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Abstract—Evolutionary Robotics is concerned with using
simulated biological evolution to automatically create con-
trollers for robots. Simulation, which reduces the amount of
real-world testing, is typically used to accelerate the evolution
process. However, the creation of robotic simulators is a
difficult and time-consuming process which requires expert
knowledge. As an alternative to manual simulator creation,this
paper describes the use of Neural Networks to act as simulators
for an ultrasonic distance sensor in the Evolutionary Robotics
process. The creation of the simulator Neural Networks is
discussed and motivated. The simulators are evaluated by
means of a comparison with test data. Finally, the simulators
are validated by evolving a controller for an obstacle avoiding
robot using the simulator Neural Networks. The experimental
results show that Neural Networks can indeed be used to
simulate an ultrasonic sensor in the Evolutionary Robotics
process.

Keywords-Robotics; Genetic Algorithms; Neural Networks;
Simulators.

I. I NTRODUCTION

Great advances have been made in recent years in the
field of robotics. Robots are becoming cheaper, with more
hardware capabilities and faster onboard computing [1]. A
robot’s behaviour is determined by acontroller. The con-
troller continuously receives input from the robot’s sensors
and gives output in the form of commands, for example
motor speeds [2]. The underlying implementation of a
controller depends on the application domain of the robot.

The manual creation of a controller by human experts
is a time-consuming and complicated task, which may be
infeasible due to the complexity of the robotic task [3].
The unstructured, noisy and dynamic nature of the real
world environments in which robots are required to function,
adds to the difficulty of creating controllers [4]. The cost
of creating controllers, which currently constitutes up toa
third of total expenses [5], will increase in future as robotic
hardware continues to advance and the tasks required from
the robots become more complex [6].

Evolutionary Robotics (ER) is a field that aims to simplify
the creation of controllers by means of the principles of
biological evolution [7]. Engineers can use ER to create
complex controllers with minimum human input. The ER
process is an extension of the theory behind Evolutionary

Algorithms (EAs) to the realm of robotic controllers. A
population of candidate controllers compete for the ability
to produce offspring, based on the effectiveness of each
controller.

Simulation has been used extensively in the ER process
to avoid having to evaluate the performance of candidate
controllers in the real world. The creation of these simulators
may in itself be extremely time-consuming or infeasibly
complex. This paper consequently reports on a different
technique of creating robot simulators, based on Neural Net-
works (NNs). NNs have previously been used as controllers
[8], but are not commonly used as simulators in the ER
process. Previous research by the current authors have shown
that NNs can be used as simulators in the ER process for
motion simulation [9], and for modeling various sensors
[10][11].

The focus of this paper is on NN simulators for an
ultrasonic distance sensor. The ultrasonic sensor used in
the study differs from previously modeled sensors in that
it is less reliable and that its functioning is intermittent.
These deficiencies require a slightly different treatment when
simulating this sensor.

The remainder of this paper is structured as follows:
Section II details the ER process and describes the role of
simulation in the ER process. Section III provides related
work on using NNs as simulators. Section IV gives a brief
overview of robotic controllers. The experimental robot that
was used in this study is described in Section V. Section
VI describes the NN simulators that were used in this study
along with the data acquisition approach. The training of
the NNs is discussed in Section VII. An analysis into the
accuracy of the trained NNs is given in Section VIII. The
NN simulators are validated in Section IX by their use in the
ER process to evolve a controller. Conclusions are drawn in
Section X.

II. ER AND SIMULATION

The ER process, in the context of this study, is a technique
that can be used to automatically create controllers for robots
by means of artificial intelligence. The basic procedure is as
follows:
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1) Randomly create a set (referred to as a population) of
controllers for the robot.

2) Evaluate the effectiveness of each controller (known
as the fitness of each controller). Stop the process if
an adequate controller has been found.

3) Create offspring from the current population, giving
preference to the more fit controllers by means of:

• Mutations (Small random changes to each con-
troller)

• Crossovers (Combinations of subcomponents of
parent controllers)

4) Replace the current population with the offspring
population.

5) Return to Step 2.

Step 2 is typically the most time-consuming of the ER
process as it requires the candidate controllers to be trans-
ferred to a real-world robot to evaluate their performance.
The evaluation of controllers in the real world may not
be possible, as a large number of controllers have to be
repeatedly evaluated [1][7][12]. Furthermore, certain con-
trollers could lead to erratic robotic movements which may
potentially damage the robot hardware [1]. Evolution in
simulation has been used by several researchers to avoid the
time-consuming task of real-world evaluation [12][13][14].

