INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

LZW versus Sliding Window Compression on a Distributed Sysém:
Robustness and Communication

Sergio De Agostino
Computer Science Department
Sapienza University
Rome, Italy
Email: deagostino@di.uniromal.it

Abstract—Scalability preserves the robustness of sliding win- therefore, no communication cost. An example of distibuted
dow compression only on very large files when itis implemente system with low communication cost is a tree architecture.
on a distributed system with low communication cost. On the - pigtribyted algorithms for sliding window compression ap-
other hand, we show that Lempel-Ziv-Welch compression is . . . S . .
scalable and robust on arbitrary files. proximating in practice its compression eﬁect|vene§s has

been realized in [8] on an array of processor with no
interprocessor communication. An approach using a tree
architecture slightly improves compression effectiver{83.
However, the scalability of a parallel implementation of
sliding window compression on a distributed system with

Lempel-Ziv compression [1], [2], [3] is based on string low communication cost garantees robustness only on very
factorization. Two different factorization processessémiith large files. On the other hand, we show in this paper that
no memory constraints. With the first one (LZ1) [2], eachLZW compression is scalable and robust on arbitrary files
factor is independent from the others since it extends byf implemented on a tree architecture.
one character the longest match with a substring to its left In Section 2, we describe the Lempel-Ziv compression
in the input string (sliding window compression). With the techniques and in Section 3, we present the bounded mem-
second one (LZ2) [3], each factor is instead the extensiomry versions. In Section 4, we present previous work ona
by one character of the longest match with one of theparallel system with shared memory. Section 5 discuss how
previous factors (Lempel-Ziv-Welch or LZW compression). Lempel-Ziv data compression and decompression can be
This computational difference implies that while sliding implemented on a distributes system and compare LZW
window compression has efficient parallel algorithms [B],[compression with the sliding window technique. Conclu-
LZW compression is hard to parallelize [6]. This differencesions and future work are given in Section 6.
is mantained when bounded memory versions of Lempel-

Ziv compression are considered [5], [7], [8]. On the other Il. LEMPEL-ZIV DATA COMPRESSION

hand, parallel decompression is possible for both appesach Lempel-Ziv compression is a dictionary-based technique.
[10]. This field has developed in the last twenty years fromin fact, the factors of the string are substituted gminters

a theoretical approach concerning parallel time compfexit to copies stored in a dictionary, which are calledgets
with no memory constraints to the practical goal of design-.Z1 (sliding window) compression is also called the sliding
ing distributed algorithms with bounded memory and lowdictionary method while LZ2 (LZW) compression is more
communication cost. While with shared memory machinegyenerally called the dynamic dictionary method.

scalability is always possible [11], this is not always gara o i)

teed with distributed memory. Distributed systems have twd® Sliding Window Compression

types of complexity, the interprocessor communication and Given an alphabetd and a stringS in A* the LZ1
the input-output mechanism. While the input/output issue i factorization ofS is S = fifs--- fi--- fx where f; is the
inherent to any parallel algorithm and has standard salsfio shortest substring, which does not occur previously in the
the communication cost of the computational phase after thprefix f1 f5 - - - f; for 1 <4 < k. With such factorization, the
distribution of the data among the processors and before thencoding of each factor leaves one character uncompressed.
output of the final result is obviously algorithm-dependent To avoid this, a different factorization was introduced 8%
So, we need to limit the interprocessor communicatiorfactorization) wheref; is the longest match with a substring
and involve more local computation to design a practicaloccurring in the prefixfifs---f; if f; # A, otherwise
algorithm. The simplest model for this phase is, of coursef; is the alphabet character next faf,--- fi—1 [12]. f;

a simple array of processors with no interconnections ands encoded by the pointey; = (d;,¢;), whered; is the

Keywords-dictionary-based compression, string factorization,
parallel complexity, distributed algorithm.

