
LZW versus Sliding Window Compression on a Distributed System:
Robustness and Communication

Sergio De Agostino
Computer Science Department

Sapienza University
Rome, Italy

Email: deagostino@di.uniroma1.it

Abstract—Scalability preserves the robustness of sliding win-
dow compression only on very large files when it is implemented
on a distributed system with low communication cost. On the
other hand, we show that Lempel-Ziv-Welch compression is
scalable and robust on arbitrary files.

Keywords-dictionary-based compression, string factorization,
parallel complexity, distributed algorithm.

I. I NTRODUCTION

Lempel-Ziv compression [1], [2], [3] is based on string
factorization. Two different factorization processes exist with
no memory constraints. With the first one (LZ1) [2], each
factor is independent from the others since it extends by
one character the longest match with a substring to its left
in the input string (sliding window compression). With the
second one (LZ2) [3], each factor is instead the extension
by one character of the longest match with one of the
previous factors (Lempel-Ziv-Welch or LZW compression).
This computational difference implies that while sliding
window compression has efficient parallel algorithms [4], [5]
LZW compression is hard to parallelize [6]. This difference
is mantained when bounded memory versions of Lempel-
Ziv compression are considered [5], [7], [8]. On the other
hand, parallel decompression is possible for both approaches
[10]. This field has developed in the last twenty years from
a theoretical approach concerning parallel time complexity
with no memory constraints to the practical goal of design-
ing distributed algorithms with bounded memory and low
communication cost. While with shared memory machines
scalability is always possible [11], this is not always garan-
teed with distributed memory. Distributed systems have two
types of complexity, the interprocessor communication and
the input-output mechanism. While the input/output issue is
inherent to any parallel algorithm and has standard solutions,
the communication cost of the computational phase after the
distribution of the data among the processors and before the
output of the final result is obviously algorithm-dependent.
So, we need to limit the interprocessor communication
and involve more local computation to design a practical
algorithm. The simplest model for this phase is, of course,
a simple array of processors with no interconnections and,

therefore, no communication cost. An example of distibuted
system with low communication cost is a tree architecture.
Distributed algorithms for sliding window compression ap-
proximating in practice its compression effectiveness has
been realized in [8] on an array of processor with no
interprocessor communication. An approach using a tree
architecture slightly improves compression effectiveness [9].
However, the scalability of a parallel implementation of
sliding window compression on a distributed system with
low communication cost garantees robustness only on very
large files. On the other hand, we show in this paper that
LZW compression is scalable and robust on arbitrary files
if implemented on a tree architecture.

In Section 2, we describe the Lempel-Ziv compression
techniques and in Section 3, we present the bounded mem-
ory versions. In Section 4, we present previous work ona
parallel system with shared memory. Section 5 discuss how
Lempel-Ziv data compression and decompression can be
implemented on a distributes system and compare LZW
compression with the sliding window technique. Conclu-
sions and future work are given in Section 6.

II. L EMPEL-ZIV DATA COMPRESSION

Lempel-Ziv compression is a dictionary-based technique.
In fact, the factors of the string are substituted bypointers
to copies stored in a dictionary, which are calledtargets.
LZ1 (sliding window) compression is also called the sliding
dictionary method while LZ2 (LZW) compression is more
generally called the dynamic dictionary method.

A. Sliding Window Compression

Given an alphabetA and a stringS in A∗ the LZ1
factorization ofS is S = f1f2 · · · fi · · · fk wherefi is the
shortest substring, which does not occur previously in the
prefix f1f2 · · · fi for 1 ≤ i ≤ k. With such factorization, the
encoding of each factor leaves one character uncompressed.
To avoid this, a different factorization was introduced (LZSS
factorization) wherefi is the longest match with a substring
occurring in the prefixf1f2 · · · fi if fi 6= λ, otherwise
fi is the alphabet character next tof1f2 · · · fi−1 [12]. fi
is encoded by the pointerqi = (di, ℓi), where di is the

125

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-161-8

displacement back to the copy of the factor andℓi is the
length of the factor (LZSS compression). Ifdi = 0, li is the
alphabet character. In other words the dictionary is defined
by a window sliding its right end over the input string,
that is, it comprises all the substrings of the prefix read
so far in the computation. It follows that the dictionary is
both prefix and suffix since all the prefixes and suffixes of
a dictionary element are dictionary elements. The position
of the longest match in the prefix with the current position
can be computed in real time by means of a suffix tree data
structure [13], [14].