The computational complexity of simulators must al-
low for relatively fast evaluation of controllers [15],
while still approximating the real robotic environment
[16]. Simulators have been created by several researchers
[6][12][13][17][18][19][20] and can be categorised in three
classes [11]:

• Physics-based simulatorsmathematically model the
physical behaviour of robotic components. This type of
simulation is typically accurate [21], although physics
simulators use complex physics models [22] and their
construction requires a considerable amount of human
input [23]. Furthermore, physics models often contain
simplifications or approximations of the real world,
which could lead to factors like friction and inertia
being overlooked [14].

• Empirical models make use of data collected from the
real world [2][12][14]. This approach has the advantage
of capturing the fuzzy characteristics of the robotic
components [12]. A disadvantage of empirical models
is that elementary data analysis techniques are often
used in their construction, for example, basic interpo-
lation (although more advanced techniques have been
investigated [19][20]).

• Hybrid models combine physics and empirical mod-
els by utilising experimental data to optimise the pa-
rameters of the physics model [13]. A disadvantage
of this modeling technique is that assumptions from
the physics model are inevitably incorporated into the
simulator.

The challenges in existing robotic simulators is the moti-
vation for an alternative simulation scheme, namely simula-
tors implemented using NNs.

III. N EURAL NETWORK SIMULATORS

Artificial Neural Networks are used to model the bi-
ological brain in software and consequently harness the
computing power of the biological neurons by training the
network to perform certain tasks. This research involves the
use of NNs as robotic simulators in the ER process.

NNs are well suited for use as robotic simulators because
of their noise tolerance and generalisation ability. The en-
vironment that is to be modeled is typically employed to
create training data used in the construction of the NNs.
Large amounts noise is inevitably present in the training
data due to inaccuracies in the acquisition process [13]. NNs
are known to be noise tolerant [24][25], which makes their
application to this domain appropriate.

Training data inherently contains only a sample of the
set of all states of the environment. Movements of a robot
through its environment can only be sampled at discrete
intervals. The number of samples are also constrained by the
amount of time that is available to create training data. The
ability to generalise over training data [26] makes it possible
for NNs to interpolate to unseen environmental states.

NNs have been used as simulators in non-ER fields, for
example, to produce realistic graphic animations [27], to
animate a robotic arm [28], and to model the environmental
interaction of a sonar sensor of an experimental robot [29].

To the best of the authors’ knowledge, however, no
previous investigations have been conducted into the usage
of NNs as simulators in the ER process, apart from previous
works by the authors. The current authors have previously
demonstrated the use of NN simulators in the ER process
for motion simulation [9] and modeling of several sensors,
including: light sensors [10], touch sensors, tilt sensors
and gyroscopic sensors [11]. This study demonstrates that
Simulator Neural Networks (SNNs) can also be used for
ultrasonic sensors.

IV. ROBOTIC CONTROLLERS

This study is focused on a controller to perform obstacle
avoidance. The goal of such a controller is to move a robot
through a scene to a destination point as fast as possible
without colliding with any obstacles [8][13][30][31]. A
NN controller has previously been evolved to perform the
obstacle avoidance task [8].

The controllers that were evolved in the current study
were evaluated in the real world on an experimental robot
which was created to perform the obstacle avoidance task.

V. EXPERIMENTAL ROBOT

The LegoR© Mindstorms NXT [32] robotic components
were used in this study to construct the experimental robot.
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The components that were used in this study include the
central micro-computer, an ultrasonic sensorand servo
motors.

An Obstacle Avoidance Robot (OAR)was constructed
from the NXT components. Two motors connected to wheels
and two castor wheels were used to create the differential
steering of the OAR. The orientation of the robot was
obtained from a compass sensor during training, while the
ultrasonic sensor was used to determine the distance between
the robot and obstacles in the scene. SNNs were constructed
to model the OAR’s motion and sensor functioning.

VI. SNN PARAMETERS AND DATA ACQUISITION

Empirically obtained training data was used to construct
the SNNs for motion and ultrasonic sensor simulation.
The ultrasonic sensor’s readings were recorded as random
commands were sent to the robot. This information was later
extracted to create training data for the SNNs. The training
data for the motion SNNs were obtained through motion
tracking. Discretised time steps of 400ms were used as the
time frame in which simulation was performed.

A. Motion Simulation

The SNNs for the motion simulation of the robot were
described in [10][11] and are consequently only briefly
mentioned here. The robot operated on a horizontal slip-
resistant surface in a coordinate system that moves and
rotates with the robot. Three separate SNNs were created
to simulate changes in the x and y coordinates, and the
orientation angle (∆x, ∆y and∆θ, respectively).

