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Abstract—In this paper, we propose a new scheduling method 

for FlexRay static segment tasks, on the node level. This 

method handles the periodic communicating tasks transmitted 

on the static segment of the bus and takes into account the 

effect of the disruptive tasks, such as interruptions, on the 

response time. In this context, our scheduling method is based 

on the full model that we evaluate the performance by 

calculating the response time of the communicating tasks 
using as application model the SAE benchmark.  

Keywords-Scheduling; FlexRay Bus; Periodic Tasks; Full 

Model; Worst Case Response Time. 

I. INTRODUCTION  

FlexRay [1] is a new communication system that offers 

reliable and real-time capable high-speed data transmission 

between electrical and mechatronic components to map 
current and future innovative functions into distributed 

systems within automotive context. Thanks to its several 

features, this communication protocol is meeting safety 

critical applications performance requirements (flexibility, 

fault-tolerance, determinism, high-speed, etc.). Therefore, 

FlexRay is emerging as a predominant protocol for in-

vehicle x-by-wire applications (i.e., drive-by-wire, steer-by-

wire, brake-by-wire, etc.). As a result, there has been a lot 

of recent interest in timing analysis techniques in order to 

provide bounds for the message communication times on 

FlexRay. The real-time Data Distribution Service (DDS) 
based on the subscription-publication paradigm offers a 

clear distinction between the communicating tasks by 

classifying them into DataReaders and DataWriters and that 

helps insuring the delivery of the right data on the right 

time. One of the most interesting combinations would be 

the use of DDS on top FlexRay networks; but the challenge 

remains in the scheduling of the DataWriter provided by the 

applications and according to DDS specification, to meet 

the DataReaders Deadlines.  

In this paper, we provide a scheduling method for 

periodic tasks on the static segment, based on the full model 
taking into account all the disruptive events and their effect 

on the response time of the Writers evaluated by the 

WCRT. 

In the first section, we present the related work dealing 

with scheduling in the FlexRay bus; in the second section, 

an overview of the FlexRay network and its features is 

given; the third section is dedicated to scheduling 

parameters in the bus and in the static section; the fourth 

section presents the response time calculation using the full 

model; in the fifth section we present the application model 

on which we have performed our tests, and, in the last 

section, we present the results of our tests. 

II. RELATED WORK 

Tasks in real-time networks such as FlexRay [1] or 

CAN [14] are scheduled according to a static or a dynamic 
scheduling method. A static scheduler is a time triggered 

scheduling based on the Time Division Multiple Access 

(TDMA) [14], where each participant is granted a specific 

fixed interval in a repetitive time window. TDMA 

scheduling guarantees a deterministic transfer of messages, 

but has the disadvantage that the bandwidth is not used 

efficiently. A dynamic scheduling is an event triggered 

scheduling where participants can only send information if 

an event occurs, such as new data is ready for transmission. 

Our previous researches [2] were interested in 

scheduling for the Data Distribution Service (DDS) 

architecture over CAN. We have developed in each node a 
local scheduling component, the Earliest Deadline First 

(EDF) scheduler. The latter, sends scheduling parameters of 

tasks to the global scheduling system. Then information is 

sent to a distributed information collection service called 

the System Information Repository (SIR). In [3], we have 

presented how DDS API is implemented on top of FlexRay 

Driver. In [4], we have presented a combined scheduling 

method that can be applied for both static and dynamic 

scheduling in FlexRay. 

Related studies to this research include time triggered, 

event triggered and automobile protocols. 
First studies [5] illustrate how a window-based analysis 

technique can be used to find Worst-Case Response time of 

a task. It considers bursty sporadic activities, where tasks 

arrive sporadically but then execute periodically for some 

bounded time.    

Hagiescu et al. [6] proposes an analytical framework for 

compositional performance analysis of a network of 

Electronic Controller Unit (ECU) that communicates via a 

FlexRay bus. The main contribution was a formal model of 

the protocol governing the static segment of FlexRay. 

 

In this paper, we focus our interest on the static segment 
of FlexRay and propose a new scheduling method that 

handles all the disruptive tasks and their effects on the 

response time, to evaluate the deadline of the 

communicating tasks. 

III. FLEXRAY NETWORKS 

FlexRay has been developed by the FlexRay consortium 
since 2000 for safety related applications in the automotive 

industry [1]. It is today applied in real-time application and 

as a replacement of CAN when higher data rates are 

required. 

74Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

mailto:rim.bouhouch@yahoo.fr
mailto:jouani_houda@yahoo.fr
mailto:wafa_najjar@yahoo.fr


FlexRay has been developed to support x-by-wire 

applications such as steer-by-wire or brake-by-wire. These 

are replacements of the traditional mechanical and 

hydraulic control systems through electronic control 

systems. 

FlexRay features two communication channels, each 

with a data rate of 10 Mbits/s, and payloads of frames up to 

254 Bytes. Furthermore, the communication is time 

triggered in contrast to the event triggered CAN protocol. 
This is why FlexRay guarantees fixed communication 

latencies and a global synchronous time basis for all 

participating electronic control units. 

 

A. Topologies 

A FlexRay cluster consists of several nodes and two 

communication channels, channel A and channel B. In 

order to provide reliable communication, a node must be 

connected to both communication channels. To reduce cost 

using only one channel can be sufficient. 

FlexRay supports both bus and star topologies. To 

increase the communication distance between two nodes 

they have to be connected via star couplers [7]. 

B. Hierarchical Network Timing 

The communication scheme of a FlexRay cluster is built 

up of communication cycles that are repeated over again 

from startup of the network until it is shutdown. A 

communication cycle consists of the network 

communication time and the network idle time. 

The communication time includes a mandatory static 

segment, an optional dynamic segment, and the symbol 

window. 
In the static segment, deterministic communication 

ensures constant latency. FlexRay adheres to a time 

division multiple access method (TDMA), which means 

that there are equally sized slots and that the point of time is 

fixed when a frame is transmitted on the channel. 

In the dynamic segment event driven communication 

takes place. This is usually used for low priority data, for 

example for the transmission of diagnosis information [8]. 

C. Electronic Control Unit (ECU) 

The software application is executed on a host processor 

which is connected to a dedicated communication controller 

that executes the FlexRay protocol. The transmission from 

digital signals of the communication controller to analog 

signals on the bus is accomplished by the bus driver. 

 

 
Figure 1.  FlexRay Node (ECU) 

IV. SCHEDULING PARAMETERS IN FLEXRAY NETWORKS 

A. FlexRay Bus 

FlexRay is a real time communication bus [1] designed 
to operate at speeds of up to 10 Mbits/s. He was developed 
by a consortium that includes automobile builders. It offers 
time-triggered and an event triggered architecture. Data is 
transmitted in payload segment containing between 0 and 
254 bytes of data, 5 bytes for the Header segment and 3 
bytes for the trailer segment. The topology may be linear 
bus, star or hybrid. This bus contains two channels; each 
node could be connected to either one or both channels. 

 FlexRay bus contains a static segment for time triggered 
messages and a dynamic segment for event triggered 
messages. In time triggered networks, nodes only obtain 
network access at specific time periods, also called time 
slots. In event triggered networks nodes may obtain network 
access at any time instant.  The static (ST) segment and the 
dynamic (DYN) segment lengths can differ, but are fixed 
over the cycles. Both the ST and DYN segments are 
composed of several slots. The first two bytes of the payload 
segment are called message ID, this is used only in dynamic 
segment. The message ID can be used as a filterable data. 

In this paper, we will study the transmission parameters 
of DDS nodes on a FlexRay bus. During any slot, only one 
node is allowed to send on the bus, and that is the node 
which holds the message with the frame identifier (Frame 
ID) equal to the current value of the slot counter. There are 
two slot counters, corresponding to the ST and DYN 
segments, respectively. The assignment of frame identifiers 
to nodes is static and decided offline, during the design 
phase. Each node that sends messages has one or more ST 
and /or DYN slots associated to it. The bus conflicts are 
solved by allocating offline one slot to at most one node, 
thus making possible for two nodes to send during the same 
ST and DYN slot. FlexRay allows the sharing of the bus 
among event driven (ET) and time driven (TT) messages. 

For a distributed system based on FlexRay, task 
scheduling can be SCS (Static Cyclic Scheduling) or FPS 
(Fixed Priority Scheduling). For the SCS tasks and ST 
messages, the schedule table could be built. For FPS tasks 
and DYN messages, the worst-case response times had to be 

determined. 

