
FlashTKV: A High-Throughput Transactional Key-Value Store on Flash Solid State
Drives

Robin Jun Yang
Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Hong Kong, China
yjrobin@cse.ust.hk

Qiong Luo
Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Hong Kong, China
luo@cse.ust.hk

Abstract—We propose FlashTKV, a high-performance trans-
actional key-value store optimized for flash-based solid state
drives. Transactional key-value stores process large numbers
of concurrent reads and writes of key-value pairs, and maintain
transactional consistency. As such systems are I/O dominant,
flash SSDs are a promising storage alternative to improve the
system performance. Catering the asymmetry in the read and
write performance of flash SSDs, FlashTKV uses a purely
sequential storage format where all data and transactional
information are log records. Furthermore, this sequential
storage format supports multi-version concurrency control
(MVCC) efficiently. We evaluate FlashTKV on enterprise
SSDs as well as on magnetic disks. While on magnetic disks
FlashTKV performs similarly to systems with MVCC on page-
based storage or locking on sequential storage under TPC-C
workloads, it improves the transaction throughput by 70% over
the competitors on flashSSDs.

Keywords-KV-store; Flash SSD; Log-structured; MVCC .

I. INTRODUCTION

Flash Solid State Drives (SSDs) are emerging as a com-
petitive storage alternative for laptops, desktops, as well as
servers, due to their outstanding I/O performance, shock
resistance, and energy efficiency. Table I shows the per-
formance comparison between a representative enterprise
flash SSD and a high-end magnetic disk. While both disks
achieve an almost identical throughput on sequential writes,
the sequential read throughput of the flash SSD is 1.5 times
of that on the hard disk. A striking difference between
the two disks across access patterns, is that, the read and
write performance is symmetric on the magnetic disk but
is not on the flash SSD. In particular, on the SSD the
sequential read throughput is 1.5 times of the sequential
write, and the random read throughput is over 10 times
of the random write. Finally, the performance gap between
random and sequential patterns is reduced from a factor
of 200 on the hard disk to around 2 for reads and 15 for
writes on the flash SSD. While these numbers confirm the
superb performance of flash SSDs, they also suggest that
performance optimization strategies for the flash may be

Acknowledgement: This work was supported in part by grant HUAW28-
15L05211/12PN from Huawei Technologies.

Table I: Performance Comparison between An Intel X25-E
Flash SSD and A SAS 15kRPM Magnetic Disk

Device Flash SSD Magnetic disk
Seq. Read Throughput 248MB/s 164MB/s
Seq. Write Throughput 167MB/s 166MB/s
Ran. 4KB Read IOPS 33,569 192

(Calculated Throughput) (127.2MB/s) (0.75MB/s)
Ran. 4KB Write IOPS 2,940 192

(Calculated Throughput) (11.5MB/s) (0.75MB/s)
Read Latency 75µs 5200µs
Write Latency 85µs 5200µs

different from those for the hard disk due to the read-write
asymmetry.

Recently there have been studies on optimizing the I/O
performance of a database management system component,
such as query processing [1], buffer management [2], [3],
indexing [4], [5], [6], [7] and storage management [8] for
flash SSDs. There has also been work on using flash SSDs
for key-value stores (KV-stores), such as FlashStore [9] and
SkimpyStash [10]. In comparison, we focus on transactional
key-value stores, which is an important type of workload in
practice yet is challenging for flash SSDs due to the large
number of random writes.

A transactional KV-store, such as the Oracle BerkeleyDB
[11], supports read and write operations on key-value pairs,
and guarantees transactional consistency of these read and
write operations. As a result, there are large numbers of
random I/O for key-value pair reads and writes as well
as a large amount of transaction log writes. Considering
the characteristics of flashSSDs, we propose FlashTKV, a
transactional KV-store for flash SSDs. FlashTKV has the
following three distinguishing features:

• It has a purely sequential storage format where all the
data are stored as log records (log as data).

• All transactional information are also written as log
records into the sequential storage.

• The sequential storage supports the multiversion con-
currency control protocol (MVCC) for transactional
consistency.

5Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation



The main technical challenges in FlashTKV are how
to support (1) reads and (2) MVCC efficiently on the
sequential storage. Specifically, log-structured approaches
[12] optimize writes by converting random data writes into
sequential log writes, but slow down reads as up-to-date
data pages must be constructed by applying change logs
to the original data pages. Also, MVCC has two main
drawbacks: (1) the overhead of writing multiple versions of
each data item; and (2) wasted processing due to transaction
rollbacks. The first drawback is less costly on flash SSDs
than on hard disks as writes to flash memory will be to
new pages anyway and random reads are fast on flash.
The second drawback remains on flash SSDs; nevertheless
it is outweighed by the fast reads on flash SSDs, as we
will see in the experiments. Furthermore, existing MVCC
algorithms and implementations all assume a page-based
data storage format and a separate, write-ahead logging
(WAL) transaction log. It is unclear how a sequential storage
format without a page-based data storage or a separate
transaction log can support MVCC correctly and efficiently.

To support reads efficiently, our sequential storage with a
uniform set of logs replaces separated sets of data pages and
change logs. Consequently, there is no merging operation
between data pages and change logs. Instead, we only need
to retrieve a suitable log record for a given key on a
read request. To speed up exact-match as well as range
searches, we further maintain a B+-tree to index the KV-
pairs and use an in-memory node buffer pool to keep
recently accessed B+-tree nodes. To support MVCC on our
sequential storage format, we keep necessary transactional
information in log records and retrieve a suitable log record
for each transactional read based on timestamp information.

We have implemented FlashTKV and evaluated it in
comparison with the Oracle Berkeley DB (BDB), a lead-
ing industrial-strength transactional key-value store on an
enterprise-grade flash SSD. Our results show that (1) the
estimated read I/O time in FlashKTV was almost identical to
that in BDB and the estimated write time in FlashKTV was
only 30% of that in BDB; (2) the measured performance of
FlashKTV under different degrees of read-write contention
was up to 40% faster than that of BDB; (3) under TPC-
C workloads, FlashKTV improves the throughput by up to
70% over BDB. This paper is organised as follows: Section
II discusses the background and related work of our paper,
Section III describes the detailed design and implementation
of FlashTKV, Section IV compares the I/O operations in
the traditional page storage and the sequential storage used
in FlashTKV, Section V shows the experimental setup and
results and Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we first discuss the read-write asym-
metry of flash SSDs. Then we review related work on
optimization techniques that addressed this issue, especially

log-structured approaches. Finally we compare FlashKTV
with other key-value stores, especially the Oracle Berkeley
DB Java Edition (BDBJE), which also adopts a sequential
storage format.