The current and previous motor speeds of the motors were
given as inputs to each SNN. The inertia of the robot was
thus taken into consideration by including previous motor
speeds. Frames from a camera mounted on the ceiling were
analysed to track the position of the robot. The tracking data
concerning the orientation change angle was supplemented
using the compass sensor to obtain averaged values. The
state changes in response to random commands, in terms of
orientation angle and position, were used to generate a set
of training data for the motion SNNs.

B. Ultrasonic Sensor Simulation

To simplify the construction of the SNNs for the ultrasonic
sensor, the assumption was made that all obstacles in the
robot’s environment have straight and perpendicular edges
and that any obstacle could thus be represented simply by its
bounding rectangle. The parameters used in the ultrasonic
sensor SNNs are indicated in Figure 1. The distance,D,
between the ultrasonic sensor and the relevant obstacle was
taken into account, as well as the orientation angle,α,
between the pulse emitted from the sensor and the normal
to the relevant edge of the obstacle in question.

The ultrasonic sensor sometimes does not return a reading
at all if the emitted pulse does not find its way back to the

Figure 1. Parameters used in ultrasonic sensor models

receiver on the sensor. Testing suggests that the ultrasonic
sensor only successfully produces a value roughly 80% of
the time when it is at random positions and orientations
relative to obstacles. In order to model the functioning of the
ultrasonic sensor realistically, it was thus deemed necessary
to model the probability of the ultrasonic sensor returninga
value. The assumption was made that the probability of the
ultrasonic sensor successfully producing a reading depended
on D andα (Figure 1).

Two different SNNs were thus employed to model the
operation of the ultrasonic sensor. The mapping expected
from each of these SNNs is shown in equations (1) and (2).

SNNultra prob : {D, α} → {ultraprob} (1)

SNNultra value : {D, α} → {ultravalue} (2)

The first of the two ultrasonic sensor SNNs was used to
predict the probability of the ultrasonic sensor producing
a value (ultraprob), given as inputs the distance and ori-
entation angle to a relevant obstacle. This probability was
expressed in the range [0, 1]. In the event of the ultrasonic
sensor producing a reading, the second SNN would then be
used to predict the actual reading produced by the ultrasonic
sensor (ultravalue), again given as inputs the distance and
orientation angle.

The random movement commands given during the mo-
tion tracking phase were used to move the robot through
a scene containing various solid, straight-edged obstacles.
By making use of the known position and orientation of the
robot at any given point in time as well as the ultrasonic sen-
sor values recorded to onboard memory, data could be parsed
relating the probability of the sensor producing a value and
this value itself to various distances from and orientations
relative to obstacles. This would provide training data for
the ultrasonic SNNs.

The sources of errors in the training data, i.e., human
errors, inconsistencies in the motor control and noisy func-
tioning of the ultrasonic sensor, were reduced as much as
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possible, for example, by repeating all physical measure-
ments twice. Nonetheless, a considerable amount of noise
remained which could potentially make the effective training
of the SNNs challenging.

VII. N ETWORK TRAINING

The SNNs were trained using a Genetic Algorithm (GA),
although other optimisation techniques may also have been
used. Each individual in the GA encoded potential weight
values for a candidate SNN directly. A population of 100
randomly initialized chromosomes were used. A tournament
among 33 individuals were used to select offspring. Simu-
lated Binary Crossover [33] occurred with a probability of
80%, while mutations (normally distributed random values
were added to each component) occurred with a probability
of 5%. Training was halted when an improvement of less
than 0.1% was found in the inverse of the mean-squared
error of the fittest individual in the population over a period
of 300 generations of the GA.

A Feed-Forward Neural Network (FFNN) with a single
hidden layer was used as topology for the SNNs. Appropri-
ate values for the number on neurons in each hidden layer
were experimentally determined [34]. Each hidden layer
contained an equal number of summation and product units,
while output layers contained only summation units. Table I
lists the activation functions used by each SNN, along with
the number of hidden neurons that were employed.

Table I
DETAILS OF EACH SNN

Activation Function
SNN Hidden

Layer
Output
Layer

Number
Hidden

Orientation Angle Linear Linear 4
X-coordinate Linear Linear 20
Y-coordinate Linear Linear 20
Ultrasonic Probability Linear Ramp 10
Ultrasonic Value Linear Linear 40

VIII. SNN T RAINING ACCURACY

The training accuracy of the ultrasonic SNNs is illustrated
in Figure 2. Each graph gives the output of the SNN plotted
against empirically obtained values from the real world. The
empirically obtained values used to perform this analysis
were not used during the network training phase and were
thus previously unseen by the SNNs. Each graph contains a
trendline with its associated equation andR2-value.

