
Using Embedded FPGA for Cache Locking in Real-Time Systems

Antonio Mart́ı Campoy, Francisco Rodrı́guez-Ballester, Rafael Ors Carot
Departamento de Inforḿatica de Sistemas y Computadores

Universitat Polit̀ecnica de Val̀encia
Spain

{amarti, prodrig, rors}@disca.upv.es

Abstract—In recent years, locking caches have appeared as a
solution to ease the schedulability analysis of real-time systems
using cache memories maintaining, at the same time, similar
performance improvements than regular cache memories. New
devices for the embedded market couple a processor and
a programmable logic device designed to enhance system
flexibility and increase the possibilities of customisation in
the field. This arrangement may help to improve the use of
locking caches in real-time systems. This work propose the
use of this embedded programmable logic device to implement
a logic function that provides the locking cache controller the
information it needs in order to determine if a referenced main
memory block has to be loaded and locked into the cache; we
have called this circuit a Locking State Generator.

Keywords-Real-Time Systems; Locking Caches; FPGA.

I. I NTRODUCTION

Cache memories are an important advance in computer
architecture, giving significant performance improvement.
However, in the area of real-time systems, the use of
cache memories introduces serious problems regarding pre-
dictability. The dynamic and adaptive behavior of a cache
memory reduces the average access time to main memory,
but presents a non deterministic fetching time [5]. This way,
estimating execution time of tasks is complicated. Further-
more in preemptive, multi-tasking systems, estimating the
response time of every task in the system becomes a problem
with a solution hard to find due to the interference on the
cache contents produced among the tasks. Thus, schedulabil-
ity analysis requires complicated procedures and/or produces
overestimated results.

In recent years, locking caches have appeared as a solution
to ease the schedulability analysis of real-time systems using
cache memories maintaining, at the same time, similar per-
formance improvements of systems populated with regular
cache memories. Several works has been presented to apply
locking caches in real-time, multi-task, preemptive systems,
both for instructions [1][4][7] and data [8]. In this work, we
focus on instruction caches only, because 75% of accesses
to main memory are to fetch instructions [5].

A locking cache is a cache memory without replacement
of contents, or with contents replacement in a priori and
well known moments. When and how contents are replaced
define different uses of the locking cache memory.

One of the ways to use locking caches in preemptive real-
time systems is called the dynamic use. In this way of using
a locking cache, cache contents change only when a task
starts or resumes its execution. Then, cache contents remain
unchanged until a new task switch happens. The goal is that
every task may use the full size of the cache memory for its
own instructions.

This paper is organized as follows. Section two describes
previous implementation proposals for the dynamic use of
a locking cache in real-time systems, and the pursued goals
of this proposal to improve previous works. Section three
presents a detailed implementation of the Locking State
Generator (LSG), a logic function that signals to the cache
controller whether to load a main memory block in cache.
Section four presents some analysis about the complexity
of the proposal, and Section five outlines some ideas about
how to simplify the circuit complexity. Finally, this paper
ends with the ongoing work and conclusions.

II. STATE OF THE ART

Two ways of implementing dynamic use of locking cache
can be found in the bibliography. First of them, [1], uses
a software solution, without hardware additions and using
processor instructions to explicitly load and lock the cache
contents. This way, every time a task switch happens, the
scheduler runs a loop to read, load and lock the selected set
of main memory blocks into the cache memory for the next
task to run. The list of main memory blocks selected to load
and lock in cache is stored in main memory.

The main drawback of this approach is the long time
needed to execute the loop, which needs several main
memory accesses for each block to be loaded and locked.

In order to improve the performance of the dynamic use
of locking cache, in [4] is introduced the Locking State
Memory (LSM). This is a hardware solution where the
loading of memory blocks in cache is controlled by a one-
bit signal coming from a memory added to the system.
When a task switch happens, the scheduler simply flushes
the cache contents and a new task starts execution, fetching
instructions from main memory. But, not all referenced
blocks are loaded in cache; only those blocks selected to
be loaded and locked are loaded in cache. In order to

26Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

indicate whether a block has to be loaded or not the LSM
stores one bit per main memory block. When the cache
controller fetches a block of instructions from main memory,
the LSM provides the corresponding bit to the locking cache
controller. If the bit is set to 1, indicates that the block has
to be loaded and locked in cache, and the cache controller
stores this block in cache. If the bit is set to 0, indicates that
the block was not selected to be loaded and locked in cache,
so the cache controller will preclude the store of this block
in cache, thus cache contents remain unchanged.

