
MPI-based Solution for Efficient Data Access in
Java HPC

Aidan Fries∗ † ‡, Jordi Portell∗ † ‡, Yago Isasi∗ † ‡, Javier Castañeda∗ † ‡, Raül Sirvent§, and Guillermo L. Taboada¶
∗Department of Astronomy and Meteorology, University of Barcelona, Barcelona, (Spain)

†Institute for Space Studies of Catalonia (IEEC), Barcelona, (Spain)
‡Institute of Cosmos Sciences (ICC), Barcelona, (Spain)

afries@am.ub.es, jportell@am.ub.es, yisasi@am.ub.es, jcastapo@am.ub.es
§BSC-CNS Barcelona Supercomputing Center, Barcelona, (Spain). raul.sirvent@bsc.es
¶Computer Architecture Group, University of A Coruña, A Coruña (Spain). taboada@udc.es

Abstract—Efficient data access is extremely important for
many applications in HPC. In many cases, processes running
in one node will need to access data held in another node, as
well as access data held in some central storage device. In I/O-
intensive applications, accessing data not held in the local node
can become a bottleneck, especially in cases where the remotely
stored data is accessed repeatedly, and when accessing data from
virtual machines such as in Java. To address this issue, we have
designed and implemented a data cache system, which offers
efficient data access to Java applications in HPC. This system,
which we call MPJ-Cache, makes use of a Java-based message-
passing implementation, such as F-MPJ, and it provides a high-
level API for the accessing of data. MPJ-Cache can improve the
performance of I/O operations for certain Java applications in
HPC by reducing significantly the I/O overhead. In this paper, we
describe MPJ-Cache, including the data communication layer, as
well as the caching features of the system, and we show how it can
be used to improve I/O performance for HPC applications. The
comparative performance evaluation of this system against the file
system of the MareNostrum supercomputer (Barcelona Super-
computing Center) has shown important performance benefits.
Finally, we also show the impact of this solution on a challenging
problem such as the data processing system for the ESA Gaia
space mission.

Keywords-Java Communications; Data Cache; F-MPJ; Gaia;
GPFS; Myrinet

I. INTRODUCTION

A typical distributed-memory HPC environment includes
many computing nodes, each node containing one or more
processors and each processor containing one or more cores.
Each node may be connected to every other node over some
high-speed, low latency network, while each node may also
be connected to a central storage device.

In recent years, the most significant trends in distributed-
memory HPC environments have included the move towards
a larger number of cores per processor, an increased awareness
of the issue of power consumption and a massive growth in
the volume of data being handled. The increase in the number
of available cores will typically lead to an increase in the
number of parallel processes running in a computing node,
and therefore an increase in the number of processes accessing
data. These factors combine to make the issue of efficient data
access extremely important.

In the case of I/O-intensive applications, where the pro-
cesses running in the computing nodes may need to access
data stored in the shared storage device, I/O can become
a significant factor affecting the overall performance of the
application. The importance of I/O efficiency increases with
the number of parallel processes, and the problem is further
amplified if the data is accessed repeatedly.

MPI continues as the leading approach for implementing
inter-process communication in distributed memory environ-
ments, offering point-to-point as well as collective communi-
cation functions. However, despite the strengths and maturity
of MPI, writing applications that can take full advantage of
the resources of a distributed environment, such as a cluster of
computing nodes, can be quite difficult. In the case of complex
applications, where there may be strong dependencies between
processes running in different nodes, the programming effort
required to implement the communication can be considerable
and is often bug-prone.

The Client-Server model is a long established and intuitive
approach for making data available to a group of consumers.
In order to avoid the potential bottleneck issue associated
with many processes accessing a shared storage device, we
designed a data cache system, which we call MPJ-Cache. This
system involves the execution of Server processes in some of
the available nodes, which maintain a cache of data; while the
communication between the Clients and the Servers is built on
top of an implementation of Message Passing in Java (MPJ),
and can take advantage of any high-speed network support
provided by the underlying MPJ application.