Figure 3 gives three-dimensional plots of the SNN outputs
based on the distance and orientation of the sensor with
respect to the obstacle. Two views of each surface are shown
from different viewing angles. The plots also contain data
from the test set for comparison.

Figures 2 and 3 illustrate that the SNNs generally trained
relatively well (although theR2-values are relatively low).
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Figure 2. Comparison of expected and SNN predicted values for ultrasonic
sensor SNNs of the OAR

The noise in the ultrasonic sensor value SNN test data
can easily be seen in Figure 3(b) (see discussion on this
figure later in this section). Visible in Figure 2(b) is a
vertical line where the expected value is roughly 20cm. This
can be attributed to the fact that the ultrasonic sensor was
sometimes seen to produce an erroneous value of roughly
20cm regardless of the actual distance of the sensor from
an obstacle. Taking the noise levels present in training data
for the ultrasonic sensor SNNs into account, the accuracy
obtained by these SNNs is reasonable.

The three-dimensional plots shown in Figure 3(a) indicate
that a relatively good fit was obtained for the ultrasonic
probability SNN. The general trend predicted by this SNN
is as would be expected: The probability of the ultrasonic
sensor firing successfully (that is, the emitted pulse returning
to the receiver of the ultrasonic sensor) is highest when the
sensor is close to an obstacle and facing it head-on (that is,it
has a small orientation angle). This probability decreasesas
the obstacle gets further away and the relative angle between
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Figure 3. Outputs for the SNNs for various values of distanceand orientation (test data included)

the robot and the obstacle becomes bigger, since the emitted
pulse would have a low probability of reaching the receiver
of the ultrasonic sensor under these circumstances due to it
being scattered.

High levels of noise can be seen in the test data for the
ultrasonic sensor value SNN in Figure 3(b). These noise
levels were almost certainly also present in the training
data for this SNN, and are probably caused by inaccuracies
in the sensor itself. The surface produced by the SNN
does not match the test data very accurately, but this is
probably due to the erroneous test data. A trend can clearly
be seen in the noise level present in the test data. When
the orientation angle is small (that is, the ultrasonic sensor
faces the obstacle almost head-on) the noise levels are low
and the value produced by the ultrasonic sensor is roughly
equal to the real-world distance between the sensor and
the obstacle as determined through motion tracking. As this
orientation angle increases, however, more noise is gradually
introduced in the test data with the value produced by the
ultrasonic sensor diverging more and more from the distance
determined by motion tracking. These large levels of noise
from the training data of the ultrasonic value SNN almost
certainly impacted negatively on the training accuracy of

said SNN.

IX. CONTROLLER EVOLUTION

The actual effectiveness of the SNNs in the ER pro-
cess could, however, only be demonstrated by evolving a
controller in simulation using the SNNs and consequently
successfully transferring the controller to the real world.
A simple array-based obstacle avoidance controller was
consequently evolved in simulation using the SNNs. Four
different obstacle avoidance tasks where set by choosing four
different initial positions and orientations for the OAR ina
scene containing four stationary obstacles (refer to Figure
4). The goal of each of the four evolved controllers was to
guide the OAR through the scene to a predetermined target
point by using inputs from the ultrasonic sensor.

The obstacle avoidance task was previously solved using
an open-loop time-based controller which did not take any
sensory inputs into account [11]. However, in the current
study the controller was not allowed to transition to new
motor speeds based on time and was thus forced to use
input from the ultrasonic sensor. Ultimately, the effectiveness
of the evolved controller would be entirely dependent on
the accuracy of the real-world sensor and of the developed
SNNs.
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A command set containing 4-tuples of the form (mot1,
mot2, bigorsmall, ultval) was evolved. A given pair of
motor speeds (mot1 and mot2) was maintained until the
ultrasonic sensor produced a value (the sensor would some-
times not produce a value at all) and this value was larger
than or smaller than (as determined by a boolean value
bigorsmall) a threshold value (ultval). The next pair of
motor speeds in the next tuple would then be executed. This
process was continued until the end of the command set was
reached. Each controller contained six of these 4-tuples.

A. Evolution Procedure

A total of four controllers were evolved to guide the robot
to the target position from each of the four positions from
which the robot was started. These controllers were evolved
entirely in simulation, using the motion and ultrasonic sensor
SNNs. The different tuples of the controllers were directly
encoded as individuals in the algorithm. Identical parameters
were employed in the ER process as was used in the GA
described in Section VII.