B. LZW Compression

The LZ2 factorization of a stringS is S =
f1f2 · · · fi · · · fk where fi is the shortest substring, which
is different from one of the previous factors. As for LZ1 the
encoding of each factor leaves one character uncompressed.
To avoid this a different factorization was introduced (LZW
factorization) where each factorfi is the longest match with
the concatenation of a previous factor and the next character
[15]. fi is encoded by a pointerqi to such concatenation
(LZW compression). LZW compression can be implemented
in real time by storing the dictionary with a trie data
structure. Differently from sliding window compression, the
dictionary is only prefix.

C. Greedy versus Optimal Factorization

The pointer encoding the factorfi has a size increasing
with the indexi. This means that the lower is the number
of factors for a string of a given length the better is the
compression. The factorizations described in the previous
subsections are produced by greedy algorithms. The question
is whether the greedy approach is always optimal, that is,
if we relax the assumption that each factor is the longest
match can we do better than greedy? The answer is negative
with suffix dictionaries as for sliding window compression.
On the other hand, the greedy approach is not optimal for
LZW compression. However, the optimal approach is NP-
complete [16] and the greedy algorithm approximates with
an O(n

1

4) multiplicative factor the optimal solution [17].

III. B OUNDED SIZE DICTIONARY COMPRESSION

The factorization processes described in the previous
section are such that the number of different factors (that is,
the dictionary size) grows with the string length. In practical
implementations instead the dictionary size is bounded by a
constant and the pointers have equal size. While for sliding
window compression this can be simply obtained by bound-
ing the match and window lengths (therefore, the left end of
the window slides as well), for LZW compression dictionary
elements are removed by using a deletion heuristic. The
deletion heuristics we describe in this section are FREEZE,
RESTART and LRU [18]. Then, we give more details on
sliding window compression.

A. The Deletion Heuristics

Let d + α be the cardinality of the fixed size dictionary
whereα is the cardinality of the alphabet. With the FREEZE
deletion heuristic, there is a first phase of the factorization
process where the dictionary is filled up and “freezed”.
Afterwards, the factorization continues in a “static” way
using the factors of the freezed dictionary. In other words,
the LZW factorization of a stringS using the FREEZE
deletion heuristic isS = f1f2 · · · fi · · · fk wherefi is the
longest match with the concatenation of a previous factor
fj , with j ≤ d, and the next character. The shortcoming
of this heuristic is that after processing the string for a
while the dictionary often becomes obsolete. A more so-
phisticated deletion heuristic is RESTART, which monitors
the compression ratio achieved on the portion of the imput
string read so far and, when it starst deteriorating, restarts
the factorization process. Letf1f2 · · · fj · · · fi · · · fk be such
factorization withj the highest index less thani where the
restart operation happens. Then,fj is an alphabet character
and fi is the longest match with the concatenation of a
previous factorfh, with h ≥ j, and the next character
(the restart operation removes all the elements from the
dictionary but the alphabet characters). This heuristic is
used by the Unix command Compress since it has a good
compression effectiveness and it is easy to implement.
However, the best deletion heuristic is LRU (last recently
used strategy). The LRU deletion heuristic removes elements
from the dictionay in a continuous way by deleting at each
step of the factorization the least recently used factor, which
is not a proper prefix of another one.

B. Compression with Finite Windows

As mentioned at the beginning of this section, bounded
size dictionary compression can also be obtained by sliding
a fixed length window and by bounding the match length. A
real time implementation of compression with finite window
is possible using a suffix tree data structure [19]. Much
simpler real time implementations are realized by means
of hashing techniques providing a specific position in the
window where a good appriximation of the longest match is
found on realistic data. In [20], the three current characters
are hashed to yield a pointer into the already compressed
text. In [21], hashing of strings of all lengths is used to
find a match. In both methods, collisions are resolved by
overwriting. In [22], the two current characters are hashed
and collisions are chained via an offset array. Also the Unix
gzip compressor chains collisions but hashes three characters
[23].