Gaia [1] is a European Space Agency mission, whose pri-
mary objective is to chart a 3D map of around one billion stars
in our Galaxy. The Data Analysis and Processing Consortium
(DPAC) is the organisation with responsibility to process the
Gaia data. It is a policy within DPAC that all software should
be written in Java. The selection of Java for this kind of large,
scientific, data processing project is relatively uncommon.
Therefore, the Gaia data processing represents an opportunity
to study the use of Java to implement a scientific processing
pipeline, and its execution in a HPC environment. In this paper,
we will discuss two DPAC applications, both of which are
I/O-intensive and could benefit from the use of MPJ-Cache.

149

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-161-8



The first of these applications is GAia System Simulator
(GASS), which simulates the raw telemetry stream that will be
generated by the satellite during its mission lifetime. Secondly,
we will discuss Intermediate Data Updating (IDU), which is
one of the applications that will process real Gaia data.

The rest of this paper is organised as follows. In Section
II we give a general summary of the current status of Java
in HPC, and in particular, on the status of Java-based data
communication in HPC. In Section III, we describe the I/O
problems faced by I/O-intensive Java applications in HPC,
specifically the issue of I/O bottlenecks. Our solution to the
aforementioned problem is presented in Section IV, where we
briefly describe the communication layer of MPJ-Cache, as
well as the caching features of the system. In Section V, we
describe a set of tests designed to compare the performance
of our data cache against direct access of GPFS. The results
of these tests are given in Section VI. Finally, in Section VII,
we give our conclusions, and mention some further work that
we intend to carry out in this area.

II. RELATED WORK

Despite the continuing popularity of Java in general comput-
ing, and the many independent projects which have developed
extensions and libraries for Java applications in HPC, the use
of Java in HPC and by the scientific communities remains
relatively low. We conducted an investigation into the devel-
opments for Java in HPC over the last 15 years. We looked
at papers published, as well as libraries and tools that were
developed to aid the use of Java in HPC. It is clearly evident
that there was a very significant level of work in this area,
roughly speaking, during the period 1999 to 2003. This period
corresponds with the activity of the Java Grande Forum [5], a
initiative amongst the Java scientific community to investigate
possible additions to the Java language, and to encourage
its use in HPC and scientific communities. However, since
then, the number of papers and projects in this area has
reduced significantly, and the number of projects which are
actively developing or supporting libraries for Java in HPC
now appears quite low.

It is almost certainly the case that part of the reason for
the slow adoption of Java in HPC is simply due to the inertia
of moving from the languages which have traditionally being
used in the HPC and scientific computing communities such as
Fortran and C/C++. It is also due to the initial reputation that
Java acquired as providing poor performance due to it being
an interpreted language. Finally, part of the problem may also
be a lack of reliable and supported HPC-specific Java libraries
in areas such as data communication.

COMP Superscalar (COMPSs) [4] is a runtime environment
which allows for the automatic parallelisation of serial ap-
plications, for their execution in a HPC environment. This
process involves COMPSs analysing the application; identi-
fying tasks of a certain granularity within that application;
determining the dependencies between these tasks; generating
a task graph; and where possible, executing tasks in parallel.
COMPSs also manages the input and output for each task.

It is a powerful tool, allowing seemingly serial applications
to become parallel, and taking advantage of the available
HPC resources. However, it does not deal with the potential
bottleneck associated with many processes accessing a shared
storage device. Although COMPSs removes the issue from the
concern of user applications, COMPSs itself may encounter
I/O issues if it tries to distribute some data to a large number
of nodes. Also, there are circumstances when application
developers may prefer to maintain control of the actual flow
of data around the available hardware. Therefore, we believe
that another solution, dealing with the potential I/O bottleneck
and providing application developers with a high-level, HPC-
specific data-access API would be a useful contribution to Java
in HPC.