The main advantage of the LSM architecture is the
reduction of the time needed to reload the cache contents
after a preemption compared against the previous, software
solution.

The main drawback of the LSM is its poor scalability. The
size of the LSM is directly proportional to main memory size
and cache-line size (one bit per each main memory block,
where the main memory block size is equal to the cache
line size). This size is irrespective of the size of the tasks,
or the number of memory blocks selected to be loaded and
locked into the cache. This way, if the system has a small
locking cache and a very big main memory, a large LSM will
be necessary to select only a tiny fraction of main memory
blocks.

In this work, a new hardware solution is proposed,
where novel devices found in the market are used. These
devices couples a standard processor with an FPGA (Field-
Programmable Gate Array), a programmable logic device
designed to enhance system flexibility and increase the
possibilities of customisation in the field. A logic func-
tion implemented by means of this FPGA substitutes the
work previously performed by the LSM, however this time
hardware complexity is proportional to the size of system,
both software-size and hardware-size. Not only the circuit
required to dynamically use the locking cache may be
reduced but also those parts of the FPGA not used for the
control of the locking cache may be used for other purposes.
We have called this logic function a Locking State Generator
(LSG) and think our proposal simplifies and adds flexibility
to the implementation of a real-time system with locking
cache.

III. T HE PROPOSAL: LOCKING STATE GENERATOR

Recent devices for the embedded market [3][6] couple a
processor and an FPGA (Field-Programmable Gate Array),
a programmable logic device designed to enhance system
flexibility and increase the possibilities of customisation in
the field. This FPGA is coupled to an embedded processor
in a single package (like the Intel’s Atom E6x5C series [3])
or even in a single die (like the Xilinx’s Zynq-7000 series
[6]) and may help to improve the use of locking caches in
real-time systems.

Deciding whether a main memory block has to be loaded
in cache is the result of a logic function with the memory

Figure 1. The LSG architecture.

address bits as its input.
This work proposes the substitution of the Locking State

Memory by a logic function implemented by means of this
processor-coupled FPGA; we have called this element a
Locking State Generator (LSG).

Two are the main advantages of using a logic function
generator instead of the LSM. First, the LSG may adjust
its complexity and circuit-related size to both the hardware
and software characteristics. While the LSM size depends
only on the main memory size and cache-line size, the
number of circuit elements needed to implement the LSG
depends on the number of tasks and their sizes, possibly
helping to reduce hardware. Second, the LSM needs to add
a new memory and data-bus lines to the computer structure.
Although LSM bits could be added directly to main memory,
voiding the requirement for a separate memory, in a similar
way as extra bits are added to ECC DRAM, the LSM still
requires modifications to Main Memory and its interface
with the processor. In front of that the LSG uses a hardware
that is now included in the processor package/die. Regarding
modifications to the cache controller, both LSM and LSG
present the same requirements.

Figure 1 shows the proposed architecture, similar to the
LSM architecture, with the LSG logic function replacing the
work of the LSM memory.

A. Implementing logic functions with an FPGA

An FPGA implements a logic function combining a
number of small blocks called logic cells. Each logic cell
consists of a Look-up table (LUT) to create combinational
functions, a carry-chain for arithmetic operations and a flip-
flop for storage. The look-up table stores the value for the
implemented logic function for each input combination, and
a multiplexer inside the LUT is used to provide one of these
values; the logic function is implemented simply connecting
its inputs as the selection inputs of this multiplexer. Several
LUTs may be combined to create large logic functions,
functions with input arity larger than the size of a single
LUT.

This is a classical way of implementing logic functions,

27Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

Figure 2. Implementing mini-term 5 of arity 3 (C, B, A are the function
inputs).

but it is not a good option for the LSG: the total number
of bits stored in the set of combined LUTs is the same as
the number of bits stored in the original LSM proposal, just
distributing the storage among the LUTs.

