6 for the

simulations.

The period of the bus cycle (gdCycle) must be lower than

the maximum cycle length cdCycleMax equal to 16 ms and

has to be, also, an integer divisor of the period of the global

static segment. In addition, each node has a counter

vCycleCounter in the interval 0…63. Thus, during a period

of the global static schedule there can be at most 64 bus

cycles. Observing our message set, we have noticed that

almost all of the message periods are multipliers of 5 ms.

So we can fix the period of the bus cycle to 5 ms and adjust

some message periods, especially the messages introduced

by Ben Gaid, M-M in [13] and others introduced by M.

Utayba in [11].
All messages with period equal to 8 ms will have a new

period of 5 ms, and the messages with period equal to 12

ms will have a period of 10 ms. This will not affect our

system efficiency since it will make it faster and more

reactive.

There is another problem with messages having a 1000

ms period; they cannot be scheduled with a bus cycle of

5ms and 64 cycles. In fact, even if we consider the longest

period of the global static schedule (64 bus cycles), we

wouldn’t manage to reach the 1000 ms. Thus, we have to

decrease this period to 64*5=320 ms.
We have also replaced the original bus priorities designed

for an event triggered bus (CAN) by a local priority able to

order transmission of messages having the same Frame

Identifier on different slots assigned to their source node.
Applying the previous algorithm with a bus speeds of 10

Mbit/s for one channel transmission scheme, and a core
frequency of 12 Mhz. The results obtained are summarized
in Table I.

TABLE I. BODY CONTROL MODULE RESULTS

Vehicle Module
Message

ID

Size

(Bytes)

Deadline

[ms]
T [ms]

Task

Priority

Worst

Case

Response

Time R

(ms)

BODY Control Module

3 1 5 5 1 0.1397

13 1 5 5 1 0.1397

31 4 100 100 1 0.1487

34 3 320 320 1 0.1457

Engine Controller Module

4 2 5 5 1 0.1424

6 2 5 5 1 0.1424

20 2 10 10 1 0.1424

35 1 320 320 1 0.1394

Active Suspension Unit 27 2 10 10 1 0.2229

Active Frame Steering 22 2 10 10 1 0.2229

Electronic Brake Control

Module
14 4 5 5 1 0.2289

Traction Control Unit
8 1 5 5 1 0.2199

15 4 5 5 1 0.2289

ESP/ROM
16 4 5 5 1 0.2289

28 5 10 10 1 0.2319

78Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

We notice, on this table of results, that the entire tasks

deadline is matched. For the worst case response time using

the worst case Core frequency which is 12 Mhz, we have

noticed that the deadline has been met and the equation

below is verified.

Thanks to FlexRay bus speed, we can assume that the

DDS Deadline QoS Policy can always be reached.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed to use DDS on top of the

real-time network FlexRay to take advantage of its high

speed and to profit of the DDS QoS management in an

automotive context. We have proposed a scheduling model

based full FPS scheduling to first calculate the worst case

response time for our vehicular system and evaluate its

performance on a benchmark application, an extended SAE

benchmark. After the simulations, results have shown that

the applications deadline requirements have been met. One

promising research direction would be the evaluation of the
real-time QoS parameters offered by DDS on the same

system configuration.

ACKNOWLEDGMENT

The researches presented in this paper would not have

been possible without the support of many people. We wish

to express our gratitude to the SYSCOM ENIT members

for their help and assistance.

REFERENCES

[1] FlexRay Consortium,” FlexRay Communications System-
Protocol Specification”, Version 2.1, Revision A, 2005.

[2] T. Guesmi, R. Rekik, S. Hasnaoui, and H. Rezig, “Design
and Performance of DDS-based Middleware for Real-Time
Control Systems”, IJCSNC, vol. 7, No. 12, 2007, pp. 188-
200.

[3] R. Bouhouch, W. Najjar, H. Jaouani, and S. Hasnaoui,
“Implementation of Data Distribution Service Listeners on

Top of FlexRay Driver”, INFOCOMP 2011, IARIA, October
2011,Barcelona Spain, pp. 64-69.

[4] W. Najjar, R. Bouhouch, H. Jaouani, and S. Hasnaoui, “Static

and Dynamic Scheduling for FlexRay Network Using the
Combined Method”, International Journal of Information
Technology and Systems, Vol. 1, No. 1, January 2012, pp.
18-26.

[5] K. W. Tindell, A. Burns, and A. J. WELLINGS,” An
extendible approach for analyzing fixed priority hard real-
time tasks”, Real_Time Systems, Vol. 6, No. 2, 1994, pp.
133-151

[6] A. Hagiescu, U. Bordoloi, and S. Chakraborty, “Performance
Analysis of FlexRay-based ECU Networks”, DAC
proceedings, 2007, pp. 284-289

[7] M. Gerke, “FlexRay : A state of the art vehicle bus,
Embedded Systems Lecture”, Chair Professor Finkbeiner
Saarbrucken, Dec 2008, pp. 3-4.

[8] A. Zhao, “Reliable In-Vehicle FlexRay Network Scheduler
Design”, master of science thesis in Electrical Engineering,
Mai 2011, Delft University of Technology,The Netherlands,
pp. 17-23.

[9] T. Guangyn, B. Peng, and C. Quanshi, “Response Time
Analysis of FlexRay Communication in Fuel Cell Hybrid
Vehicle”, Vehicle Power and Propulsion Conference

VPPC’08. IEEE, 2008, pp. 1-4.
[10] A. Burns and A. Wellings, “Scheduling Real-Time

Systems”, Chapter 11, Real-Time Systems and Programming
Languages, The university of York, Department of Computer
Science, pp. 121-125.

[11] M. Utayba and N. Al-Holou, “Development of An
Automotive Communication Benchmark”, Canadian Journal
on Electrical and Electronics Engineering, Vol. 1, No. 5,

August 2010.
[12] A J. J. Labrosse. “MicroC/OS-II The Real Time Kernel”.

Miller Freeman, Inc, United States of America, 1999.
[13] M-M. Ben Gaid, A. Cela, S. Diallo, R. Kocik, R. Hamouche,

and A. Reama, "Performance Evaluation of the Distributed
Implementation of a Car Suspension System", the IFAC
Workshop on Programmable Devices and Embedded
Systems, February 2006, pp.776-787 .

[14] K. Tindell and A. Burns, “Guaranteeing Message Latencies
on Control Area Network (CAN)”, Real-Time Systems

Hydraulic Brake Control

Unit

2 2 5 5 1 0.2499

32 1 100 100 1 0.2469

Transmission Control Unit

5 1 5 5 1 0.2469

33 1 100 100 1 0.2469

36 1 320 320 1 0.2469

Throttle Control Unit 7 1 5 5 1 0.2469

Adaptive Cruise Control 29 3 10 10 1 0.2529

Front-Right Wheel Module
10 1 5 5 1 0.1389

24 2 10 10 1 0.1419

Rear-Right Wheel Module
12 1 5 5 1 0.1389

26 2 10 10 1 0.1419

Front-Left Wheel Module
9 1 5 5 1 0.1389

23 2 10 10 1 0.1419

Rear-Left Wheel Module
11 1 5 5 1 0.1389

25 2 10 10 1 0.1419

79Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

Research Group, Department of Computer Science,
University of York, England, pp. 5-6.

[15] H. Kopetz, “A solution to an automotive Control System

Benchmark”, Real-Time Systems Symposium, 7-9 Dec.
1994, pp. 154-158.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.11
0.3545&rep =rep1&type=pdf.

80Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