C. Greedy versus Optimal Factorization

Greedy factorization is optimal for compression with finite
windows since the dictionary is suffix. With LZW compres-
sion, after we fill up the dictionary using the FREEZE or
RESTART heuristic, the greedy factorization we compute

126

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-161-8

with such dictionary is not optimal since the dictionary
is not suffix. However, there is an optimal semi-greedy
factorization, which at each step computes a factor such
that the longest match in the next position with a dictionary
element ends to the rightest [24], [25]. Since the dictionary
is prefix, the factorization is optimal. The algorithm can even
be implemented in real time with a modified suffix tree data
structure [24].

IV. PREVIOUS WORK

Sliding window compression can be efficiently paral-
lelized on a PRAM EREW [4], [5], [8], that is, a parallel
machine where processors access a shared memory without
reading and writing conflicts. On the other hand, LZW com-
pression is P-complete [6] and, therefore, hard to parallelize.
Decompression, instead, is parallelizable for both methods
[10]. As far as bounded size dictionary compression is
concerned, the “parallel computation thesis” claims that se-
quential work space and parallel running time have the same
order of magnitude giving theoretical underpinning to the re-
alization of parallel algorithms for LZW compression using
a deletion heuristic. However, the thesis concerns unbounded
parallelism and a practical requirement for the design of
a parallel algorithm is a limited number of processors. A
stronger statement is that sequential logarithmic work space
corresponds to parallel logarithmic running time with a
polynomial number of processors. Therefore, a fixed size
dictionary implies a parallel algorithm for LZW compression
satisfying these constraints. Realistically, the satisfaction
of these requirements is a necessary but not a sufficient
condition for a practical parallel algorithm since the number
of processors should be linear, which does not seem possible
for the RESTART deletion heuristic. Moreover, the SCk-
completeness of LZ2 compression using the LRU deletion
heuristic and a dictionary of polylogarithmic size shows
that it is unlikely to have a parallel complexity involving
reasonable multiplicative constants [7]. In conclusion, the
only practical LZW compression algorithm for a shared
memory parallel system is the one using the FREEZE
deletion heuristic. We will see these arguments more in
details in the next subsections.

A. Sliding Window Compression on a Parallel System

We present compression algorithms for sliding dictionar-
ies on an exclusive read, exclusive write shared memory
machine requiring O(k) time with O(n/k) processors ifk
is Ω(logn), with the practical and realistic assumption that
the dictionary size and the match length are constant [8].
As previously mentioned, greedy factorization is optimal
with sliding dictionaries. In order to compute a greedy
factorization in parallel we find the greedy match in each
positioni of the input string and linki to j+1, wherej is the
last position of the match. If the greedy match ends the string
i is linked ton + 1, wheren is the length of the string. It

follows that we obtain a tree rooted inn+1 and the positions
of the factors are given by the path from 1 ton+1. Such tree
can be built in O(k) time with O(n/k) processors. In fact,
on each block ofk positions one processor has to compute a
match having constant length and the reading conflicts with
other processors are solved in logarithmic time by standard
broadcasting techniques. Then, since for each node of the
tree the number of children is bounded by the constant match
length it is easy to add the links from a parent node to its
children in O(k) time with O(n/k) processors and apply the
well-known Euler tour technique to this doubly linked tree
structure to compute the path from 1 ton+ 1.