B. Communication Cycle 

The FlexRay protocol organizes time into 
communication cycles, every cycle is organized into four 
parts, segments of configurable duration: The static segment 
is used to send critical, real-time data, and is divided into 
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static slots, in which the electronic control units (ECUs) can 
send a frame on the bus. These frames consist of a header, 
payload and trailer and are assigned to the slots according to 
a static, TDMA-based schedule. Channel idle time is 
enforced between frames to prevent overlapping consecutive 
frames. The dynamic segment enables event-triggered 
communication. The lengths of the mini slots in the dynamic 
segment depend on whether or not an ECU sends data. The 
symbol window is used to transmit special symbols, for 
example to start up the FlexRay cluster. The network idle 
time interval is used by the nodes to allow them to correct 
their local time bases in order to stay synchronized to each 
other. 

The length of an ST slot is specified by the FlexRay 
global configuration parameter gdStaticSlot. The length of 
the DYN segment is specified in number of mini-slots 
gNumberOfMinislots.  

C. Static segment parameters 

In a general communication process, response time can be 

divided in four pieces, as shown in Fig. 1: generation delay, 

queuing delay, transmission delay and reception delay [9]. 

Generation delay is started when the transmitting node 

received the request of sending from a frame until the data is 

written into the buffer and ready for being sent. Queuing 

delay is started when generation delay ended until the frame 

acquires the occupation of the bus and begins to be sent. 

Transmission delay is the time during which the frame is 

being transmitted on the bus. Reception delay is started 

when the frame gets off the bus and goes into the receiving 
node until the frame accomplishes its task. 

 

Figure 1.  Communication Model between DataReader and DataWriter 

Note that the generation delay and reception delay are not 

related to the FlexRay network characteristics, but related to 

the given MCU performance. Therefore, these two parts of 

delay should not be taken into account. In FlexRay protocol 
the average response time Rm of a given frame is the sum of 

queuing delay average (tm) and transmission delay average 

(Cm): 

             (1) 

Since the static segment is transmitting at fixed time points 

in each FlexRay communication cycle without any queuing 

delays, the response time can be approximated by Cm. 

        (2) 

Transmission delay Cm refers to the time interval between 

being on the bus and completion of sending process. It 

depends on the frame itself as well as bus parameters. 

                     (        )  
(     )                                       (3) 

TSS is the Transmission Start Sequence (3~15 bits). FSS 

is the Frame Start Sequence (1 bit). FES is the Frame End 

Sequence (2 bits). td is the delay related to sending and 

receiving nodes, which is around 2~3 bits. Sm represents the 

data field length (number of bytes) of the data frames. In 
addition, two BSS (Bit Start Sequence) are added before 

each byte. The constant “8” added to the data field length 

Sm refers to the sum of the FlexRay Header Segment (HS: 

5) and Trailer Segment (TS: 3) lengths (number of bytes). 

Finally,     refers to the one bit transmission delay. 

V. RESPONSE TIME CALCULATION 

The full model is inspired from the FPS (First Priority 

Scheduling) approach [10], which is the most widely used 

approach in the computing world. In this case, each task has 

a fixed static priority, which is ECU pre-run-time. The 

runnable tasks are executed in the order determined by their 
priority, knowing that in real-time systems, the “priority” of 

a task is derived from its temporal requirements, not its 

importance to the correct functioning of the system or its 

integrity. 

The full model was conceived to be used in an industrial 

context [10], the temporal overheads of implementing the 

system must be taken into account such as:  

 Context switches (one per job) 

 Interrupts (one per sporadic task release) 

 Real-time clock overheads 

In this case, the Response time equation is rather than: 

       ∑ ⌈
  

  
⌉       ( )  (4) 

where hp(i) is the set of tasks with priority higher than 

task i,    is the worst case computation time of the task i 

and    is the minimum time between task releases, jobs or 

task period. 

The new equation is:  

              ∑ ⌈
  

  
⌉    ( ) (          )

 (5) 

 

where the new terms     and    are the cost of 
switching to the task, and the cost of switching away from 

it. And the term    is the cost of the task worst case 

blocking time. 

The cost of handling interrupts is: 

∑ ⌈
  

  
⌉    
                               (6) 

 

where    is the set of sporadic tasks and IH is the cost of a 

single interrupt (which occurs at maximum priority level). 
There is also a cost per clock interrupt, a cost for moving 

one task from delay to run queue and a (reduced) cost of 

moving groups of tasks 

 

Reception 

delay 
DR 

Queuing 

delay 

Transmission delay 

DW 
Generation 

delay 
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Let     be the cost of a single clock interrupt,   be the set 

of periodic tasks, and     be the cost of moving one task. 