1) Implementing mini-terms: In order to reduce the num-
ber of logic cells required to implement the LSG, instead of
using the LUTs in a conventional way this work proposes
to implement the LSG logic function as the sum of its mini-
terms (the sum of the combinations giving a result of 1).

This strategy is not used for regular logic functions
because the number of logic cells required for the imple-
mentation depends on the logic function itself, and may be
even larger than with the classical implementation. However,
the arity of the LSG is quite large (the number of inputs is
the number of memory address bits) and the number of cases
giving a result of 1 is very small compared with the total
number of cases, so the LSG is a perfect candidate for this
implementation strategy.

A mini-term is the logic conjunction (AND) of the input
variables. As a logic function, this AND may be built using
the LUTs of the FPGA. In this case, the Lookup table will
store a set of zero values and a unique one value. This one
will be stored in the position j in order to implement mini-
term j. Figure 2 shows an example for mini-term 5 for a
function of arity 3, with input variables called C, B and A,
where A is the lowest significant input.

For the following discussion, we will use 6-input LUTs,
as this is the size of the LUTs found in [6]. Combining LUTs
to create a large mini-term is quite easy; an example of a 32-
input mini-term is depicted in Figure 3 using a two-level
associative network of LUTs. Each LUT of the first level
(on the left side) implements a 1/6 part of the mini-term
(as described in the previous section). At the second level
(on the right side), a LUT implements the AND function to
complete the associative property.

2) Sum of mini-terms: For now, we have used 7 LUTs to
implement one mini-term. To implement the LSG function
we have to sum all mini-terms that belong to the function; a
mini-term k belongs to a given logic function if the output
of the function is one for the input casek. In this regard,
two questions arise: first, how many mini-terms belong to
the function, and second, how to obtain the logic sum of all

Figure 3. Implementing a 32-input mini-term using 6-input LUTs.

them.
The first question is related to the software parameters of

the real-time system we are dealing with. If the real-time
system comprises only one task, the maximum number of
main-memory blocks that can be selected to load and lock
in cache is the number of cache lines (L). If the real-time
system is comprised ofN tasks this value isL×N because,
in the dynamic use of a locking cache, each task can use
the whole cache for its own blocks.

A typical L1 instruction cache size in a modern pro-
cessor is 32KB; assuming each cache line contains four
instructions and that each instructions is 4B in size, we get
L = (32KB/4B)/4instructions = 2K lines.

This means that, for every task in the system, the maxi-
mum number of main-memory blocks that can be selected is
around 2000. Supposing a real-time system with ten tasks,
we get a total maximum of 20 000 selectable main memory
blocks. That is, the LSG function will have 20 000 mini-
terms. Summing all these mini-terms by means of a network
of LUTs to implement the logic or function with 20 000
inputs would require around 4000 additional LUTs in an
associative network of 6 levels.

The solution to reduce the complexity of this part of
the LSG is to use the carry chain included in the logic
cells for arithmetic operations. Instead of a logic sum of
the mini-terms, an arithmetic sum is performed: if a binary
number in which each bit position is the result of one of
the mini-terms is added with the maximum possible value
(a binary sequence consisting of ones), the result will be: i)
the maximum possible value and the final carry will be set to
zero (if all mini-terms are zero), or ii) the result will beM−1
and the final carry will be set to one (beingM the number
of mini-terms producing a one for the memory address).
Strictly speaking, mini-terms are mutually exclusive, so one
is the maximum value forM . In the end, the arithmetic
output of the sum is of no use, and the final carry indicates
if the referenced main memory block has to be loaded and

28Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

Figure 4. Implementing the LSG function.

locked in cache. Figure 4 shows a block diagram of this
sum.

Using the carry chain included into the LUTs which are
already used to calculate the LSG function mini-terms pro-
duce a very compact design. However, a carry chain adder
of 20 000 bits (one bit per mini-term) is impractical, both
for performance and routing reasons. In order to maintain a
compact design with a fast response time, a combination of
LUTs and carry-chains are used, as described below.