B. The Completeness Results

NC is the class of problems solvable with a polyno-
mial number of processors in polylogarithmic time on a
parallel random access machine and it is comjectured to
be a proper subset of P, the class of problems solvable
in sequential polynomial time. LZ2 and LZW compression
with an unbounded dictionary have been proved to be P-
complete [6] and, therefore, hard to parallelize. SC is the
class of problems solvable in polylogarithmic space and
sequential polynomial time. The LZ2 algorithm with LRU
deletion heuristic on a dictionary of size O(logk n) can be
performed in polynomial time and O(logk n log logn) space,
wheren is the length of the input string. In fact, the trie
requires O(logk n) space by using an array implementation
since the number of children for each node is bounded by
the alphabet cardinality. Thelog logn factor is required to
store the information needed for the LRU deletion heuristic
since each node must have a different age, which is an
integer value between 0 and the dictionary size. Obviously,
this is true for the LZW algorithm, as well. If the size of
the dictionary is O(logk n), the LRU strategy is log-space
hard for SCk, the class of problems solvable simultaneously
in polynomial time and O(logk n) space [7]. The problem
belongs to SCk+1. This hardness result is not so relevant for
the space complexity analysis sinceΩ(logk n) is an obvious
lower bound to the work space needed for the computation.
Much more interesting is what can be said about the parallel
complexity analysis. In [7], it was shown that LZ2 (or LZW)
compression using the LRU deletion heuristic with a dictio-
nary of sizec can be performed in parallel either in O(logn)
time with 2O(c log c)n processors or in2O(c log c) logn time
with O(n) processors. This means that if the dictionary
size is constant, the compression problem belongs to NC.
NC and SC are classes that can be viewed in some sense
symmetric and are believed to be incomparable. Since log-
space reductions are in NC, the compression problem cannot
belong to NC when the dictionary size is polylogarithmic
if NC and SC are incomparable. We want to point out
that the dictionary sizec figures as an exponent in the
parallel complexity of the problem. This is not by accident.
If we believe that SC is not included in NC, then the SCk-

127

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-161-8

hardness of the problem whenc is O(logk n) implies the
exponentiation of some increasing and diverging function of
c. In fact, without such exponentiation either in the number
of processors or in the parallel running time, the problem
would be SCk-hard and in NC whenc is O(logk n). Observe
that the P-completeness of the problem, which requires a
superpolylogarithmic value forc, does not suffice to infer
this exponentiation sincec can figure as a multiplicative
factor of the time function. Moreover, this is a unique case
so far where somehow we use hardness results to argue
that practical algorithms of a certain kind (NC in this case)
do not exist because of huge multiplicative constant factors
occurring in their analysis. In [7], a relaxed version (RLRU)
was introduced, which turned out to be the first (and only
so far) natural SCk-complete problem.

C. LZW Compression on a Parallel System

As mentioned at the beginning of this section, the only
practical LZW compression algorithm for a shared memory
parallel system is the one using the FREEZE deletion
heuristic. After the dictionary is built and freezed, a parallel
procedure similar to the one for sliding window compression
is run. To compute a greedy factorization in parallel we find
the greedy match with the freezed dictionary in each position
i of the input string and linki to j + 1, wherej is the last
position of the match. If the greedy match ends the stringi is
linked ton+1, wheren is the length of the string. It follows
that we obtain a tree rooted inn + 1 and the positions of
the factors of the greedy parsing are given by the path from
1 to n+1. In order to compute an optimal factorization we
parallelize the semi-greedy procedure. The longest sequence
of two matches in each positioni of the string can be
computed in O(k) time with O(n/k) processors, in a similar
way as for the greedy procedure. Then, positioni is linked
to the position of the second match. If the second match is
empty,i is linked ton+ 1. Again, we obtain a tree rooted
in n + 1 and the positions of the factors are given by the
path from 1 ton+1. The tree and the path are computed in
O(k) time with O(n/k) processors ifk is Ω(logn), as in the
first subsection without reading and writing conflicts [8]. The
parallelization of the sequential LZW compression algorithm
with the RESTART deletion heuristic is not practical enough
since it requires a quadratic number of processors [7].

D. Parallel Deompression

The design of parallel decoders is based on the fact
that the Euler tour technique can also be used to find the
trees of a forest in O(k) time with O(n/k) processors
on a shared memory parallel machine without writing and
reading conflicts, ifk is Ω(log n) andn is the number of
nodes. We present decoders paired with the practical coding
implementations using bounded size dictionaries. First, we
see how to decode the sequence of pointersqi = (di, ℓi)
produced by the sliding window method with1 ≤ i ≤ m