The following equation can be derived  

             ∑ ⌈
  

  
⌉    ( ) (          )  

∑ ⌈
  

  
⌉     ⌈

  

    
⌉     ∑ ⌈

  

  
⌉            

       (7) 

 
Within the static segment a static time division multiple 

access scheme is applied to coordinate transmissions. In the 
static segment all communication slots are of identical, 
statically configured duration and all frames are of identical, 
statically configured length. In order to schedule 
transmissions each node maintains a slot counter state 
variable vSlotCounter for channel A and a slot counter state 
variable vSlotCounter for channel B. Both slot counters are 
initialized with 1 at the start of each communication cycle 
and incremented at the end boundary of each slot. 

In the Implementations of the FlexRay bus, the periodic 

and safety-critical data is scheduled on the static time-

triggered segment so the tasks in the static segment are 
periodic tasks that have the same priority per 

communication cycle. 

Considering these facts the equation (7) applied on the static 

segment context becomes: 

              ∑ ⌈
  

  
⌉     ⌈

  

    
⌉         

∑ ⌈
  

  
⌉        

    (8) 

VI. APPLICATION MODEL 

To illustrate the utility of our Comprehensive 

Scheduling Strategy, we have chosen to work within a 

platform of a vehicular network based on the SAE standard. 

In this system, a set of network processors subsystems 

produces routing data. This data must be distributed along 
the vehicular network.  

In fact, we will apply the studied approaches on a new 
vehicle benchmark developed in [11] and based on the SAE 
Benchmark [15]. We added to the original benchmark a 
number of nodes and messages to better represent the 
complexity of today’s vehicles and to model some added 
options responsible for improving vehicle safety, reliability, 
cost, and luxury.  

However, this Benchmark was designed to best fit the 
CAN network and it needs major modifications to be 
adapted to the FlexRay protocol. Hence, later in this paper, 
we will explain how to introduce adjustments to that model 
and we will apply our scheduling algorithm and present our 
results for the new model. The resulting architecture is 
composed of 15 nodes connected by the FlexRay bus. 
According to the FlexRay specification, each node consists 
of a host (CPU) that processes incoming messages and 
generates outgoing messages, a communication controller 
(CC) that independently implements the FlexRay protocol 
services, and a two-way controller-host interface (CHI) that 
serves as a buffer between the host and the CC.  

The main goal of the proposed architecture is to insure 

better performance of the vehicular network and to 

guarantee the arrival of the right data on the right time by 
meeting the tasks deadline. The framework architecture is a 

set of nodes connected via FlexRay Real-Time Transport 

protocol. In each node is embedded a Real-Time Operating 

System μCOSII and a publish/subscribe middleware. 

VII. RESULTS AND COMMENTS 

In this section, we propose an algorithm to calculate the 

response time of the DataWariters tasks. 

The equation (8) gives us the needed parameters to 

determine the response time for both static and dynamic 

segments tasks: 

    the computing time is equivalent to the 

transmission delay      and     , because the execution of 

a message relative to a writing task is the fact to transmit 

data on the bus. 

 The worst blocking time Bi is defined as follows: 

 

   
                

                     
  (9) 

 

This equation is true for the CAN case; but. in the FlexRay 

case:  

     

     is the cost of switching to the task. This 
parameter is given by the used real-time operating system 

µCOSIII [12]. 

              
     is the cost of switching away from the task, 

this parameter is also given by the used real-time operating 

system µCOSIII [12]. 

              
    is the cost of executing an interrupt service 

routine. This interrupt is supposed to be at the maximum 

priority level. The number of STATUS registers present in 

the system determines the time taken by the handler to 

execute the interrupt routine. The FlexRay driver interrupt 
routine takes more time in response to the status of 

receiving communications data. For our study we 

approximate this parameter as follow: 

          

     is the cost of a single clock interrupt for the 
microcontroller MB91F465X we have approximated its 

value: 

     
 

  
     

     is the cost of moving one task, which is 
equivalent to switching a task. 

        

      is the clock period calculated for a given core 
frequency. 