First, the 20 000 bits adder is split into chunks of reason-
able size; initial experiments carried out indicate this size to
be between 40 and 60 bits in the worst case, resulting into
a set of 500 to 330 chunks. All these chunk calculations are
performed in parallel using the carry chains included into
the same logic cells used to calculate the mini-terms, each
one providing a carry out. These carries have to be logically
or-ed together to obtain the final result. A set of 85 to 55 6-
input LUTs working in parallel combine these carries, whose
outputs are arithmetically added with the maximum value
using the same strategy again, in this case using a single
carry chain. The carry out of this carry chain is the LSG
function result.

IV. EVALUATION OF THE LSG

The use of the LSG with a locking cache memory is a
flexible mechanism to balance performance and predictabil-
ity as it may have different modes of operation. For real-
time systems, where predictability is of utmost importance,
the LSG may work as described here; for those systems with
no temporal restrictions, where performance is premium the
LSG may be forced to generate a fixed one value, obtaining

a system with the same behavior as with a regular cache. It
can even be used in those systems mixing real-time and non
real-time tasks, as the LSG may select the proper memory
blocks for the former in order to make the tasks execution
predictable and provide a fixed one for the latter to improve
performance as with a regular cache memory.

Initial experiments show timing is not a problem for the
LSG as its response time has to be on par with the relatively
slow main memory: the locking information is not needed
before the instructions from main memory. Total depth of the
LSG function is three LUTs and two carry chains; register
elements are included into the LSG design to split across
several clock cycles the calculations in order to increase the
circuit operating frequency and to accommodate the latency
of main memory as the LSG has to provide the locking
information no later the instructions from main memory
arrive. Specifically, the carry out of all carry chains are
registered in order to increase the operating frequency.

Regarding the circuit complexity, the following calcula-
tions apply: although the address bus is 32 bits wide, the
LSG, like the cache memory, works with memory blocks.
Usually a memory block contains four instructions and each
instruction is 32 bits, so main-memory blocks addresses are
28 bits wide.

Generating a mini-term with a number of inputs between
25 to 30 requires 6 LUTs in a two-level network. Supposing
a typical cache memory with 2000 lines, 12 000 LUTs are
required. But if the real-time system has ten tasks, the
number of LUTs needed for the LSG grows up to 120 000.
It is a large number, but more LUTs may be found on
some devices currently available [6]. Calculating the logic
or function of all these mini-terms in a classical way adds
4000 more LUTs to the circuit, but the described strategy
merging LUTs and carry chains reduce this number to no
more than 500 LUTs in the worst case.

V. REDUCING COMPLEXITY

The estimated value of 120 000 LUTs required to build
the LSG function is an upper bound, and there are some
ways this number may be reduced. A real-time system with
five tasks will need just half this value of LUTs. Same if
the cache size is divided by two.

In some cases, not all tasks will use the whole cache,
that is, the number of selected blocks for a given task may
be lower than the cache capacity, reducing the number of
mini-terms in the LSG. In this aspect, the LSG improves
the LSM because it better adapts to hardware and software
characteristics of the system. Finally, as with any logic func-
tion implementation, there are well-known simplification
algorithms that may be applied, reducing both the number of
terms and their size (arity), which in turn reduce the number
of LUTs required for the implementation.

This simplification may be improved by the selection
algorithm. To use a locking cache, no matter the way it is

29Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

used and how locking information is stored or generated, an
off-line algorithm has to select those main memory blocks
that will be loaded and locked in cache [2]. Usually, the
target of these algorithms is to provide predictable execution
times and improve the overall performance of the system and
its schedulability, for example reducing global utilisation or
enlarging the slack of tasks to allow scheduling non-critical
tasks. But, new algorithms may be designed that take into
account not only this main target, but also trying to select
blocks with adjacent addresses, enhancing simplification and
reducing the final LSG circuit. This is more than just wish
or hope: for example, considering a loop with a sequence
of forty machine instructions —10 main-memory blocks—
selecting the five first blocks will give the same performance
than selecting the last five, or selecting alternate blocks.
Previous research show that genetic algorithms applied to
this problem produce different solutions, that is, different
sets of selected main memory blocks but with the same
results regarding performance and predictability.