The fitness function (Fobs), used to quantify the quality
of each potential solution, is given in Equation (3) [11].

Fobs =

{

0.5
distcrash

if the robot crashed
1

distfinal
otherwise

(3)

The valuedistfinal is calculated as the Euclidean distance
from target point to the robot’s final position. The value
distcrash, which is used only when the robot crashed into
an obstacle, is the Euclidean distance from the target point
to the impact point.

The fitness function thus assigned high fitness values
when the robot stopped close to the target position without
colliding with obstacles. Controllers that caused collisions
close to the target position were favoured over those that
caused collisions far from the target position.

The SNNs were used to produce a simulated path for
each controller in the ER population. Each controller was
assigned a fitness based on the simulated path, using equa-
tion (3). Evolution was terminated after 1000 generations.

Randomness was incorporated into the ultrasonic sensor
SNNs in that the ultrasonic probability SNN predicts the
probability of the ultrasonic sensor producing a value. As
a result of the randomness present in the ultrasonic sensor
simulation, any given controller in the ER population would
thus produce different behaviours in simulation when run
multiple times. In order to thus produce a robust controller
which would take into account the firing and non-firing of
the ultrasonic sensor, the fitness of each controller in the
ER population was determined by running each controller
five times in simulation and summing the fitnesses produced
in each of these five runs. The task to be performed by a
controller evolved in this way would thus be not only to

reach the target position as accurately as possible, but also to
do this in spite of the noise present in the ultrasonic sensor.

B. Results and Discussion

The quality of the evolved controllers were investigated
by executing the controllers on the real-world robot. The
successful execution of the obstacle avoidance task in the
real world is of paramount importance, as this determines
whether SNNs can be successfully used in the ER process.

Figure 4 compares the paths followed by the simulated
robot and the real-world robot for each of the four starting
points considered. Three paths are illustrated in each case.
Motion tracking was used to determine the real-world paths
of the robot (indicated by solid lines in Figure 4).

Results obtained for the ultrasonic sensor-based con-
trollers show a relatively good correspondence between the
simulated and real-world behaviours, although some discrep-
ancies are evident. Notably, the simulated paths shown in
Figure 4(a) can be seen to differ considerably from the real-
world paths. This resulted from the robot crashing into an
obstacle. In this case the SNNs thus failed to accurately
model the robot’s behaviour, although more accurate results
were seen for the remaining three starting points.

Large amounts of noise present in the functioning of
the ultrasonic sensor could have contributed to the differ-
ences between simulation and the real world. The fact that
relatively consistent paths were observed for the evolved
controllers in the real world from each starting position
(roughly the same path was taken in all three real-world
runs) indicates that the ER process succeeded in evolving
controllers which could perform their task adequately. This
is in spite of the ultrasonic sensor sometimes not producing
a value and readings from this sensor generally containing
large amounts of noise. The results thus indicate that the
ultrasonic sensor SNNs (especially the ultrasonic probability
SNN) represented the functioning of the ultrasonic sensor
with reasonable accuracy.

X. CONCLUSION AND FUTURE WORK

The main goal of this study was to determine whether
SNNs can be successfully used to simulate an ultrasonic
sensor in the ER process. The results of this study indicate
that this could indeed be achieved, and provide evidence that
the basic technique proposed in [9][10][11] can be extended
to create simulators for more complex sensors.

Controllers were successfully evolved using the created
SNNs. This suggests that, despite the limited and noisy
training data, the SNNs managed to generalise. Readings
from sensors will inevitably contain noise which results
in unpredictable real-world behaviour. This is evident, for
example, in the operation of the ultrasonic sensor. By
creating the ultrasonic sensor probability SNN, a simple
method has thus been suggested to model such unreliable
sensors. Reasonable results were obtained using this method,
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Figure 4. SNN predicted and real-world paths for the ultrasonic sensor-based controllers

in that controllers evolved in simulation using the ultrasonic
probability SNN performed reasonably when executed on
the real-world OAR. SNNs thus provide a method for
modeling unreliable sensors.

A benefit of using SNNs as simulators is that their use
do not require an in-depth analysis and understanding of the
environment to be modeled and the underlying mechanics.
This is a considerable advantage of the applied approach
in comparison to more traditional approaches. Furthermore,
the investigated approach has the advantage of implicitly
incorporating the flaws and imperfections of the robotic
hardware. It is not certain how well the applied approach
will scale to other more complex robot systems. Future
investigations can therefore explore the potential usage of
SNNs to model other robotic sensors with large quantities
of noise in their readings, or robots which need to function
in highly dynamic environments.
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