Flash SSDs use the NAND flash memory as the storage
media which does not support in-place update, but instead
requires an erase operation before a write. The erase oper-
ation can only be performed at the granularity of an erase
block (typically 64 flash pages). The FTL (Flash Translation
Layer) inside an SSD alleviates this problem by directing
writes to clean pages; however, it also causes garbage
collection to run more frequently. As a result, random writes
continue to be the worst-performing access pattern on flash
SSDs.

To address the random write problem on flash SSDs, a
few new file systems [13], [14] have been proposed. They
are similar to the log-structured file system [12], which
maintains a mapping between logical and physical addresses
of pages and transforms write requests to sequential append
operations to the storage device. This log-structured ap-
proach avoids random writes to the storage device, but slows
down read operations due to the use of the mapping table to
locate the current page. Furthermore, garbage collection in
these file systems needs to run frequently and degrades the
performance severely, especially on flash SSDs of a large
capacity.

There has been a flurry of work on optimizing DBMS
components such as query processing [1], buffer manage-
ment [2], [3], indexing [4], [5], [6], [7] and storage man-
agement [8] for flash SSDs. As transactional workloads such
as OLTP (Online Transactional Processing) generate a large
number of random writes on traditional database systems,
they are the most challenging to optimize on flash SSDs.
There has also been work on using flash SSDs for light-
weight database systems such as the Key-Value Stores (KV-
stores), e.g., FlashStore [9] and SkimpyStash [10]. These
systems focus on minimizing the metadata size per key-value
pair (KV-pair) in the RAM so that they can provide fast
access and insertion to large datasets without introducing
a significant maintenance cost for the metadata (index) of
the KV-pairs. Nevertheless, these systems do not support
user-defined database transactions and thus are unsuitable
for OLTP applications.

Traditional two-phase locking has been the protocol of
choice for concurrency control. With the read-write per-
formance asymmetry of flash SSDs, there has been initial
work exploring alternative concurrency control protocols
on flash disks. In particular, Lee et al. [15] experimented
with storing the MVCC rollback segments in a commercial
database server on flash SSDs. Nevertheless, there has not
been work on studying a full MVCC transactional system
with sequential storage on flash SSDs. Our work is most
related to the Berkeley DB Java Edition [16] (BDBJE), a
well-known sequential storage engine. As it is Java-based,

6Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation



BDBJE relies on JAVA NIO and has no explicit control on
the underlying storage device. Furthermore, only locking,
not MVCC, is supported for concurrency control in BDBJE.

A drawback of log-structured approaches, which are often
adopted for flash-optimized techniques, is an essential and
expensive operation, known as merge. The merge opera-
tion is necessary because the original data and the logged
changes are separate entities, and these two need to be
integrated from time to time to bring the data up-to-date. In
comparison, our FlashTKV adopts a sequential storage for-
mat where all data and their changes are recorded uniformly
as logs in time order. As a result, there is no merge operation
needed. To speed up the random reads, we maintain an in-
memory buffer pool for log nodes and organize these nodes
into an in-memory B+-tree for exact match as well as range
searches on the keys.

III. DESIGN AND IMPLEMENTATION

In this section, we present the design and implementation
of FlashTKV.

MEMORY

Node Buffer Pool

DISK

Log Write Buffer

Node Buffer Mapping Table
Node ID Buffer ID

... ...

HeadTail

.  .  .
.  .  .

IN

LN

VN

LN

VN

.  .  .

.  .  .

.  .  .

IN IN

VN VN

IN

LN

VN

LN

VN

.  .  .

.  .  .

.  .  .

IN IN

VN VN

.  .  . .  .  .

Data Logs

Figure 1: FlashTKV Storage

A. System Overview

Figure 1 illustrates the storage design in FlashTKV. On
disk, we store all KV-pairs in data logs in the order of time
when an insertion/deletion/update happens. For efficiency,
we use an in-memory ring buffer as the log write buffer to
batch up the tail of the data logs and write them to disk
when the buffer is full or when transactions commit.

Since data logs are written in time order to the disk
whereas KV-pair operations are based on keys, we use
an in-memory buffer to cache frequently accessed KV-
pairs. Furthermore, to support lookups and range searches
efficiently, we maintain a B+-tree index for each set of
KV-pairs. Specifically, we store the keys in LNs (Leaf
Nodes) and the values in VNs (Value Nodes), and create

INs (Internal Nodes) to form a tree. We separate keys and
values in memory because the sizes of values may vary
greatly. Since the nodes are variable-sized, multiple nodes
may reside on a single buffer page, and large nodes may
span over multiple pages. A retrieval on a B+-tree in this
node buffer pool will start from the root, find the node ID
of the child by the search key, use the node buffer mapping
table to find the buffer page that contains the child node,
and go down the tree iteratively until it finds the value node
in the buffer or on disk or reports the non-existence of such
a key in the database.

Transactional KV Interface

B-tree Manager

Node Buffer Manager

T
ra
n
s
a
c
tio
n
 M
a
n
a
g
e
r

Data Log Manager

KV-store 
Functions

KV-pair 
Functions

Transactin 
Control 
Functions

FindLN(Key)
/

 FindLNForInsert(Key)

Target LN
,

Slot Number

SI Check Functions
(Txn, TargetVNLSN) Correct Version VN

GetNodeByIDorLSN
(NodeID, LSN)

GetVNByIDandOffsetorLSN
(NodeID, Offset, LSN)

IN/LN

VN

CreateIN/LN

CreateVN
(Value)

IN/LN,
LSN

VN,
LSN, 
Offset

GetLogEntryByLSN
(LSN)

LogEntry
LogNode

(IN/LN/VN, Txn)
LSN

GetVNByLSN
(LSN)

VN

LogCommit
/

LogAbort
LSN

Request Return

TxnCommit / TxnAbort Success / Failure

Figure 2: FlashTKV System Architecture

FlashTKV consists of five main components as shown
in Figure 2. All the changes of the KV-pairs are stored
in data logs and appended to the disk through the Data
Log Manager. To support search on the KV-pairs, the
B+-tree Manager builds B+-trees for all the KV-pairs
using their keys. Frequently visited KV-pairs are kept in
the RAM in the form of nodes in the node buffer pool
maintained by the Node Buffer Manager. The Transaction
Manager manages transactions of KV-pair operations. It
utilizes MVCC to provide SI (Snapshot Isolation) for all
transactions. By introducing a few more types of data logs
in the Data Log Manager for storing all the information
of transactions, data logs can be used to not only store KV-
pairs but also provide transaction support. All the available
functions in FlashTKV are provided by Transactional KV
Interface. We discuss the five components in the following
sections.