Based on our investigation into the available libraries which
provide data communication to Java applications in distributed
memory environments, the 3 most commonly used options are:
Sockets, RMI, and Message Passing. In this work we decided
to focus our work on the MPJ approach as it has been reported
to provide the highest performance in HPC applications on low
latency networks [7]. MPJ can be implemented in a number
of ways, including the use of Java RMI, Java Native Interface
(JNI) — to call an underlying native message passing library,
and also through the use of Java sockets. Each approach
has advantages and disadvantages in the areas of efficiency,
portability and complexity. The use of RMI assures portability,
as it is a pure Java solution. However, it may not be the
most efficient solution in the presence of any high speed
communication hardware, which RMI might not take full
advantage of. The use of JNI allows for the efficient use
of high-speed networks using native libraries, however it
has portability problems. Finally, the implementation of MPI
using Java sockets requires a considerable development effort.
Fortunately, we have identified implementations of MPJ: MPJ
Express [6] and F-MPJ [8], which are being actively developed
and supported. MPJ Express and F-MPJ both implement the
same specification of MPJ — mpiJava 1.2 [2] — so it is
easy to swap between these implementations.

III. THE PROBLEM

An important trend in HPC is the move towards an ever in-
creasing number of cores per processor, and consequentially an
increase in the number of processes that are typically executed
per computing node. The volume of data that these processes
must handle is also increasing. Despite the availability of high
performance storage devices and networks, the accessing of
data held in shared storage devices can act as a bottleneck in
the processing of data, if there are a large number of processes
accessing the data and if it is accessed repeatedly.

The objective of this work is to find an efficient and scalable
mechanism that allows for a large number of processes run-
ning in separate computing-nodes to be able to access some
remote data, where the I/O performance achieved is minimally
affected by the number of processes accessing the data.

150

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-161-8



A. Gaia data processing in MareNostrum

The following two applications, both of which are part of
the Gaia data processing task and will run on the MareNostrum
supercomputer at the Barcelona Super Computing Center
(BSC), represent different use-cases where the I/O problem
described in the previous section emerges as an issue.

1) GASS: During the simulation of the telemetry stream,
GASS has to process over 1 billion stellar sources. These
simulations require the use of many worker processes (thus
far, simulations involving over 3000 cores working simulta-
neously have been executed). These worker processes need to
repeatedly access a set of shared data-files during the execution
of GASS (such as spectra and instrument calibration files).
If all of the executing worker processes simply access these
files directly on the GPFS, then its performance decreases to
unacceptable I/O response times.

2) IDU: IDU itself is composed of several independent
tasks, which run in a particular sequence and which are
effectively independent serial applications. However, some of
these tasks have dependencies on the output from other tasks,
and the input for one task may come from the output of another
task which was executed in a different computing node.
Therefore data transfers are required between the execution
of each task in order to deliver the correct input data to the
correct process in the correct computing node.

IDU forms part of an iterative chain of processes that will
process the Gaia data. This chain of processes will be executed
once every 6 months over a 5 year period. Each time that
IDU is executed it will process all of the data amassed at that
point, so as the mission continues, the volume of data will
increase reaching roughly 100TB at the end of the mission.
Although the actual volume of data may not be overwhelming,
the challenging aspect of the processing is the relationships
within the data, and the reorganising and movement of the
data, which must be carried out between tasks.

B. Scalability tests of GPFS

An initial version of IDU involved all processes reading
their input data from the GPFS storage device. In order to
determine how well this approach would scale to a large
number of worker processes running in a large number of
computing-nodes, we carried out some scalability tests. The
input files for these tests were of equal size and represented
a certain amount of processing. In all cases, we just ran one
worker process per node.

We found that if we increased the number of IDU worker
processes, and therefore the number of processes accessing the
GPFS, the system scaled fairly well up to about 8 nodes —
the speed-up factor being 7.4, whereas the speed-up factor for
16 nodes was just 13, as illustrated in Fig. 1. Thus, although
GPFS reveals a rather good scalability, the I/O performance
per node starts decreasing significantly already at just 16
nodes.