I. INTRODUCTION

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-161-8 125

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

displacement back to the copy of the factor alds the A. The Deletion Heuristics

length of the factor (LZSS compression)df =0, liisthe | et 4+ o be the cardinality of the fixed size dictionary
alphabet character. In other words the dictionary is define¢yhereq is the cardinality of the alphabet. With the FREEZE
by a window sliding its right end over the input string, geletion heuristic, there is a first phase of the factoriati
that is, it comprises all the substrings of the prefix readprocess where the dictionary is filed up and “freezed”.
so far in the computation. It follows that the dictionary is Afterwards, the factorization continues in a “static” way
both prefix and suffix since all the prefixes and suffixes of \;5ing the factors of the freezed dictionary. In other words,
a dictionary element are dictionary elements. The positioRhe | zW factorization of a stringS using the FREEZE
of the longest mat_ch in th_e prefix with the currer_1t positiongeletion heuristic isS — fifo---fi-- fx where f; is the
can be computed in real time by means of a suffix tree datgyngest match with the concatenation of a previous factor
structure [13], [14]. fj, with j < d, and the next character. The shortcoming
of this heuristic is that after processing the string for a
o)) while the dictionary often becomes obsolete. A more so-
The LZ2 factorization of a stringS is S = ppisticated deletion heuristic is RESTART, which monitors

fufa---fi-- fi where f; is the shortest substring, which the compression ratio achieved on the portion of the imput
is different from one of the previous factors. As for LZ1 the string read so far and, when it starst deteriorating, restar

encoding of each factor leaves one character uncompressgfle factorization process. Lt fo--- f;--- fi--- f. be such
To avoid this a different factorization was introduced (LZW ¢actorization withj the highest inde; less thanwhere the

factorization) where each factgy is the longest match with a5yt operation happens. Theh,is an alphabet character
the concatenation of a previous factor and the next charactg g4 f; is the longest match with the concatenation of a

[15]. fi is encoded by a pointey; to such concatenation nrevious factorf,, with A > j, and the next character

(LZW compression). LZW compression can be implementeqihe restart operation removes all the elements from the
in real time by storing the dictionary with a trie data gicionary but the alphabet characters). This heuristic is
structure. Differently from sliding window compressiohgt |, by the Unix command Compress since it has a good
dictionary is only prefix. compression effectiveness and it is easy to implement.
However, the best deletion heuristic is LRU (last recently
. i o . used strategy). The LRU deletion heuristic removes elesnent
The pointer encoding the factgi; has a size increasing from the dictionay in a continuous way by deleting at each

with the indexi. This means that the lower is the number g of the factorization the least recently used factoichvh
of factors for a string of a given length the better is theig ot g proper prefix of another one.

compression. The factorizations described in the previous _ o _
subsections are produced by greedy algorithms. The questid®. Compression with Finite Windows

is whether the greedy approach is always optimal, that is, As mentioned at the beginning of this section, bounded
if we relax the assumption that each factor is the longessize dictionary compression can also be obtained by sliding
match can we do better than greedy? The answer is negati¢gfixed length window and by bounding the match length. A
with suffix dictionaries as for sliding window compression. real time implementation of compression with finite window
On the other hand, the greedy approach is not optimal fofs possible using a suffix tree data structure [19]. Much
LZW compression. However, the optimal approach is NP-simpler real time implementations are realized by means
complete [16] and the greedy algorithm approximates withof hashing techniques providing a specific position in the
an Qn*) multiplicative factor the optimal solution [17]. window where a good appriximation of the longest match is
found on realistic data. In [20], the three current characte
are hashed to yield a pointer into the already compressed
The factorization processes described in the previougext. In [21], hashing of strings of all lengths is used to
section are such that the number of different factors (#1at i find a match. In both methods, collisions are resolved by
the dictionary size) grows with the string length. In preati overwriting. In [22], the two current characters are hashed
implementations instead the dictionary size is bounded by and collisions are chained via an offset array. Also the Unix

constant and the pointers have equal size. While for S|idin@zip compressor chains collisions but hashes three cleasact
window compression this can be simply obtained by bounds23].

ing the match and window lengths (therefore, the left end of) o

the window slides as well), for LZW compression dictionary C- Greedy versus Optimal Factorization

elements are removed by using a deletion heuristic. The Greedy factorization is optimal for compression with finite
deletion heuristics we describe in this section are FREEZEyindows since the dictionary is suffix. With LZW compres-
RESTART and LRU [18]. Then, we give more details on sion, after we fill up the dictionary using the FREEZE or
sliding window compression. RESTART heuristic, the greedy factorization we compute