B. Transactional KV Interface

The transactional KV interface provides the interface of
KV-store functions (create, open or close the KV-stores),
KV-pair functions (transactional retrieval, insertion, update
and deletion of KV-pairs), transaction control functions
(start, abort and commit a transaction). It calls the B+-tree

7Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation



manager and the transaction manager to implement all the
functions. The Database in FlashTKV is a directory in the
file system. Each set of KV-pairs of the same schema are
stored in a TupleStore. A database may contain multiple
TupleStores.

C. B+-tree Manager

The KV-pairs in one TupleStore are stored in one B+-tree.
The B+-tree in FlashTKV has three types of nodes, IN, LN
and VN. As shown in Figure 3, all keys are stored in the
LNs, all values are stored in the VNs. One LN contains
multiple keys whereas one VN contains only one value.
The B+-tree manager relies on the node buffer manager to
maintain the memory space used by all nodes.

Node Buffer Pool

VN

LN

INID5

Key1 ...

ID1

Value1

...

ID3

Key1 ...

ID2 ...

LSN1 ...

...

...

...

ID2

Key1 ...

ID1 ...

LSN2 ...

Key2

ID4

LSN3

ID4

Value2

...

...

...

...

...

...

...

...

Offset1 ...Offset2 ...

Children Keys

Children IDs

Children LSNs

Children Offsets

Node ID

Children Keys

Children IDs

Children LSNs

Node ID

.  .  .

.  .  .

Value

Node ID

Buffer 
ID 2 ... ... 5

... ... ... ... ...

... ... ... ... 15
.
.
.

... ... ... ... 45

.

.

.

B-tree Structure
Node Buffer Mapping Table

Node ID Buffer ID

ID5 2

ID3 5

ID2 15

ID1 45

ID4 45

... ...

.  .  .

.  .  .

!!! ......

... ......

Figure 3: The B+-tree Structure and Node Buffer Pool
Layout for Sequential Storage in FlashTKV

To support the sequential storage and MVCC, the B+-
tree in FlashTKV has a few unique features compared to the
standard B+-tree. The standard B+-tree uses one identifier,
the node ID, which is the same as the page ID in the page-
based storage, as the persistent pointer to locate a node in
memory and on disk. However, such identifier is not enough
to locate the node on disk in the sequential storage because
writing an updated node to the disk is to append a new log
to the disk, which means the physical position of the node
on disk is changed. Therefore, the B+-tree for the sequential
storage uses the LSN of the node on disk as the persistent
pointer. Moreover, the node size is flexible because all the
data of the nodes are stored in data logs. Considering the
maintenance cost and the efficiency of the memory access,
we set the size of the IN/LN/VN to the size of a node buffer
in the node buffer pool. We discuss the details of the memory
allocation in Section III-D. Lock coupling [17] is used to
provide high concurrency in INs while LNs and VNs can be
accessed by multiple transactions. Furthermore, we perform
opportunistic split: we split all full nodes on the search path

for the insertion. Thus, latches can be obtained strictly from
top down so that deadlocks can be avoided.

The biggest drawback of such design is the update effi-
ciency. More specifically, when a VN is inserted or updated,
its parent LN also needs to be updated because one of
the LN’s children LSNs changes and such updates will
propagate up all the way to the root. We call this the update
propagation problem. To overcome this problem, we write
the log for the new VN and update the corresponding child
LSN in the LN but only mark the status of the slot for
the new VN in the LN dirty without writing logs for the
updated LN immediately so that the update propagation is
prevented. The logs for the updated IN/LN are written only
when the IN/LN is evicted from memory. This treatment
does not lose any change in data because the logs for the
VNs already contain the whole KV-pair.

D. Node Buffer Manager

The node buffer manager is responsible for maintaining
the memory space used by the nodes in the B+-tree and
returning the memory address of the requested IN/LN or VN.
As shown in Figure 3, the node buffer pool is a large chunk
of memory, with each unit called a node buffer. Compared
to a buffer manager for the page-based storage, it has some
unique features.

The node buffer manager allocates exactly one node
buffer for each IN/LN but multiple VNs can be stored in
a single node buffer. This different treatment is because (1)
the numbers of INs/LNs are much fewer than VNs in the
memory because of the tree structure; (2) the size of each
VN varies. The maximum size of the VN is limited to the
size of a node buffer, and we put multiple VNs into a single
node buffer to save memory space.

When the node buffer pool is full, we use an LRU
algorithm to choose a node buffer for eviction. Such LRU
may choose a node buffer for IN to swap out while some of
the node’s children are still in the buffer pool and marked
dirty. Since we must guarantee its latest version is written
on disk when a node is evicted from the node buffer pool,
we must write all its dirty children to disk to get their latest
LSNs before writing the parent node. This process happens
recursively until all the dirty nodes in the subtree rooted
at the victim IN are written to disk. As a result, we can
free all the node buffers for all the INs/LNs in this subtree.
Note that the node buffers for the VNs in this subtree are
not evicted because they may contain frequently visited VNs
from other LNs. The node buffers for VNs are evicted only
when the replacement algorithm chooses them as victims,
which indicates all of VNs in this buffer are not recently
used.