Fig. 1. Processing time of an IDU prototype over a fixed amount of data
when using 1 to 16 nodes accessing directly the GPFS disk

IV. THE SOLUTION — MPJ-CACHE

We have designed a scheme which involves the grouping
of the available computing nodes into Node Groups (NGs).
Within each NG, one node is designated as the Node Group
Manager (NGM). A Server process is executed in the NGM,
which creates and maintains a cache of data that user ap-
plication processes can query. We refer to user application
processes simply as Client processes. The inter-node commu-
nication — between Clients and Servers, as well as amongst
Clients — is implemented on top of an implementation of
MPJ, making use of any high-speed network support provided
by the MPJ implementation.

There are, of course, a number of possible configurations
that a given set of nodes can be grouped into. For example,
64 nodes can be grouped into 4 groups of 16, or into 8 groups
of 8 nodes. One of the objectives of the tests described in the
next section was to determine the optimal NG configuration
in order to maximise data access performance for a given set
of files and a given application.

MPJ-Cache has two relatively distinct components within
it, namely the the communication layer and the data cache.
These components are illustrated in Fig 2.

A. MPJ-Cache - the communication layer

The objective of the MPJ-Cache communication layer is
to provide user applications with a high-level API of data
access methods useful in HPC environments, while mak-
ing best use of the available communication resources such
as any high-speed, low-latency networks which might be
present. MPJ-Cache makes use of an implementation of
MPJ to perform inter-process communication. Implementa-
tions of MPJ, such as MPJ Express and F-MPJ implement
an API of methods, such as MPI_Sendrecv(). MPJ-
Cache builds upon the MPJ API, and offers its own API

151

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-161-8



Fig. 2. MPJ-Cache components and test setup

of methods which are at a higher level of abstraction. For
example, the MPJ-Cache API includes the static method
retrieveSingleFileAsByteArray(), which allows
Clients to request a file as an array of bytes. The im-
plementation of this method involves 2 calls to the MPJ
method MPI_Sendrecv(). Firstly, a request is made to
find the size of the file. Then, once the size of the file
is known, a buffer can be allocated that will contain the
data and a second call to MPI_Sendrecv() is made
requesting the actual file. However, from the perspective
of the Client application, it must only make one call to
retrieveSingleFileAsByteArray().

The communication layer also includes file splitting and
recombining functionality, which allows accessing files with
sizes that exceed the maximum data size permitted by the
underlying implementation of MPJ. Such large files are split
into smaller chunks by the Server, which are then sent in
separate messages, and finally, once all of the chunks have
been received at the Client side, they are recombined and
passed to the Client application.

B. MPJ-Cache - the cache

In the context of MPJ-Cache, the cache refers to the part
of the Server application that maintains the actual cache of
data. The Server can be configured to either store the most
frequently used data in memory, on the local disk of the node
that it is running on, or to simply act as a gateway, retrieving
data from a remote location as requests are received. Indeed,
the cache can be spread over these 3 locations. The Server
maintains a list of all of the files that it is aware of: those it has
in memory, those that it has on its local disk and those which
might be in a remote location. The Server initializes its cache
at start-up, based on its configuration, but it can update the
cache during the execution of the application, depending on its
configuration. A number of policies to control the maintenance
of the cache including First In, First Out (FIFO) and Least

Recently Used (LRU) are available.

C. Selection of MPJ Implementations

Among the available MPJ implementations, MPJ Express
and F-MPJ are the libraries with a more active development, so
they have been evaluated in order to select the best performer
for use by MPJ-Cache. F-MPJ implements support for several
interconnection networks, among them the support for Infini-
Band in the low level communication device ibvdev, which
runs directly on top of IBV (InfiniBand Verbs), and support
on Myrinet in the device omxdev, which runs directly on
top of MX. We first carried out initial tests to determine their
performance in our particular production environment. MPJ
Express, F-MPJ, MPICH-MX and MX utilities and were tested
using a Pingpong and a Broadcast benchmark. The results
of these tests are given in Tables I and II. These showed
that F-MPJ performs very well in the target environment, in
particular, it offers very low latency for short messages and
good bandwidth with longer messages.