B. LZW Compression

C. Greedy versus Optimal Factorization

IIl. BOUNDED SIZE DICTIONARY COMPRESSION

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-161-8 126

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

with such dictionary is not optimal since the dictionary follows that we obtain a tree rootedint1 and the positions
is not suffix. However, there is an optimal semi-greedyof the factors are given by the path from 1rte-1. Such tree
factorization, which at each step computes a factor suclan be built in @k) time with Q(n/k) processors. In fact,
that the longest match in the next position with a dictionaryon each block of: positions one processor has to compute a
element ends to the rightest [24], [25]. Since the dictignar match having constant length and the reading conflicts with
is prefix, the factorization is optimal. The algorithm camev other processors are solved in logarithmic time by standard
be implemented in real time with a modified suffix tree databroadcasting techniques. Then, since for each node of the
structure [24]. tree the number of children is bounded by the constant match
length it is easy to add the links from a parent node to its
children in k) time with O(n/k) processors and apply the

Sliding window compression can be efficiently paral- well-known Euler tour technique to this doubly linked tree
lelized on a PRAM EREW [4], [5], [8], that is, a parallel structure to compute the path from 10+ 1.
machine where processors access a shared memory without
reading and writing conflicts. On the other hand, LZW com-B: The Completeness Results
pression is P-complete [6] and, therefore, hard to paizdel NC is the class of problems solvable with a polyno-
Decompression, instead, is parallelizable for both methodmial number of processors in polylogarithmic time on a
[10]. As far as bounded size dictionary compression isparallel random access machine and it is comjectured to
concerned, the “parallel computation thesis” claims tleat s be a proper subset of P, the class of problems solvable
guential work space and parallel running time have the samm sequential polynomial time. LZ2 and LZW compression
order of magnitude giving theoretical underpinning to the r with an unbounded dictionary have been proved to be P-
alization of parallel algorithms for LZW compression using complete [6] and, therefore, hard to parallelize. SC is the
a deletion heuristic. However, the thesis concerns unbedind class of problems solvable in polylogarithmic space and
parallelism and a practical requirement for the design ofequential polynomial time. The LZ2 algorithm with LRU
a parallel algorithm is a limited number of processors. Adeletion heuristic on a dictionary of size(l@gk n) can be
stronger statement is that sequential logarithmic worlcepa performed in polynomial time and((lbgk nloglogn) space,
corresponds to parallel logarithmic running time with awheren is the length of the input string. In fact, the trie
polynomial number of processors. Therefore, a fixed sizeequires Gélog’C n) space by using an array implementation
dictionary implies a parallel algorithm for LZW compressio since the number of children for each node is bounded by
satisfying these constraints. Realistically, the satigdm the alphabet cardinality. Thieglogn factor is required to
of these requirements is a necessary but not a sufficierstore the information needed for the LRU deletion heuristic
condition for a practical parallel algorithm since the nanb since each node must have a different age, which is an
of processors should be linear, which does not seem possibieteger value between 0 and the dictionary size. Obviously,
for the RESTART deletion heuristic. Moreover, the 'SC this is true for the LZW algorithm, as well. If the size of
completeness of LZ2 compression using the LRU deletiorthe dictionary is Qlogk n), the LRU strategy is log-space
heuristic and a dictionary of polylogarithmic size showshard for S&, the class of problems solvable simultaneously
that it is unlikely to have a parallel complexity involving in polynomial time and @ogk n) space [7]. The problem
reasonable multiplicative constants [7]. In conclusidmg t belongs to SE!. This hardness result is not so relevant for
only practical LZW compression algorithm for a sharedthe space complexity analysis sin@élog® n) is an obvious
memory parallel system is the one using the FREEZHower bound to the work space needed for the computation.
deletion heuristic. We will see these arguments more irMuch more interesting is what can be said about the parallel
details in the next subsections. complexity analysis. In [7], it was shown that LZ2 (or LZW)