E. Data Log Manager

The data log manager is responsible for (1) transforming
B+-tree nodes into data logs and writing them onto the disk,

8Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation



and (2) reading data logs from the disk and transforming
them to B+-tree nodes. Figure 4 shows all types of data logs
in FlashTKV. The data log manager maintains a global log
write buffer. The data logs to be written to disk are appended
in the buffer and the buffer is flushed to disk when (1) the
size of the existing data logs that have not been flushed
exceeds the size of a flash erase block or (2) a transaction
commits. The size of the buffer is an integral multiple of
the flash erase block size. We organize the buffer as a ring
buffer which further saves read I/O cost in the retrieval of
the last committed version of a KV-pair in SI transactions.
In addition, we implement the group commit algorithm to
further increase the write I/O efficiency.

EntryType EntrySize PrevOffsetLogEntryHeader

LOG_VN StoreID PrevVerLSN NodeID KeyLen ValueLen Key Value

LOG_LN StoreID ObsoleteLSN NodeID nEntries KeyLen[1] Key[1] LSN[1] KeyLen[n] Key[n] LSN[n]...

LOG_IN StoreID ObsoleteLSN NodeID nEntries KeyLen[0] Key[0] LSN[0] KeyLen[n] Key[n] LSN[n]...

LOG_LN_DELTA StoreID LastFullLSN nDeltas KeyLen[1] Key[1] LSN[1]

KeyLen[n] Key[n] LSN[n]

...Status[1]

Status[n]

LOG_TXN_COMMIT TxnID CommitTime LastLSN

LOG_TXN_ABORT TxnID AbortTime LastLSN

LOG_CKPT_START StartTime CheckpointID

LOG_CKPT_END EndTime CKPTStartLSN FirstActiveLSNCheckpointID LastStoreID LastTxnID

ObsoleteLSN

LOG_VN_TXN StoreID PrevVerLSN TxnID LastLoggedLSN NodeID KeyLen ValueLen Key ValueLastCommittedLSN

LOG_TS_MAP numTS

LastNodeID TSMapLSN

TSid[1] TSname[1] TSrootLSN[1] TSid[numTS] TSname[numTS] TSrootLSN[numTS]...

Figure 4: The Format of All Types of Data Logs

1) Data Logs for B+-tree Nodes: We have five types
of data logs to store three kinds of B+-tree nodes. Both
LOG_VN and LOG_VN_TXN are for the VNs. The dif-
ference between them is that LOG_VN_TXN is for the
VNs inserted or updated by user-defined transactions. The
PrevVerLSN in LOG_VN and LOG_VN_TXN is the LSN of
the data log for the previous version of the VN. LOG_LN,
and LOG_IN are for LNs and INs, respectively. The Ob-
soleteLSN is the LSN of the previous version of the corre-
sponding LN or IN. The difference between LOG_IN and
LOG_LN is that the IN has nEntries + 1 children (IN or
LN) but the LN has nEntries children VNs.

We further optimize the data logs for LNs because we
found it is inefficient to log the entire dirty LN every time
it is evicted from the buffer pool because only a few slots
of the LSN array or the children ID array are dirty. We
introduce a LOG_LN_DELTA log which contains only the
updated part of the LN since its last LOG_LN log on disk.
We use a simple I/O cost estimation to decide which type
of log for LNs to use. Table II shows the total I/O time of
writing either type of the logs and reading the LN back based
on the number of the dirty entries to be written in a delta

log. If Wdelta +Rdelta < WLN +RLN , LOG_LN_DELTA
is chosen; otherwise, LOG_LN is chosen.

Table II: Total I/O Time Estimation for Deciding Which Log
to Use

Write I/O Time Read I/O Time

DELTA Wdelta =

(
NdirtySLN

NLNSfp

)
TSW Rdelta = 2TRR

FULL WLN =

(
SLN
Sfp

)
TSW RLN = TRR

Sdelta: the size of the delta log
SLN : the size of the log of the full version LN
Sfp : the flash page size of the flash SSD in use
Ndirty : the number of the dirty entries since last full
version of the LN
NLN : the total number of entries of LN
TSW : I/O time of write a flash page sequentially
TRR : I/O time of read a flash page randomly

When the LN is later reconstructed from a
LOG_LN_DELTA, the dirty entries in it are still marked
dirty in the LN. This marking is necessary because later
if we decide to log the LOG_LN_DELTA again, we
still need to log the previous dirty slots. An LN can be
reconstructed either directly from (1) an LOG_LN or (2) an
LOG_LN_DELTA and the LOG_LN. We need at most two
random read I/Os to reconstruct an LN. Considering disk
space cost, we set the maximum number of consecutive
LOG_LN_DELTA logs for each LN as a configurable
parameter.

2) Snapshot Isolation (SI) Support: To support SI trans-
actions, we log the KV-pairs updated or created by SI
transactions as LOG_VN_TXN. It has a similar format to
LOG_VN except it contains some transactional information
of the VN. More specifically, LastLoggedLSN is the LSN of
the previous data log that belongs to the same transaction
as the current log. LastCommittedLSN in LOG_VN_TXN
is the key field to provide MVCC support in the sequential
storage: it is the LSN of the last committed version of the
VN before the transaction which generates this log starts.
We discuss how this field helps implement SI in transaction
processing in Section III-F.

F. Transaction Manager
One of the most important features of FlashTKV is its

efficient support of Snapshot Isolation (SI).The SI for a KV-
store means a transaction T never sees the modifications of
KV-pairs done by other transactions that start later than T .
Since the LSN used by the entire system is monotonically
increasing, we use it as the timestamp to decide the order of
transactions. More specifically, when a transaction starts, we
use its first LSN as the start timestamp of the transaction.

1) KV-pair Operations in SI Transactions: Because
all the KV-pairs in FlashTKV are contained in
LOG_VN/LOG_VN_TXN logs, the transactional KV-
pair operations only affect the access of LNs and VNs. For

9Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation



the KV-pair retrieval, the correct version of the KV-pair
is located by following the PrevVerLSN in the logs.
For the KV-pair insertion/update/deletion, the VN with
new value is logged using LOG_VN_TXN. It contains
LastCommittedLSN, the LSN of the last committed version
of this VN to be seen by this SI transaction, TxnID, and
LastLoggedLSN. These fields are used later to (1) check
whether the transaction can commit or not and (2) undo the
aborted transaction.