TABLE I
PINGPONG TESTS (POINT-TO-POINT COMMUNICATIONS)

Application Latency (µms) Bandwidth (MB/s)
F-MPJ 17.0 246.12
MX utilities 17.0 247.0
MPJ Express 23.2 180.8
MPICH-MX 17.0 247

TABLE II
BROADCAST TEST - 8 NODES, 1 PROCESS PER NODE

Data MPICH-MX F-MPJ MPJ Express
Latency
(µms)

BW
(MB/s)

Latency
(µms)

BW
(MB/s)

Latency
(µms)

BW
(MB/s)

2MB 21.9 96.0 25.8 81.3 43.6 48.1
4MB 42.7 98.2 52.4 80.0 87.5 47.9

D. MPJ-Cache in practice

One consideration that users of MPJ-Cache must take into
account is that applications wishing to make use of the system
must be executed within the MPJ environment. This has an
effect on how the user application can be launched. The
approach that we took is to initially launch the same class —
LaunchAppsInProcesses — in all of the MPJ processes.
Within the MPJ environment each process is identified by
a unique identifier called the process rank. We followed the
approach that the process with rank 0 would act as a Server
process, while instances of the user application would be
launched in the other processes. In order to create several NGs,
with each NG containing a Server process and a number of
Client processes, we simply need to launch several jobs, each
one starting an instance of the MPJ environment.

V. THE TESTS

In order to directly compare the performance of MPJ-Cache
against direct access to GPFS, we executed a campaign of
tests, designed to reflect the characteristics of real applications

152

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-161-8



running in a HPC environment. These tests can be grouped
into 2 main categories. In the first case, the Client processes
retrieve data directly from the GPFS, while in the second case
the Clients retrieve the same data using MPJ-Cache. These 2
cases are illustrated in Fig 2. Tests involving the use of MPJ-
Cache can be further categorised into those involving 1 NG
and those involving multiple NGs.

In order to be representative of real applications, the data
communication within the tests was interleaved with “process-
ing” by the Client applications — simulated by “sleeps” of the
Client processes between each request for data. Tests involving
sleeps of varying lengths were carried out. Each Client also
performs an initial sleep during its initialisation to ensure that
not all of the Clients begin requesting data at the same time.

In total, 96 tests were executed in this test campaign. In all
cases, the tests involved Clients retrieving 20 different files.
There are many test parameters which were varied including
the size of the data files (1MB, 10MB, 100MB), the number
of clients (16, 32, 64 or 128), the number of NGs (1, 4 or 8),
and the sleep time. In the case of the MPJ-Cache tests, the
Servers were configured to store all of the data in a cache in
memory.

The BandWidth (BW) referred to in these results has been
calculated using the time a request takes to be processed from
the Clients perspective. Therefore, it includes any delay which
might occur at the Server side.

A. System features

The MareNostrum Supercomputer [3] consists of 2560
JS21 blade computing nodes, each with 2 dual-core IBM 64-
bit PowerPC 970MP processors running at 2.3 GHz, which
totals 10240 cores (9.2 GFlops per core), and 8 GB memory
per node. The MareNostrum was ranked 5th of the world
according to the Top500 List at the time of installation (2006),
although currently it is ranked 118th based on its Linpack
performance (measured 64 TFlops out of 94 TFlops peak).
MareNostrum nodes are interconnected through low latency
Myrinet 2000 network (12 switches conform the fabric), as
well as through Gigabit Ethernet, this latter used to access
the 280 TB of disk storage though GPFS (General Parallel
File System). The OS is SuSE Linux Enterprise Server 9, the
JVM is IBM J9 1.6.0, the F-MPJ release is 0.1.0 and the MPI
implementation is MPICH-MX 1.2.7.4, while the MX driver
version is 1.2.7-64.