[10]. If s1, ..., sm are the partial sums ofl1, ..., lm, the target
of qi encodes the substring over the positionssi−1+1 · · · si
of the output string. Link the positionssi−1+1 · · · si to the
positionssi−1+1−di · · · si−1+1−di+ li−1, respectively.
If di = 0, the target ofqi is an alphabet character and the
corresponding position in the output string is not linked to
anything. Therefore, we obtain a forest where all the nodes
in a tree correspond to positions of the decoded string where
the character is represented by the root. The reduction from
the decoding problem to the problem of finding the trees in a
forest can be computed in O(k) time with O(n/k) processors
wheren is the length of the output string, because this is
the complexity of computing the partial sums sincem ≤ n.
Afterwards, one processor stores the parent pointers in an
array of sizen for a block of k positions. We can make
the forest a doubly linked structure since the window size
is constant and apply the Euler tour technique to find the
trees. With LZW compression using the FREEZE deletion
heuristic the parallel decoder is trivial. We wish to point
out that the decoding problem is interesting independently
from the computational efficiency of the encoder. In fact,
in the case of compressed files stored in a ROM only
the computational efficiency of decompression is relevant.
With the RESTART deletion heuristic, a special mark occurs
in the sequence of pointers each time the dictionary is
cleared out so that the decoder does not have to monitor
the compression ratio. The positions of the special mark are
detected by parallel prefix. Each subsequenceq1 · · · qm of
pointers between two consecutive marks can be decoded in
parallel but the pointers do not contain the information on the
length of their targets and it has to be computed. The target
of the pointerqi in the subsequence is the concatenation of
the target of the pointer in positionqi − α with the first
character of the target of the pointer in positionqi −α+ 1,
whereα is the alphabet cardinality. Then, in parallel for
each i, link pointer qi to the pointer in positionqi − α,
if qi > α. Again, we obtain a forest where each tree is
rooted in a pointer representing an alphabet character and
the lengthli of the target of a pointerqi is equal to the level
of the pointer in the tree plus 1. It is known from [1] that
the largest number of distinct factors whose concatenation
forms a given string of lengthℓ is O(ℓ/ log ℓ). Since a factor
of the LZW factorization of a string appears a number of
times, which is at most equal to the alphabet cardinality, it
follows thatm is O(ℓ/ log ℓ) if ℓ is the length of the substring
encoded by the subsequenceq1 · · · qm. Then, building such
a forest takes O(k) time with O(n/k) processors on a
shared memory parallel machine without writing and reading
conflicts if k is Ω(log n). By means of the Euler tour
technique, we can compute the trees of such forest and
the level of each node in its own tree in O(k) time with
O(n/k). Therefore, we can compute the lengthsl1, ..., lm
of the targets. Ifs1, ..., sm are the partial sums, the target
of qi is the substring over the positionssi−1 + 1 · · · si of

128

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-161-8

the output string. For eachqi, which does not correspond
to an alphabet character, definefirst(i) = sqi−α−1 + 1
and last(i) = sqi−α + 1. Since the target of the pointerqi
is the concatenation of the target of the pointer in position
qi −α with the first character of the target of the pointer in
positionqi − α+ 1, link the positionssi−1 + 1 · · · si to the
positionssfirst(i) · · · slast(i), respectively. As in the sliding
dictionary case, if the target ofqi is an alphabet character
the corresponding position in the output string is the root
of a tree in a forest and all the nodes in a tree correspond
to positions of the decoded string where the character is the
root. Since the number of children for each node is at most
α, in O(k) time and O(n/k) processors we can store the
forest in a doubly linked structure and decode by means of
the Euler tour technique [10].

V. LZW VERSUSSLIDING WINDOW COMPRESSION

ON A DISTRIBUTED SYSTEM

As mentioned in the introduction, the simplest distributed
system is an array of processors with no interconnections.
For every integerk greater than 1 an O(kw) time, O(n/kw)
processors distributed algorithm factorizing an input string
S with a cost, which approximates the cost of the LZSS
factorization within the multiplicative factor(k+m− 1)/k,
wheren, m andw are the lengths of the input string, the
longest factor and the window respectively was presented on
such model in [8]. As far as LZW compression is concerned,
if we use a RESTART deletion heuristic clearing out the
dictionary everyℓ characters of the input string we can
trivially parallelize the factorization process with an O(ℓ)
time, O(n/ℓ) processors distributed algorithm. In this paper
we present on a tree architecture an algorithm, which in
time O(km) with O(n/km) processors is guaranteed to
produce a factorization ofS with a cost approximating the
cost of the optimal factorization within the multiplicative
factor(k+1)/k. All the algorithms mentioned above provide
approximation schemes for the corresponding factorization
problems since the multiplicative approximation factors con-
verge to 1 whenkm and kw converge toℓ and to n,
respectively.