2) Transaction Commit: We adopt the First-Committer-
Wins rule[18] to decide whether a transaction can be com-
mitted or not. In FlashTKV, the rule requires that an SI
transaction T can commit only if all the KV-pairs it wrote are
not written by any other committed transactions that started
later than T . More specifically, when an SI transaction wants
to commit, for each LOG_VN_TXN it generates, we check
the corresponding VN to see if the LastCommittedLSN is
the same as that in the data log. If all of them are the
same, the SI transaction can commit, otherwise, FlashTKV
automatically aborts it. If a transaction commits, we write a
LOG_TXN_COMMIT log to the log write buffer and flush
it.

3) Transaction Abort: To abort an SI transaction, we must
undo all the changes the transaction made. Before the undo,
we add a LOG_TXN_ABORT log and flush it to make
sure the transaction will be aborted even if a crash happens
during the undo. More specifically, for each LOG_VN_TXN
it generates, if the current LSN of the corresponding VN is
the same as the LSN of the data log, we set its LSN to the
PrevVerLSN in the data log.

G. Checkpoint and Recovery

The recovery of FlashTKV is quite different from those
storage systems that contain data pages: It involves rebuild-
ing the B+-tree with all KV-pairs updated or inserted by
committed transactions. Similar to the traditional DBMSs,
we do checkpointing to help reduce the recovery time.

The checkpointing in FlashTKV flushes the following
data logs to disk: (1) the LOG_CKPT_START log, (2) the
LOG_LN log for a dirty LN, and the LOG_IN logs for the
INs that are ancestors of a dirty LN, (3) the LOG_TS_MAP
log, and (4) the LOG_CKPT_END log.

The recovery in FlashTKV starts by a backward scan of
the data logs. The scan stops immediately after find the
most recent checkpoint. Then, starting from the end of the
checkpoint, we scan the data logs forward to replay all the
data logs for INs/LNs to reconstruct them. Finally, we start
from the FirstActiveLSN in the LOG_CKPT_END log to
undo (redo) all the VN logs from uncommitted (committed)
transactions.

H. Garbage Collection

In FlashTKV, the data logs for INs/LNs/VNs may become
obsolete when the corresponding nodes are updated. To

recycle the disk space used by those obsolete data logs,
we perform garbage collection (GC) on those log files in
which most of the data logs are obsolete (default is 70% in
FlashTKV). BDBJE proposed a solution to recycle a data
log file in the sequential storage scheme: the system copies
the non-obsolete data logs in the file to a new place before
erasing the entire file. However, this requires the exclusive
locks on those data logs which violates the design principle
of FlashTKV that reads are never blocked. In addition, we
cannot block all the SI transactions during the GC because
FlashTKV is designed for OLTP workloads that usually have
response time requirement (such as TPC-C). Therefore, there
are two main challenges for doing GC in FlashTKV: (1) how
to determine whether a data log is recyclable when there
are some active SI transactions and (2) how to recycle a file
without exclusive locks.

We propose a novel approach to do GC in FlashTKV.
For the first challenge, we observe that if the up-to-date
version of the data is already visible to the oldest active
transaction, all the previous versions of the data are safe to
be recycled. Therefore, we use an array, called GC-array,
to keep track of all committed updates (old and new LSNs).
The old versions of the data are marked obsolete only when
the up-to-date versions of the data are visible to the current
oldest active transaction. For the second challenge, we treat
the copying of unrecyclable data logs as the update of the
corresponding INs/LNs/VNs with the some content, and
group those updates into a normal SI transaction, called GC-
transaction. As long as GC-transaction commits, the log file
can be erased. GC-transaction always restarts automatically
when it aborts because of other SI transactions. Note that
the abortion may not only happen to the GC-transaction,
but also the user transactions due to the commit of the GC-
transaction under First-Committer-Win rule. However, our
experiments show that the number of transaction abortion
caused by GC-transaction (<0.04%) is neglectable compared
to the normal abortion rate for TPC-C (≈0.5%). Details can
be found in Section V-E.

IV. I/O COST COMPARISON

We compare the time cost of all the I/O operations in tra-
ditional page storage scheme and sequential storage scheme
in Table III. We only discuss the I/O operations during
the normal execution. In other words, the I/O during the
recovery, checkpoint, and garbage collection is not included
because these operations are not frequently executed. The
comparison is based on the workloads that do not involve
any scan and all queries can be processed through indices,
e.g. TPC-C.

In a traditional storage scheme, data pages contain all
the data and transaction logs are stored separately. Under a
transactional read-write workload, the database system using
the traditional storage scheme may produce physical I/Os in
three ways during the normal execution: (1) Page read due to

10Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation



Table III: Comparison of I/O Operations in Page Storage
and Sequential Storage

Storage Scheme I/O Operation I/O Time
Page Storage Dirty Page Flush TRW

Txn Log Flush TSW

Page Read TRR

Sequential Storage Data Log Flush TSW

Data Log Read TRR

TSW : I/O time of writing a flash page sequentially
TRR : I/O time of reading a flash page randomly
TRW : I/O time of writing a flash page randomly

page buffer miss (random read), (2) dirty page flush (random
write) and (3) transaction logs flush (sequential write). In
our sequential storage scheme, however, there are no data
pages, instead, data is encapsulated in the data logs. As a
result, there are only two ways to produce physical I/Os: (1)
Data logs read due to node buffer miss (random read) and (2)
data logs flush (sequential write). Note that the random write
I/Os generated by flushing dirty pages in the page storage
scheme no longer exist in the sequential storage. This is
because all the updates are transformed into data logs which
are appended to the log write buffer sequentially.

V. EXPERIMENT

In this section, we first compare the performance of the
sequential storage scheme and the traditional page-based
storage scheme on synthetic workloads with different read-
write ratios. Then we quantify the performance impact of
the locking-based concurrency control on the flash SSDs
under workloads with different degrees of read-write lock
contentions. Finally, we compare the overall performance
of our FlashTKV with two well-known KV-stores, Berkeley
DB (which uses the page-based storage) and Berkeley DB
Java Edition (which uses the sequential storage).

A. Experimental Settings

1) Hardware: All of our experiments run on a Dell
R410 server with a 2.7GHz Intel Xeon E5520 CPU and
8GB RAM. In the server, we have a 150GB 15000RPM
magnetic disk connected with the SAS interface, and a
64GB Intel X25-E flash SSD [19] connected through the
SATA interface. The hardware specification and detailed I/O
performance of the storage devices are listed in Table I.