o] compression using the LRU deletion heuristic with a dictio-

A. Sliding Window Compression on a Parallel System nary of sizec can be performed in parallel either in0g n)

We present compression algorithms for sliding dictionar-time with 20(¢12¢)p, processors or iRC(¢1°8¢) Jogn time
ies on an exclusive read, exclusive write shared memorwith O(n) processors. This means that if the dictionary
machine requiring Qk) time with O(n/k) processors ifc size is constant, the compression problem belongs to NC.
is Q(logn), with the practical and realistic assumption thatNC and SC are classes that can be viewed in some sense
the dictionary size and the match length are constant [8]symmetric and are believed to be incomparable. Since log-
As previously mentioned, greedy factorization is optimalspace reductions are in NC, the compression problem cannot
with sliding dictionaries. In order to compute a greedybelong to NC when the dictionary size is polylogarithmic
factorization in parallel we find the greedy match in eachif NC and SC are incomparable. We want to point out
positions: of the input string and link to j+1, wherej isthe that the dictionary size: figures as an exponent in the
last position of the match. If the greedy match ends thegstrin parallel complexity of the problem. This is not by accident.
i is linked ton + 1, wheren is the length of the string. It If we believe that SC is not included in NC, then the*sC

IV. PREVIOUS WORK

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-161-8 127

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

hardness of the problem whenis O(logk n) implies the [10]. If sq, ..., s,,, are the partial sums df, ..., l,,, the target
exponentiation of some increasing and diverging functibn oof ¢; encodes the substring over the positieps; +1 - - - s;

c. In fact, without such exponentiation either in the numberof the output string. Link the positions_; +1 - - - s; to the

of processors or in the parallel running time, the problempositionss; 1 +1—d;---s;_1+1—d;+1; — 1, respectively.
would be S¢-hard and in NC when is O(log’C n). Observe If d; = 0, the target ofy; is an alphabet character and the
that the P-completeness of the problem, which requires aorresponding position in the output string is not linked to
superpolylogarithmic value for, does not suffice to infer anything. Therefore, we obtain a forest where all the nodes
this exponentiation since can figure as a multiplicative in a tree correspond to positions of the decoded string where
factor of the time function. Moreover, this is a unique casethe character is represented by the root. The reduction from
so far where somehow we use hardness results to arguke decoding problem to the problem of finding the trees in a
that practical algorithms of a certain kind (NC in this case)forest can be computed in(®) time with O(n/k) processors

do not exist because of huge multiplicative constant factorwheren is the length of the output string, because this is
occurring in their analysis. In [7], a relaxed version (RDRU the complexity of computing the partial sums singe< n.

was introduced, which turned out to be the first (and onlyAfterwards, one processor stores the parent pointers in an

so far) natural SE-complete problem. array of sizen for a block of k& positions. We can make
_ the forest a doubly linked structure since the window size
C. LZW Compression on a Parallel System is constant and apply the Euler tour technique to find the

As mentioned at the beginning of this section, the onlytrees. With LZW compression using the FREEZE deletion
practical LZW compression algorithm for a shared memoryheuristic the parallel decoder is trivial. We wish to point
parallel system is the one using the FREEZE deletiorout that the decoding problem is interesting independently
heuristic. After the dictionary is built and freezed, a fiata from the computational efficiency of the encoder. In fact,
procedure similar to the one for sliding window compressionin the case of compressed files stored in a ROM only
is run. To compute a greedy factorization in parallel we findthe computational efficiency of decompression is relevant.
the greedy match with the freezed dictionary in each pasitio With the RESTART deletion heuristic, a special mark occurs
¢ of the input string and link to j + 1, wherej is the last in the sequence of pointers each time the dictionary is
position of the match. If the greedy match ends the striisg cleared out so that the decoder does not have to monitor
linked ton+1, wheren is the length of the string. It follows the compression ratio. The positions of the special mark are
that we obtain a tree rooted im+ 1 and the positions of detected by parallel prefix. Each subsequefgce - ¢, Of
the factors of the greedy parsing are given by the path fronpointers between two consecutive marks can be decoded in
1ton+ 1. In order to compute an optimal factorization we parallel but the pointers do not contain the informationtua t
parallelize the semi-greedy procedure. The longest seguenlength of their targets and it has to be computed. The target
of two matches in each positioh of the string can be of the pointerg; in the subsequence is the concatenation of
computed in Qk) time with O(n/k) processors, in a similar the target of the pointer in positiogy — « with the first
way as for the greedy procedure. Then, positiaa linked character of the target of the pointer in positign- « + 1,
to the position of the second match. If the second match isvhere « is the alphabet cardinality. Then, in parallel for
empty,: is linked ton + 1. Again, we obtain a tree rooted eachi, link pointer ¢; to the pointer in positiony; — «,
in n + 1 and the positions of the factors are given by theif ¢; > «. Again, we obtain a forest where each tree is
path from 1 ton+ 1. The tree and the path are computed inrooted in a pointer representing an alphabet character and
O(k) time with O(n/k) processors ik is 2(logn), as in the the lengthl; of the target of a pointey; is equal to the level
first subsection without reading and writing conflicts [8Bhel of the pointer in the tree plus 1. It is known from [1] that
parallelization of the sequential LZW compression aldonit the largest number of distinct factors whose concatenation
with the RESTART deletion heuristic is not practical enoughforms a given string of lengthis O(¢/ log ¢). Since a factor
since it requires a quadratic number of processors [7]. of the LZW factorization of a string appears a number of