VI. RESULTS

A. Direct GPFS access vs. MPJ-Cache with 1 NG

MPJ-Cache generally out performs GPFS in those tests with
smaller files sizes and a short sleep between requests, as shown
in Table III, and illustrated in Fig 3.

MPJ-Cache also outperformed GPFS in tests with large file
sizes and a long sleep period, as shown in Table IV, the one
exception being the case of 128 nodes, where GPFS performed
best. The explanation for the poor performance of MPJ-Cache
in that test is that the Server process was overloaded. In other

Fig. 3. Comparison of GPFS vs MPJ-Cache when using 1 NG on small files
(1MB) and frequent requests (1ms)

TABLE III
MPJ-CACHE RESULTS — SMALL FILES, SMALL SLEEP, 1NG

Clients Data Sleep
(ms)

GPFS
BW
(Mbps)

Cache
BW
(Mbps)

Speed-
up

16 1MB 1 616 2284 3.7
32 1MB 1 806 2256 2.8
64 1MB 1 553 2365 4.3

words, the Server was receiving requests faster than it was
able to handle them, therefore, a queue of requests built up.

In fact, in most of the cases where the GPFS outperformed
MPJ-Cache, the difference was explained by an overloading
of the Server. We confirmed this by examining the Client log
files in those cases where the MPJ-Cache performed poorly.
We noted that the initial requests received by the Server
were processed quickly, and therefore the initial bandwidth
experienced by the Clients was relatively good. However, as
more Clients began to request data from the Server, the Server
became overloaded and the average reply time experienced by
the Clients increased — hence the decrease in the calculated
bandwidth.

B. Direct GPFS access vs. MPJ-Cache with multiple NGs

With this set of tests we intend to find the optimal configura-
tion for accessing data from a given set of nodes. Effectively
we want to maximise the total amount of data that can be
transferred around the system during a given period of time.
We call this rate the “aggregate data rate”. We must note that
this data rate contains within it, the initial sleep as well as

TABLE IV
MPJ-CACHE RESULTS — LARGE FILES, LARGE SLEEP, 1NG

Clients Data Sleep
(ms)

GPFS
BW
(Mbps)

Cache
BW
(Mbps)

Speed-
up

16 100MB 20000 1026 1639 1.6
32 100MB 20000 1090 2164 2.0
64 100MB 20000 265 295 1.1
128 100MB 20000 796 83 0.1

153

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-161-8



the inter-request sleeps performed by the Clients in order to
simulate real applications.

The highest aggregate data rate achieved by direct access
of GPFS was 13.7Gbps, achieved through the use of 128
Client nodes, requesting 100MB files with a sleep of 200
milliseconds between requests. Interestingly, if the sleep was
reduced to 10 milliseconds, the data rate fell to 9.1Gbps.

The highest aggregate data rate achieved through the use of
MPJ-Cache was 103Gbps. This was also achieved using 128
Client nodes, but arranged in 8 NGs. Therefore, 136 nodes in
total were used (including 8 MPJ-Cache Servers). The files
used were 100MB each, while the sleep was 1 millisecond.

The results of this test campaign showed, that given a
certain number of nodes, MPJ-Cache allows for a much higher
aggregate data rate than direct GPFS access, as illustrated in
Fig. 4

Fig. 4. Total aggregate data rate for GPFS and MPJ-Cache, using different
Node Group configurations. 100MB files have been used in this case.

VII. CONCLUSION AND FUTURE WORK

Our tests confirmed the impressive performance for high-
speed, low-latency networks achievable with F-MPJ. MPJ-
Cache, configured to create a single NG, offers better per-
formance than GPFS for small numbers of Client nodes,
and especially when working with small files and frequent
requests. We observed in our test campaign that the available
bandwidth on the Myrinet network was optimally being used,
and the performance of MPJ-Cache only decreases when the
Server process is overloaded with requests. Furthermore, when
we move to the situation of multiple NGs, the total aggregate
data rate obtainable through the use of MPJ-Cache is much
higher than that obtainable for the same number of nodes
directly accessing GPFS.