2) Software: The operating system is CentOS 5.2 Final
(kernel version 2.6.18-92.el5). We use Ext3 of Linux as the
default file system and the file system cache is disabled
to stress the I/O performance. GLib 2.30 is used in the
FlashTKV library. For comparison, we use BerkeleyDB
(BDB) 5.0.32 and BerkeleyDB Java Edition (BDBJE) 4.0.71
as the representatives of the page storage and sequential
storage accordingly. We modify an existing TPC-C [20] im-
plementation [21] to work for FlashTKV, BDB and BDBJE.

Table IV: Workloads for I/O Time Comparison of The Page-
based Storage and The Sequential Storage

Workload No. of Retrievals No. of Updates
A1 10,000 0
A2 7,500 2,500
A3 5,000 5,000
A4 2,500 7,500
A5 0 10,000

Table V: Workloads for Comparing MVCC and Locking On
Flash SSDs

Workload Key Range For Retrieval
B1 1 - 8000
B2 1 - 4000
B3 1 - 1000

3) Workloads: The workloads used for comparing the
page storage and sequential storage are listed in Table IV.
The synthetic workloads are generated in a database with
100 million key-value pairs (around 10GB in size). The
benchmark is a single-threaded program that generates a
sequence of KV-pair retrieval/update (read/write) operations
with random keys in BDB or FlashTKV with every 10
operations forming a transaction. We modify the source
code of BDB and FlashTKV so that it can count the total
number of each kind of operations listed in Table III and we
observe almost no performance degradation caused by the
modification compared with the original system. Both BDB
and FlashTKV have a 2GB memory buffer (page buffer/node
buffer) and a 30 minutes warm-up time before counting the
operations. The counting lasts for 10,000 KV-pair operations
for all the workloads.

The workloads used for comparing MVCC and locking on
flash SSDs are listed in Table V. The workload is generated
in a database with 10,000 key-value pairs (around 1MB
in size). The workload consists of the writer threads and
the reader threads. Each writer thread is responsible for
repeatedly updating a subset of KV-pairs. The key range
of the KV-pairs each writer thread updates is equal to the
number of KV-pairs divided by the number of the writer
threads so that we can guarantee there are no write-write
conflicts. In our case, every writer thread updates 100 KV-
pairs. Each reader thread continuously picks one KV-pair
with a random key to retrieve and each retrieval operation
forms a read-only transaction. In our experiments, we change
the key range of the retrieval operation to get different
degrees of read-write conflicts. Note that we use a 100MB
buffer which is much larger than the data size (1MB) so
that there are no other write I/Os than the transaction logs
flush. The big buffer also guarantees that there is always
enough space in the buffer to hold the old versions for
MVCC. Furthermore, we bring all the KV-pairs into the
buffer before measuring the total time of the workloads so
that we can eliminate the impact of the read I/O caused by

11Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation



��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
��� ��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
�����

���
���
���
���
���

���
���
���
���
���
���

���
���
���
��� ��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

���
���
���
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
������
���
���
���
���
���

���
���
���
���
���
���

����
����
����
���� ��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
�����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
������
���
���
���
���
���

���
���
���
���
���
���

����
����
����
���� ��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
����

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
�����

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���

��
��
��
��

����
������������

������

  0

  2,000

  4,000

  6,000

  8,000

  10,000

  12,000

  14,000

  16,000

F
la

sh
T

K
V

B
D

B

F
la

sh
T

K
V

B
D

B

F
la

sh
T

K
V

B
D

B

F
la

sh
T

K
V

B
D

B

F
la

sh
T

K
V

B
D

B

#
 o

f 
O

p
er

at
io

n
s

Workloads

A1 A2 A3 A4 A5

Data Log Flush

Data Log Read

Txn Log Flush

Dirty Page Flush

Page Read

(a) Total Number of Different I/O Operations in
Berkeley DB and FlashTKV

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���
�����
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���

����
����
����
����

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
����

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��

���
���
���

���
���
���

���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���

����
����
����
�������

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

��
��
��

��
��
��

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��

����
����
����

����
����
����

���
���
���
������
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
�����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��

����
����
����
����

����
����
����
����

���
���
���
���

��
��
�
�
�
�
��

����

  0

  500

  1,000

  1,500

  2,000

  2,500

  3,000

  3,500

  4,000

F
la

sh
T

K
V

B
D

B

F
la

sh
T

K
V

B
D

B

F
la

sh
T

K
V

B
D

B

F
la

sh
T

K
V

B
D

B

F
la

sh
T

K
V

B
D

B

E
st

im
at

ed
 I

/O
 T

im
e 

(m
s)

Workloads

A1 A2 A3 A4 A5

Data Log Flush

Data Log Read

Txn Log Flush

Dirty Page Flush

Page Read

(b) Estimated I/O Time of Berkeley DB and
FlashTKV on The Flash SSD

(c) Comparison of Estimated I/O Time and Execu-
tion Time on The Flash SSD

Figure 5: Page-based Storage v.s Sequential Storage

the buffer miss in the locking-based system and focus on
the lock waiting time and the I/O time of the transaction
log flushes.

Table VI: TPC-C Workload Settings

Workload Scale Database Size Buffer Size
C1 100W 12GB 512MB
C2 100W 12GB 2GB
C3 100W 12GB 4GB
D1 100W 12GB 4GB
D2 200W 24GB 4GB
D3 300W 37GB 4GB

The workloads used to measure the overall performance
are described in Table VI. TPC-C workloads have a large
number of concurrent random read/write operations. There
are three types (C1, C2, C3) of TPC-C workloads with
a fixed database size and different buffer sizes. There are
another three types (D1, D2, D3) of TPC-C workloads with
a fixed buffer size and different database sizes. Note that by
default, FlashTKV uses MVCC for transaction processing,
therefore we show the performance of the locking-based
FlashTKV only to quantify the impact of the programming
language of the storage systems when comparing with
BDBJE.