i times, which is at most equal to the alphabet cardinality, it
D. Parallel Deompression follows thatm is O(¢/ log ¢) if ¢ is the length of the substring

The design of parallel decoders is based on the facéncoded by the subsequenge - - ¢,,,. Then, building such
that the Euler tour technique can also be used to find tha forest takes) time with O(n/k) processors on a
trees of a forest in (&) time with OQ(n/k) processors shared memory parallel machine without writing and reading
on a shared memory parallel machine without writing andconflicts if & is Q(logn). By means of the Euler tour
reading conflicts, ift is Q(logn) andn is the number of technique, we can compute the trees of such forest and
nodes. We present decoders paired with the practical codintpe level of each node in its own tree in(/) time with
implementations using bounded size dictionaries. Firgt, wO(n/k). Therefore, we can compute the lengths..., 1,
see how to decode the sequence of pointgrs- (d;, ¢;) of the targets. Ifsq, ..., s,,, are the partial sums, the target
produced by the sliding window method with< i < m of ¢; is the substring over the positions_; + 1---s; of

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-161-8 128

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

the output string. For eacty, which does not correspond If this second factor has a suffix to the right of the window,
to an alphabet character, defirférst(i) = sq—a—1 + 1 this suffix must be a factor of the sliding dictionary defined
andlast(i) = sq,—o + 1. Since the target of the pointgr ~ by it and the multiplicative approximation factor follows.
is the concatenation of the target of the pointer in positionWe obtain an approximation scheme, which is suitable for a
q; — « with the first character of the target of the pointer in small scale system but due to its adaptiveness it works on a
positiong; — o + 1, link the positionss;_; +1---s; to the large scale parallel system when the file size is large. From a
POSItiONSs fiy41(i) - - * S1ast(i), T€SPECtively. As in the sliding practical point of view, we can apply something like the gzip
dictionary case, if the target af; is an alphabet character procedure to a small number of input data blocks achieving a
the corresponding position in the output string is the rootsatisfying degree of compression effectiveness and abtain
of a tree in a forest and all the nodes in a tree corresponthe expected speed-up on a real parallel machine. Making the
to positions of the decoded string where the character is therder of magnitude of the block length greater than the one
root. Since the number of children for each node is at mosbf the window length largely beats the worst case bound on
a, in O(k) time and Qn/k) processors we can store the realistic data and garantees robustness. The window léngth
forest in a doubly linked structure and decode by means ofisually several thousands kilobytes. The compressiors tool
the Euler tour technique [10]. of the Zip family, as the Unix command “gzip” for example,
use a window size of at least 32K. It follows that the block
length in our parallel implementation should be about 300K
and the file size should be about one third of the number of
As mentioned in the introduction, the simplest distributedprocessors in megabytes.
system is an array of processors with no interconnection
For every integek greater than 1 an @Qw) time, Q(n/kw)) o) o
processors distributed algorithm factorizing an inpuingtr ~ AS mentioned at the beginning of this section, if we use
S with a cost, which approximates the cost of the LZSS2 RESTART deletion hegrlstlc cI_earlng out th.e. dictionary
factorization within the multiplicative factafk +m — 1)/, ~ €Very£ characters of the input string we can trivially paral-
wheren, m andw are the lengths of the input string, the 'elize the factorization process with an(@ time, Q(n/¢)
longest factor and the window respectively was presented oprocessors distributed algorithm. LZW compression with
such model in [8]. As far as LZW compression is concernedtn® RESTART deletion heuristic was initially presented in
if we use a RESTART deletion heuristic clearing out the[15] with a dictionary of size2'? and is employed by the
dictionary every¢ characters of the input string we can Unix command “compress” with a dictionary of 5_'%6-
trivially parallelize the factorization process with an4p ~ Therefore, in order to have a satisfying compression effec-
time, O(n/¢) processors distributed algorithm. In this papertiveéness the distributed algorithm might v_vo_rk with blocks
we present on a tree architecture an algorithm, which irf?f length/ even greater than 300K on realistic data. After a
time O(km) with O(n/km) processors is guaranteed to dictionary is _f|I_Ied upf(_)r each block though, the factorl_at
produce a factorization of with a cost approximating the Of the remaining suffix of the block can be approximated
cost of the optimal factorization within the multiplicagiv Within the multiplicative factor(k + 1)/ in time O(km)
factor (k+1)/k. All the algorithms mentioned above provide With O(n/km) processors on a tree architecture. Every leaf
approximation schemes for the corresponding factorimatio Processor stores a sub-block of lengtitk + 2) and a copy