This is a first approach to a new architecture, and many
experiments are needed to precisely evaluate the complexity
and cost of the LSG implementation, and to state the
scenarios where its use is more suitable than using LSM.
Number of LUTs detailed in this work are for the worst
case, that is, real-time systems with many tasks, large cache
memory and many main memory blocks selected to lock in
cache. Not in all cases the upper bound of LUTs will be
reached.

VI. ONGOING WORK

Next step is the development of a selection algorithm
that simultaneously tries to improve system performance and
reduce the LSG circuit complexity.

What is performance and circuit complexity need to be
carefully defined in order to include both goals in the
selection algorithm. Once the algorithm works, evaluation
of implementation complexity will be accomplished.

Also, some design strategies have to be explored in
detail in order to reduce the number of LUTs required to
implement the LSG. In particular initial experiments from
a design strategy merging LUTs from pairs of mini-terms
show promising results as the number of bits to be added
by the carry chains may be cut in half without a serious
impact on the circuit operating frequency.

VII. C ONCLUSION

This work presented a new way of implementing the
dynamic use of locking cache for preemptive real-time
systems. The proposal benefits from recent devices coupling
a processor with a FPGA, a programmable logic device,
allowing the implementation of a logic function to signal
the cache controller whether to load a main memory block
in cache. This logic function is called a Locking State

Generator (LSG) and replaces the work performed by the
Locking State Memory (LSM) in previous proposals.

As the FPGA is already included in the same die or
package with the processor, no additional hardware is needed
as in the case of the LSM. Also, regarding circuit complexity,
the LSG adapts better to the actual system as its complexity
is related to both hardware and software characteristics of
the system, an advantage in front of the LSM architecture,
where the LSM size depends exclusively on the size of main
memory.

Implementation details described in this work show that it
is possible to build the LSG logic function with commercial
hardware actually found in the market. Moreover, ongoing
research steps about the selection algorithm of main memory
blocks and the LSG hardware implementation are outlined.

ACKNOWLEDGMENTS

This work has been partially supported by PAID-
06-11/2055 of Universitat Politècnica de Val̀encia and
TIN2011-28435-C03-01 of Ministerio de Ciencia e Inno-
vación

REFERENCES

[1] A. Marti Campoy, A. Perles Ivars, and J. V. Busquets Mataix.
Dynamic use of locking caches in multitask, preemptive real-
time systems. InProceedings of the 15th World Congress of
the International Federation of Automatic Control, 2002.

[2] Antonio Marti Campoy, Isabelle Puaut, Angel Perles Ivars, and
Jose Vicente Busquets Mataix. Cache contents selection for
statically-locked instruction caches: An algorithm comparison.
In Proceedings of the 17th Euromicro Conference on Real-Time
Systems, pages 49–56, Washington, DC, USA, 2005. IEEE
Computer Society.

[3] Intel Corp. Intel atom processor e6x5c series.
http://www.intel.com/p/enUS/embedded/hwsw/hardware/
atom-e6x5c/overview, 2012. [Online; accessed 16-June-2012].

[4] J.V. Busquets-Mataix E. Tamura and A. Mart Campoy. To-
wards predictable, high-performance memory hierarchies in
fixed-priority preemptive multitasking real-time systems. In
Proceedings of the 15th International Conference on Real-Time
and Network Systems (RTNS-2007), pages 75–84, 2007.

[5] John L. Hennessy and David A. Patterson.Computer Ar-
chitecture: A Quantitative Approach, 4th Edition. Morgan
Kaufmann, 4 edition, 2006.

[6] Xilinx Inc. Zynq-7000 extensible processing platform.
http://www.xilinx.com/products/silicon-devices/epp/
zynq-7000/index.htm, 2012. [Online; accessed 16-June-
2012].

[7] Jan C. Kleinsorge Sascha Plazar and Peter Marwedel. Wcet-
aware static locking of instruction caches. InProceedings of
the 2012 International Symposium on Code Generation and
Optimization, pages 44–52, 2012.

[8] Xavier Vera, Bj̈orn Lisper, and Jingling Xue. Data cache
locking for tight timing calculations. ACM Trans. Embed.
Comput. Syst., 7(1):4:1–4:38, December 2007.

30Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