B. Comparison of The Page-based Storage and The Sequen-
tial Storage

To quantify the benefit of using the sequential storage
instead of the page-based storage on flash SSDs, we count
the total number of each operation listed in Table III under
synthetic workloads with different read-write ratios. Figure
5a shows the total number of each kind of operations listed
in Table III under the synthetic workloads described in Table
IV. Under the synthetic workloads, both BDB and FlashTKV
have a similar buffer miss rate since they use the same buffer
replacement policy, LRU. Because the read-only workload
does not generate any LN delta logs, the numbers of the
page read I/O and the node read I/O number are almost

the same. This indicates even FlashTKV uses an entirely
different storage scheme from BDB, the node-based buffer
strategy can achieve a similar performance to the traditional
page-based buffer strategy. As the workload becomes more
write-intensive, the dirty page flush in the BDB increases but
the transaction log flush remains the same because we only
flush the transaction logs when the transaction commits and
the number of transactions for each workload is the same. In
FlashTKV, the number of data log reads for buffer miss also
increases when the workload becomes write-intensive. This
increase is because LN delta logs may incur one to two data
log reads for each LN retrieval. However, this increase is
moderate because LNs are likely to be hold in the memory.
Different from BDB where the number of transaction log
flushes remains almost the same, the number of data log
flushes in FlashTKV increases slightly because LNs may
also be flushed to the data log.

Based on the I/O performance of the flash SSD we use, we
can derive the three hardware-related parameters in Table III
by taking the read/write latency into account, in the worst
case, TRR = 103µs, TRW = 388µs, TSW = 108µs. We
then calculate the total I/O time of the workloads shown in
Figure 5a according to Table III. As shown in Figure 5b, by
avoiding the random writes, the most expensive operations in
the flash SSD, FlashTKV can achieve a higher performance
than BDB under read-write workloads on the flash SSD.
More specifically, the more write-intensive the workload
is, the more performance speedup FlashTKV gains over
BDB, e.g., about 3x speedup for the write-only workload.
We compare the estimated I/O time and the execution time
of BDB and FlashTKV on all the workloads in Figure
5c. The difference between the estimated I/O time and the
execution time for each storage engine can be accounted
to the CPU and memory access time. The difference is
small, which indicates that in both FlashTKV and BDB,
the total execution time is dominated by I/O time. In both
engines, our estimated I/O time follows the trend of the total

12Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation



execution time.

C. MVCC Versus Locking

To quantify the negative impact of the read-write lock
contention on the flash SSD, we implement a small bench-
mark to compare the performance drop when increasing the
degree of the read-write conflict.

  0

  2,000

  4,000

  6,000

  8,000

  10,000

  12,000

  14,000

B3−SSDB2−SSDB1−SSD

E
la

p
se

d
 T

im
e 

(m
s)

BDB LOCK

BDB MVCC

FlashTKV LOCK

FlashTKV MVCC

(a) Comparison of MVCC and Lock-
ing on SSD with Degree of The Read-
write Conflict Varied

  0

  10,000

  20,000

  30,000

  40,000

  50,000

B3−DiskB2−DiskB1−Disk

E
la

p
se

d
 T

im
e 

(m
s)

BDB LOCK

BDB MVCC

FlashTKV LOCK

FlashTKV MVCC

(b) Comparison of MVCC and Lock-
ing on Disk with Degree of The Read-
write Conflict Varied

Figure 7: MVCC v.s Locking

Figures 7a and 7b show the total elapse time of BDB and
FlashTKV running the workloads in Table V on the SSD and
the magnetic disk. Note that in the order of workload B1,
B2, and B3, the degree of the read-write conflict increases.
Under all of these three workloads, with the same storage
engine, locking always outperforms MVCC on the magnetic
disk. This is because the random read performance is much
worse than the sequential write performance on the disk. As
a result, the I/O time spent on the random reads for multiple
versions of data in MVCC is more than the time of waiting
for the log flushes (sequential writes). In contrast, on the
flash SSD, the MVCC version always wins. This is because
on the SSD, the random reads for multiple versions of data
cost much less than waiting for the sequential writes. This
result suggests that on the flash SSD, MVCC is better than
the locking-based concurrency control under workloads with
read-write conflicts.

D. Overall Performance

We compare the overall performance of our FlashTKV
with a sequential storage engine (BDBJE) and a page-
based storage engine (BDB with MVCC) by measuring the
throughput under TPC-C workloads with different database
sizes and buffer sizes. As shown in Figure 6a, on the
flash SSD, MVCC-based FlashTKV always outperforms
other storage engines. However on the disk, MVCC-based
FlashTKV has a similar performance to others, and is even
worse when the buffer gets larger. This is because the extra
read I/Os used to retrieve old versions of KV-pairs cannot
be saved by increasing the buffer size.

Figure 6b compares the performance among the storage
engines with different numbers of warehouses. BDBJE and
locking-based FlashTKV are very similar in both the storage
scheme and concurrency control approach, but there is
about 20% performance difference in D3 workload. This
performance difference is mainly due to the platform (Java
versus C) and implementation. Furthermore, as shown both
in Figure 6a and 6b, the flash SSD substantially helps
increase the overall throughput of the storage engines. Due
to the poor performance of the random read on the magnetic
disk, the performance of the sequential storage engines,
including both BDBJE and FlashTKV, is even worse than
the page-based storage engine BDB on the magnetic disk.
On the SSD, however, FlashTKV outperforms the other
two storage engines, achieving a speedup of 1.68x over
BDB, and 1.54x over BDBJE. We count the numbers of
the I/O operations in FlashTKV under Workload D1 for
five minutes and compare the estimated I/O time with the
execution time in Figure 6c. As one can see, the estimated
I/O time is 73% and 82% of the execution time in locking-
based FlashTKV and MVCC-based one, respectively. This
indicates that the TPC-C workload in FlashTKV is still
I/O dominant. Therefore, the performance improvement is
mainly because the I/O time is reduced in the sequential
storage.