Although our data cache system is a relatively thin layer,
sitting on top of an implementation of MPJ, we believe that
there are a range of applications which could benefit from
its use, not just the applications described in this paper. The
creation of data caches amongst the available computing nodes
can avoid the I/O bottleneck which can occur when many
processes are accessing a central storage device, while the use
of F-MPJ allows for the best performance to be extracted from
the available network.

In the case of HPC environments which are shared by many
users, one possible issue is how the applications of one user
may affect the applications of other users. One of the benefits
of using MPJ-Cache is that, due to the caching, there will be a
reduced number of accesses of the shared disk, which should
improve the disk I/O performance experienced by other users.

We intend to improve the functionality of MPJ-Cache by
adding more data access methods to the API that it offers,
including the addition of methods to support a “push” model
from Server to Client, in addition to the existing “pull”
methods which allow for the Client-Server model. Finally, we
intend to test MPJ-Cache in other HPC environments, such as
its use with the LUSTRE and Panasas file systems, as well as
to try to identify other Java-based I/O-intensive applications,
running in HPC environments, which could benefit from the
use of MPJ-Cache.

ACKNOWLEDGMENT

This work was supported by the MICINN (Spanish Ministry
of Science and Innovation) - FEDER through grant AYA2009-
14648-C02-01 and CONSOLIDER CSD2007-00050. We also
acknowledge the support that the F-MPJ project receives from
MICINN, TIN2010-16735.

REFERENCES

[1] European Space Agency. The gaia mission. http://gaia.esa.int/ [Last
visited: July 2011].

[2] B. Carpenter, G. Fox, S.-H. Ko, and S. Lim. mpijava 1.2: Api specifica-
tion. http://www.hpjava.org/reports/mpiJava-spec/mpiJava-spec/mpiJava-
spec.html [Last visited: July 2011].

[3] Barcelona Supercomputing Center. Marenostrum supercomputer.
http://www.bsc.es/plantillaA.php?cat id=200 [Last visited: July 2011].

[4] M. Danelutto, P. Fragopoulou, V. Getov, E. Tejedor, R. M. Badia,
T. Kielmann, and V. Getov. A component-based integrated toolkit. In
Making Grids Work, pages 139–151. Springer US, 2008.

[5] M. Philippsen, R. F. Boisvert, V Getov, R Pozo, J. E. Moreira, D. Gannon,
and G. Fox. Javagrande - high performance computing with java.
In Proceedings of the 5th International Workshop on Applied Parallel
Computing, New Paradigms for HPC in Industry and Academia, 2001.

[6] A. Shafi, B. Carpenter, and M. Baker. Nested parallelism for multi-core
hpc systems using java. Journal of Parallel and Distributed Computing,
69(6):532–545, 2009.

[7] G. L. Taboada, J. Touriño, and R. Doallo. Java for high performance
computing: Assessment of current research and practice. In Proc. 7th
International Conference on the Principles and Practice of Programming
in Java (PPPJ’09), pages 30–39, Calgary, Alberta, Canada, 2009.

[8] G. L. Taboada, J. Touriño, and R. Doallo. F-mpj: Scalable java message-
passing communications on parallel systems. Journal of Supercomputing
(In press, DOI: 10.1007/s11227-009-0270-0), 2011.

154

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-161-8


	Introduction
	Related work
	The problem
	Gaia data processing in MareNostrum
	GASS
	IDU

	Scalability tests of GPFS

	The solution --- MPJ-Cache
	MPJ-Cache - the communication layer
	MPJ-Cache - the cache
	Selection of MPJ Implementations
	MPJ-Cache in practice

	The tests
	System features

	Results
	Direct GPFS access vs. MPJ-Cache with 1 NG
	Direct GPFS access vs. MPJ-Cache with multiple NGs

	Conclusion and Future Work
	References