problems since the multiplicative approximation factaya-c of the dictionary, Whi_ch are broadcasted from some level of
verge to 1 whenkm and kw converge tof and to n the tree where the first phase of the computation has been

respectively. executed. Adjacent sub-blocks overlap2n characters. We
call a boundary matcha factor covering positions of two
A. Sliding Window Compression on a Distributed System adjacent sub-blocks. We execute the following algorithm:

We simply apply in parallel sliding window compression « for each block, every processor but the one associated

V. LZW VERSUSSLIDING WINDOW COMPRESSION
ON A DISTRIBUTED SYSTEM

B. LzZW Compression on a Distributed System

to blocks of lengthkw. It follows that the algorithm requires with the last sub-block computes the boundary match
O(kw) time with n/kw processors and the multiplicative between its sub-block and the next one, which ends
approximation factor igk +m — 1))/k with respect to any furthest to the right;

parsing. In fact, the number of factors of an optimal (grgedy e each processor computes the optimal factorization from
factorization on a block is at leaéts/m while the number the beginning of the boundary match on the left bound-
of factors of the factorization produced by the scheme is at ~ ary of its sub-block to the beginning of the boundary

most(k — 1)w/m +w. The boundary might cut a factor and match on the right boundary.

the lengthw of the initial full size window of the block is the Stopping the factorization of each sub-block at the begin-
upper bound to the factors produced by the scheme in it. Yening of the right boundary match might cause the making of
the factor cut by the boundary might be followed by anothera surplus factor, which determines the multiplicative appr
factor, which covers the remaining part of the initial wimdo imation factor(k+1)/k with respect to any factorization. In

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-161-8 129

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

fact, the factor in front of the right boundary match might [8]
be extended to be a boundary match itself and to cover the
first position of the factor after the boundary. In [26], it

is shown experimentally that fot = 10 the compression

L. Cinque, S. De Agostino, and L. Lombardgcalability
and Communication in Parallel Low-Complexity Lossless
CompressionMathematics in Computer Science 3, 391-406,
2010.

ratio achieved by such factorizarion is about the same as thgg] s. T. Klein and Y. WisemanParallel Lempel-Ziv Coding,

sequential one. Then, compression is effective and rolust o
a large scale system even if the size of the file is not Iarge[.10

C. Decompression on a Distributed System

To decode the compressed files on a distibuted system, it
is enough to use a special mark occuring in the sequendél]
of pointers each time the coding of a block ends. The
input phase distributes the subsequences of pointers godi
each block among the processors. If the file is encode
by an LZW compressor implemented on a large scale tree
architecture, a second special mark indicates for eactkblod13]
the end of the coding of a sub-block and the coding of each
block is stored at the same level of the tree. The first sub-
block for each block is decoded by one processor to learn thﬁ4]
corresponding dictionary. Then, the subsequences ofgrsint
coding the sub-blocks are broadcasted to the leaf processor
with the corresponding dictionary. (15]