The response time calculation process is described by the 

following algorithm: 

 

Algorithm   Worst Case Response Time Computing 

for i in 1..N loop  

  n := 0 

  loop  

    Calculate Ci for periodic tasks  

    Calculate Ci for sporadic tasks 

    n := n + 1  

  end loop 
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end loop 

for i in 1..N loop  

  n := 0 

  
n

i iW C  

  loop  

    calculate new 
1n

iw 
 

    if 
1n n

i iw w    then 
n

i iR w  

      exit value found 

    end if  

    if 
1n

i iw T    then  

      exit value not found 

    end if  

    n := n + 1 

  end loop  

end loop  

 

For the simulation, we consider a set of FlexRay nodes 

the sending 36 messages on the FlexRay bus. Since each 

node in the system that generates static messages needs at 

least one static slot, the minimum number of static slots is 
the number of nodes (nodesST) sending static messages [1].  

 

In the extended benchmark [11], there are 15 nodes 

sending 36 messages; among them, 30 are periodic 

messages that need to be scheduled on the FlexRay static 

segment. We will regroup these nodes into 6 for the 

simulations.  

 

The period of the bus cycle (gdCycle) must be lower than 

the maximum cycle length cdCycleMax equal to 16 ms and 

has to be, also, an integer divisor of the period of the global 

static segment. In addition, each node has a counter 

vCycleCounter in the interval 0…63. Thus, during a period 

of the global static schedule there can be at most 64 bus 

cycles. Observing our message set, we have noticed that 

almost all of the message periods are multipliers of 5 ms. 

So we can fix the period of the bus cycle to 5 ms and adjust 

some message periods, especially the messages introduced 

by Ben Gaid, M-M in [13] and others introduced by M. 

Utayba in [11].  
All messages with period equal to 8 ms will have a new 

period of 5 ms, and the messages with period equal to 12 

ms will have a period of 10 ms. This will not affect our 

system efficiency since it will make it faster and more 

reactive.  

There is another problem with messages having a 1000 

ms period; they cannot be scheduled with a bus cycle of 

5ms and 64 cycles. In fact, even if we consider the longest 

period of the global static schedule (64 bus cycles), we 

wouldn’t manage to reach the 1000 ms. Thus, we have to 

decrease this period to 64*5=320 ms.  
We have also replaced the original bus priorities designed 

for an event triggered bus (CAN) by a local priority able to 

order transmission of messages having the same Frame 

Identifier on different slots assigned to their source node. 
Applying the previous algorithm with a bus speeds of 10 

Mbit/s for one channel transmission scheme, and a core 
frequency of 12 Mhz. The results obtained are summarized 
in Table I. 

TABLE I.  BODY CONTROL MODULE RESULTS 

Vehicle Module 
Message 

ID 

Size 

(Bytes) 

Deadline 

[ms] 
T [ms] 

Task 

Priority 

Worst 

Case 

Response 

Time R 

(ms) 
 

BODY Control Module 

3 1 5 5 1 0.1397 

13 1 5 5 1 0.1397 

31 4 100 100 1 0.1487 

34 3 320 320 1 0.1457 

Engine Controller Module 

4 2 5 5 1 0.1424 

6 2 5 5 1 0.1424 

20 2 10 10 1 0.1424 

35 1 320 320 1 0.1394 

Active Suspension Unit 27 2 10 10 1 0.2229 

Active Frame Steering 22 2 10 10 1 0.2229 

Electronic Brake Control 

Module 
14 4 5 5 1 0.2289 

Traction Control Unit 
8 1 5 5 1 0.2199 

15 4 5 5 1 0.2289 

ESP/ROM 
16 4 5 5 1 0.2289 

28 5 10 10 1 0.2319 
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We notice, on this table of results, that the entire tasks 

deadline is matched. For the worst case response time using 

the worst case Core frequency which is 12 Mhz, we have 

noticed that the deadline has been met and the equation 

below is verified. 

    
Thanks to FlexRay bus speed, we can assume that the 

DDS Deadline QoS Policy can always be reached. 

VIII. CONCLUSION AND FUTURE WORK 

In this paper, we have proposed to use DDS on top of the 

real-time network FlexRay to take advantage of its high 

speed and to profit of the DDS QoS management in an 

automotive context. We have proposed a scheduling model 

based full FPS scheduling to first calculate the worst case 

response time for our vehicular system and evaluate its 

performance on a benchmark application, an extended SAE 

benchmark. After the simulations, results have shown that 

the applications deadline requirements have been met. One 

promising research direction would be the evaluation of the  
real-time QoS parameters offered by DDS on the same 

system configuration. 
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