A. Sliding Window Compression on a Distributed System

We simply apply in parallel sliding window compression
to blocks of lengthkw. It follows that the algorithm requires
O(kw) time with n/kw processors and the multiplicative
approximation factor is(k+m− 1))/k with respect to any
parsing. In fact, the number of factors of an optimal (greedy)
factorization on a block is at leastkw/m while the number
of factors of the factorization produced by the scheme is at
most(k−1)w/m+w. The boundary might cut a factor and
the lengthw of the initial full size window of the block is the
upper bound to the factors produced by the scheme in it. Yet,
the factor cut by the boundary might be followed by another
factor, which covers the remaining part of the initial window.

If this second factor has a suffix to the right of the window,
this suffix must be a factor of the sliding dictionary defined
by it and the multiplicative approximation factor follows.
We obtain an approximation scheme, which is suitable for a
small scale system but due to its adaptiveness it works on a
large scale parallel system when the file size is large. From a
practical point of view, we can apply something like the gzip
procedure to a small number of input data blocks achieving a
satisfying degree of compression effectiveness and obtaining
the expected speed-up on a real parallel machine. Making the
order of magnitude of the block length greater than the one
of the window length largely beats the worst case bound on
realistic data and garantees robustness. The window lengthis
usually several thousands kilobytes. The compression tools
of the Zip family, as the Unix command “gzip” for example,
use a window size of at least 32K. It follows that the block
length in our parallel implementation should be about 300K
and the file size should be about one third of the number of
processors in megabytes.

B. LZW Compression on a Distributed System

As mentioned at the beginning of this section, if we use
a RESTART deletion heuristic clearing out the dictionary
everyℓ characters of the input string we can trivially paral-
lelize the factorization process with an O(ℓ) time, O(n/ℓ)
processors distributed algorithm. LZW compression with
the RESTART deletion heuristic was initially presented in
[15] with a dictionary of size212 and is employed by the
Unix command “compress” with a dictionary of size216.
Therefore, in order to have a satisfying compression effec-
tiveness the distributed algorithm might work with blocks
of lengthℓ even greater than 300K on realistic data. After a
dictionary is filled up for each block though, the factorization
of the remaining suffix of the block can be approximated
within the multiplicative factor(k + 1)/k in time O(km)
with O(n/km) processors on a tree architecture. Every leaf
processor stores a sub-block of lengthm(k+2) and a copy
of the dictionary, which are broadcasted from some level of
the tree where the first phase of the computation has been
executed. Adjacent sub-blocks overlap on2m characters. We
call a boundary matcha factor covering positions of two
adjacent sub-blocks. We execute the following algorithm:

• for each block, every processor but the one associated
with the last sub-block computes the boundary match
between its sub-block and the next one, which ends
furthest to the right;

• each processor computes the optimal factorization from
the beginning of the boundary match on the left bound-
ary of its sub-block to the beginning of the boundary
match on the right boundary.

Stopping the factorization of each sub-block at the begin-
ning of the right boundary match might cause the making of
a surplus factor, which determines the multiplicative approx-
imation factor(k+1)/k with respect to any factorization. In

129

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-161-8

fact, the factor in front of the right boundary match might
be extended to be a boundary match itself and to cover the
first position of the factor after the boundary. In [26], it
is shown experimentally that fork = 10 the compression
ratio achieved by such factorizarion is about the same as the
sequential one. Then, compression is effective and robust on
a large scale system even if the size of the file is not large.

C. Decompression on a Distributed System

To decode the compressed files on a distibuted system, it
is enough to use a special mark occuring in the sequence
of pointers each time the coding of a block ends. The
input phase distributes the subsequences of pointers coding
each block among the processors. If the file is encoded
by an LZW compressor implemented on a large scale tree
architecture, a second special mark indicates for each block
the end of the coding of a sub-block and the coding of each
block is stored at the same level of the tree. The first sub-
block for each block is decoded by one processor to learn the
corresponding dictionary. Then, the subsequences of pointers
coding the sub-blocks are broadcasted to the leaf processors
with the corresponding dictionary.

VI. CONCLUSION

In this paper, we showed that with the low communication
cost of a tree architecture we can scale up the implementa-
tion of LZW compression on a distributed system preserving
its robustness. This does not seem to be possible with sliding
window compression. As future work, we would like to
implement Lempel-Ziv compression on available distributed
systems as array and tree architectures.

REFERENCES

[1] A. Lempel and J. Ziv,On the Complexity of Finite Sequences,
IEEE Transactions on Information Theory 22, 75-81, 1976.

[2] A. Lempel and J. Ziv,A Universal Algorithm for Sequential
Data Compression,IEEE Transactions on Information Theory
23, 337-343, 1977.

[3] J. Ziv and A. Lempel,Compression of Individual Sequences
via Variable-Rate Coding,IEEE Transactions on Information
Theory 24, 530-536, 1978.

[4] M. Crochemore and W. Rytter,Efficient Parallel Algorithms
to Test Square-freeness and Factorize Strings,Information
Processing Letters 38, 57-60, 1991.

[5] S. De Agostino, Parallelism and Dictionary-Based Data
Compression,Information Sciences 135, 43-56, 2001.

[6] S. De Agostino,P-complete Problems in Data Compression,
Theoretical Computer Science 127, 181-186, 1994.

[7] S. De Agostino and R. Silvestri,Bounded Size Dictionary
Compression:SCk-Completeness andNC Algorithms,Infor-
mation and Computation 180, 101-112, 2003.

[8] L. Cinque, S. De Agostino, and L. Lombardi,Scalability
and Communication in Parallel Low-Complexity Lossless
Compression,Mathematics in Computer Science 3, 391-406,
2010.

[9] S. T. Klein and Y. Wiseman,Parallel Lempel-Ziv Coding,
Discrete Applied Mathematics 146, 180-191, 2005.

[10] S. De Agostino,Almost Work-Optimal PRAM EREW De-
coders of LZ-Compressed Text,Parallel Processing Letters 14,
351-359, 2004.

[11] R. P. Brent,The Parallel Evaluation of General Arithmetic
Expressions,Journal of the ACM 21, 201-206, 1974.

[12] J. A. Storer and T. G. Szimansky,Data Compression via
Textual Substitution,Journal of ACM 24, 928-951, 1982.

[13] M. Rodeh, V. R. Pratt, and S. Even,Linear Algorithms for
Compression via String Matching,Journal of ACM 28, 16-24,
1980.

[14] E. M. Mc Creight,A Space-Economical Suffix Tree Construc-
tion Algorithm,Journal of ACM 23, 262-272, 1976.

[15] T. A. Welch, A Technique for High-Performance Data Com-
pression,IEEE Computer 17, 8-19, 1984.

[16] S. De Agostino and J. A. Storer,On-Line versus Off-line
Computation for Dynamic Text Compression,Information
Processing Letters 59, 169-174, 1996.

[17] S. De Agostino and R. Silvestri,A Worst Case Analisys of the
LZ2 Compression Algorithm,Information and Computation
139, 258-268, 1997.

[18] J. A. Storer,Data Compression: Methods and Theory,Com-
puter Science Press, 1988.

[19] E. R. Fiala and D. H. Green,Data Compression with Finite
Windows,Communications of ACM 32, 490-505, 1988.

[20] J. R. Waterworth,Data Compression System,US Patent 4 701
745, 1987.

[21] R. P. Brent, A Linear Algorithm for Data Compression,
Australian Computer Journal 19, 64-68, 1987.

[22] D. A. Whiting, G. A. George, and G. E. Ivey,Data Compres-
sion Apparatus and Method,US Patent 5016009, 1991.

[23] J. Gailly and M. Adler, http://www.gzip.org, 1991.

[24] A. Hartman and M. Rodeh,Optimal Parsing of Strings.In:
Apostolico, A., Galil, Z. (eds.) Combinatorial Algorithmson
Words, 155-167, Springer, 1985.

[25] M. Crochemore and W. Rytter,Jewels of Stringology,World
Scientific, 2003.

[26] D. Belinskaya, S. De Agostino, and J. A. Storer,Near
Optimal Compression with respect to a Static Dictionary on a
Practical Massively Parallel Architecture,Proceedings IEEE
Data Compression Conference, 172-181, 1995.

130

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-161-8