2]

VI. CONCLUSION [16]

In this paper, we showed that with the low communication
cost of a tree architecture we can scale up the implementa-
tion of LZW compression on a distributed system preservinqﬂ]
its robustness. This does not seem to be possible with glidin
window compression. As future work, we would like to
implement Lempel-Ziv compression on available distribute

systems as array and tree architectures. (18]

REFERENCES
[19]

[1] A. Lempel and J. ZivOn the Complexity of Finite Sequences,
IEEE Transactions on Information Theory 22, 75-81, 1976.

Discrete Applied Mathematics 146, 180-191, 2005.

] S. De Agostino,Almost Work-Optimal PRAM EREW De-

coders of LZ-Compressed TeRgrallel Processing Letters 14,
351-359, 2004.

R. P. Brent,The Parallel Evaluation of General Arithmetic
Expressions,Journal of the ACM 21, 201-206, 1974.

J. A. Storer and T. G. Szimanskipata Compression via
Textual SubstitutionJournal of ACM 24, 928-951, 1982.

M. Rodeh, V. R. Pratt, and S. Evehjnear Algorithms for
Compression via String Matchindgournal of ACM 28, 16-24,
1980.

E. M. Mc Creight,A Space-Economical Suffix Tree Construc-
tion Algorithm, Journal of ACM 23, 262-272, 1976.

T. A. Welch, A Technique for High-Performance Data Com-
pression,|EEE Computer 17, 8-19, 1984.

S. De Agostino and J. A. Store®n-Line versus Off-line
Computation for Dynamic Text Compressidmformation
Processing Letters 59, 169-174, 1996.

S. De Agostino and R. Silvestdy Worst Case Analisys of the
LZ2 Compression Algorithminformation and Computation
139, 258-268, 1997.

J. A. Storer,Data Compression: Methods and TheoBom-
puter Science Press, 1988.

E. R. Fiala and D. H. Greeata Compression with Finite
Windows,Communications of ACM 32, 490-505, 1988.

20] J. R. WaterworthData Compression SystetdS Patent 4 701

[2] A. Lempel and J. ZivA Universal Algorithm for Sequential
Data CompressionEEE Transactions on Information Theory
23, 337-343, 1977.

[3] J. Ziv and A. Lempel,Compression of Individual Sequences
via Variable-Rate CodingdEEE Transactions on Information [22]
Theory 24, 530-536, 1978.

[4] M. Crochemore and W. RytteEfficient Parallel Algorithms [23]
to Test Square-freeness and Factorize Stringéormation
Processing Letters 38, 57-60, 1991. [24]

[5] S. De Agostino, Parallelism and Dictionary-Based Data
Compression|nformation Sciences 135, 43-56, 2001. [25]

S. De Agostino,P-complete Problems in Data Compression,
Theoretical Computer Science 127, 181-186, 1994.

(6]
(26]
S. De Agostino and R. SilvestrBounded Size Dictionary

CompressionSC*-Completeness anbC Algorithms, Infor-
mation and Computation 180, 101-112, 2003.

(7]

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-161-8

745, 1987.

] R. P. Brent,A Linear Algorithm for Data Compression,

Australian Computer Journal 19, 64-68, 1987.

D. A. Whiting, G. A. George, and G. E. Ivefpata Compres-
sion Apparatus and MethodJS Patent 5016009, 1991.

J. Gallly and M. Adler, http://www.gzip.org, 1991.

A. Hartman and M. RodehQptimal Parsing of Stringsin:
Apostolico, A., Galil, Z. (eds.) Combinatorial Algorithnzs
Words, 155-167, Springer, 1985.

M. Crochemore and W. Ryttedewels of Stringologyworld
Scientific, 2003.

D. Belinskaya, S. De Agostino, and J. A. Storéiear
Optimal Compression with respect to a Static Dictionary on a
Practical Massively Parallel Architecturd?roceedings IEEE
Data Compression Conference, 172-181, 1995.

130