  0

  5,000

  10,000

  15,000

  20,000

  25,000

  30,000

  35,000

  40,000

  45,000

C3_DISKC2_DISKC1_DISKC3_SSDC2_SSDC1_SSD

T
h
ro

u
g
h
p
u
t 

(T
ra

n
sa

ct
io

n
s/

M
in

u
te

)

BDB LOCK

BDB MVCC

BDBJE

FlashTKV LOCK

FlashTKV MVCC

(a) Throughput Comparison among Different Stor-
age Engines with Varied Buffer Size

  0

  5,000

  10,000

  15,000

  20,000

  25,000

  30,000

  35,000

  40,000

  45,000

D3_DISKD2_DISKD1_DISKD3_SSDD2_SSDD1_SSD

T
h
ro

u
g
h
p
u
t 

(T
ra

n
sa

ct
io

n
s/

M
in

u
te

)

BDB LOCK

BDB MVCC

BDBJE

FlashTKV LOCK

FlashTKV MVCC

(b) Throughput Comparison among Different Stor-
age Engines with Varied Database Size

  0

  50

  100

  150

  200

  250

  300

  350

  400

FlashTKV−MVCCFlashTKV−LOCK

T
im

e
 (

s)

Estimated I/O Time

Execution Time

(c) Comparison of Estimated I/O Time and Execu-
tion Time of FlashTKV on SSD under Workload
D1

Figure 6: Overall Performance Comparison

13Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation



E. Garbage Collection

Since GC in FlashTKV may introduce more transaction
abortion, we quantify the impact of GC on the overall
performance by counting the total number of transaction
abortion because of the GC-transaction. We run the TPC-C
workload C3 with and without GC for 2 hours.

Table VII: Comparison of The Transaction Abortion under
Workload C3 with And without GC

Without GC With GC
Total # of Transactions 5,181,842 5,166,385

New-Order Abortion 24,974 25,753
GC-transaction Abortion / 504

Other transactions Abortion / 608
Overall Abortion Rate 0.48% 0.52%

As shown in Table VII, without GC, there is a 0.48%
abortion rate for New-Order transactions in TPC-C and no
abortion of other transactions. With GC, the number of New-
Order transaction abortion slightly increased. In addition,
the GC-transaction and some other transactions (such as
Payment or Delivery) also have abortion. However, the total
abortion rate of all the transactions only increased 0.04%
which is neglectable compared to that without GC.

VI. CONCLUSION AND FUTURE WORK

In conclusion, we have presented the design and imple-
mentation of FlashTKV, a transactional KV-store optimized
for flash-based solid state drives. The two main features
of FlashTKV are (i) a sequential storage format that stores
logs as data and also incorporates transactional information;
(ii) Snapshot Isolation transaction support through MVCC
on the sequential storage. We have evaluated FlashTKV in
comparison with both BerkeleyDB C version (BDB), which
has a page-based storage layout, and Java version (BDBJE),
which has a sequential storage layout with locking based
concurrency control. Our results show that, under TPC-C
workloads, while FlashTKV is slightly worse than BDB with
locking on magnetic disks, it outperforms its competitors by
70% in throughput on flash SSDs. Based on these results,
we believe that our sequential storage format with MVCC is
a promising approach for transactional key-value stores on
flash disks.

REFERENCES

[1] D. Tsirogiannis, S. Harizopoulos, M. A. Shah, J. L. Wiener,
and G. Graefe, “Query Processing Techniques for Solid State
Drives,” in SIGMOD Conference, 2009, pp. 59–72.

[2] Y. Ou, T. Härder, and P. Jin, “CFDC: A Flash-aware Replace-
ment Policy for Database Buffer Management,” in DaMoN,
2009, pp. 15–20.

[3] Y. Lv, B. Cui, B. He, and X. Chen, “Operation-aware Buffer
Management in Flash-based Systems,” in SIGMOD Confer-
ence, 2011, pp. 13–24.

[4] D. Agrawal, D. Ganesan, R. Sitaraman, Y. Diao, and S. Singh,
“Lazy-Adaptive Tree: An Optimized Index Structure for Flash
Devices,” PVLDB, vol. 2, no. 1, pp. 361–372, 2009.

[5] Y. Li, B. He, Q. Luo, and K. Yi, “Tree Indexing on Flash
Disks,” in ICDE, 2009.

[6] C.-H. Wu, L.-P. Chang, and T.-W. Kuo, “An Efficient R-
tree Implementation Over Flash-memory Storage Systems,”
in GIS, 2003, pp. 17–24.

[7] C.-H. Wu, T.-W. Kuo, and L. P. Chang, “An Efficient B-tree
Layer Implementation for Flash-memory Storage Systems,”
in RTCSA, 2003, pp. 409–430.

[8] S.-W. Lee and B. Moon, “Design of Flash-based DBMS: An
In-page Logging Approach,” in SIGMOD Conference, 2007,
pp. 55–66.

[9] B. Debnath, S. Sengupta, and J. Li, “FlashStore: High
Throughput Persistent Key-Value Store,” PVLDB, vol. 3,
no. 2, pp. 1414–1425, 2010.

[10] B. Debnath, S. Sengupta, and J. Li, “SkimpyStash: RAM
Space Skimpy Key-value Store on Flash-based Storage,” in
SIGMOD Conference, 2011, pp. 25–36.

[11] Oracle, “Berkeley DB Products,” 2010.

[12] M. Rosenblum and J. K. Ousterhout, “The Design and Im-
plementation of a Log-Structured File System,” ACM Trans.
Comput. Syst., vol. 10, no. 1, pp. 26–52, 1992.

[13] C. Manning, “YAFFS: The NAND-specific Flash File Sys-
tem,” 2002.

[14] D. Woodhouse, “JFFS: The Journalling Flash File System,”
in Ottawa Linux Symposium, 2001.

[15] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W. Kim,
“A Case for Flash Memory SSD in Enterprise Database
Applications,” in SIGMOD Conference, 2008, pp. 1075–1086.

[16] Oracle, “White Paper: Berkeley DB Java Edition Architec-
ture,” 2006.

[17] R. Bayer and M. Schkolnick, “Concurrency of Operations on
B-Trees,” Acta Inf., vol. 9, pp. 1–21, 1977.

[18] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J. O’Neil,
and P. E. O’Neil, “A Critique of ANSI SQL Isolation Levels,”
in SIGMOD Conference, 1995, pp. 1–10.

[19] Intel Corp., Intel X25-E SATA Solid State Drive Datasheet,
2008.

[20] TPC, TPC Benchmark C Standard Specification Revision 5.9.
Transaction Processing Performance Council, 2007.

[21] SYNAR, Simon Fraser University, “Tpc-c benchmark
on bdb,” <http://synar.cs.sfu.ca/systems/code/tpcc-bdb.tar>,
08.19.2012.

14Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation


