
Implementation of Integrated Systems and Resources
for Information and Computing

Claus-Peter Rückemann
Leibniz Universität Hannover,

Westfälische Wilhelms-Universität Münster (WWU),
North-German Supercomputing Alliance (HLRN), Germany

Email: ruckema@uni-muenster.de

Abstract—This paper presents the practical results from
the real-life implementation of interactive complex systems in
specialised High End Computing environments. The successful
implementation has been made possible using a new concept
of higher-level data structures for dynamical applications and
configuration of the resources. The discussion shows how an
implementation of integrated information systems, compute
and storage resources has been achieved. The implementation
uses techniques ensuring to create a flexible way for com-
munication with complex information and computing systems.
Besides Inter-Process Communication these are mainly Object
Envelopes for object handling and Compute Envelopes for com-
putation objects. These algorithms provide means for generic
data processing and flexible information exchange. Targeting
mission critical environments, the interfaces can embed in-
struction information, validation and verification methods. The
application covers challenges of collaborative implementation,
legal, and security issues with these processes. The focus is on
integrating information and computing systems, Distributed
and High Performance Computing (HPC) resources, for use
in natural sciences disciplines and scientific information sys-
tems. Implementing higher-level data structure frameworks
for dynamical applications and resources configuration has
led to scalable and modular integrated public / commercial
information system components.

Keywords–Integrated Systems; Information Systems; Comput-
ing Systems; Geosciences; High Performance Computing

I. INTRODUCTION

In High Performance Computing (HPC) supercomputers,
that means computer systems at the upper performance limit
of current technical capabilities for computing, are employed
to solve challenging scientific problems. In consequence
there is no general or common architecture and configuration
for HPC resources as in the lower parts of the performance
pyramid.

Within the last decades a large number of implementations
of information systems, computing and storage systems and
other resources have been created. Nearly all of these imple-
mentations lack features for extending information systems
with the various resources available. Thus, the integration
could be opening advances using larger resources, interactive
processing, and reducing time consumption for assigned
tasks. Most of these applications and resources are very

complex, standalone systems and used that way, neglecting
that for many sophisticated use cases conjoint applications
are desirable.

The next generation of systems neccessary for provid-
ing profound means for communication and computation
will have to gather methods evolved by active interdisci-
plinary interchange, grown with the requirements of the
last decades: The information and computing disciplines
need means for in praxi collaboration from disciplines,
structural sciences, computer science, computing science,
and information science. Examples are computing inten-
sive interactive environmental monitoring and information
systems or simulation supported dynamical geoinformation
systems. In this manner an efficient development and op-
eration can be put into practice for making interactive
use of systems with tenthousands of thousands of nodes,
ten to hundred thousands of compute cores and hundred
thousands to millions of system parts like memory bars and
hard disk drives. Methodological sciences means sciences of
developing methods for using resources and techniques for
gathering new scientific insights. For years, “methodological
sciences” or more precise “methodological techniques” have
been commonly propagated to solve the problems of High
End Computing. It has been commonly experienced that this
is not true as there are no applicatory results regarding the
essential requirements of complex and integrated high end
systems. The available “methods and techniques” is not what
we can use for supercomputing where every application and
system architecture is different. Up to now this difference
is implicit with common tender and operation strategy for
various efficiency and economical reasons.

The experiences with integrated systems have been com-
piled in various projects over the last years [1], [2]. Legal is-
sues and object security have been discussed at the CYBER-
LAWS 2010 and 2011 conferences. The architecture of the
framework and suitable components used, have been tested
by implementing various integrated systems. The following
sections show components of an integrated geoscientific
information and computing systems developed in one of
these case studies that can be used for environmental mon-
itoring or feeding expert systems. None of the participating

1

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-161-8

industry and scientific parties can or will create one single
application from the components discussed here. The goal
is to enable the necessary operation, nevertheless these are
separate components. For the last years practical solutions
to various requirements for communication requests have
been implemented in a number of projects and case studies
using various resources [3], [4], [5], [6], [7]. The most im-
portant communication facilities for integrated information
and computing systems are:

• Communication requests with applications (example:
Inter-Process Communication, IPC).

• Storage object requests (framework example: Object
Envelopes, OEN).

• Compute requests (framework example: Compute En-
velopes, CEN).

Based on these components an integrated solution has
been built, for use with local HPC resources supported by
distributed information and compute resources. From the
point of view of resources providers and integrators of HPC
resources it would make very little sense to describe the
application components here. Applications details have been
published for several components before. For the core issues
the conceptional results are by far the most important.

This paper is organised as follows. Section two presents
motivation, challenges and complexity with the implemen-
tation. Sections three and four describe the prerequisites
and basic resources configuration for the implementation.
Sections five and six show the components and dependencies
for integrated systems and resources. Section seven discusses
the time dependence of the integrated solutions. Section
eight describes the system implementation, and Section nine
does the evaluation. Sections ten and eleven summarise the
lessons learned, conclusions, and future work.

II. MOTIVATION

With the implementation use cases for Information Sys-
tems the suitability of Distributed and High Performance
Computing resources have been studied. These use cases
have focus on event triggered communication, dynamical
cartography, compute and storage resources. The goal has
been, to bring together the features and the experiences
for an integrated information and computing system. An
example that has been implemented is a spatial information
system with hundreds of thousands of ad-hoc simulations
of interest. Within these interactive systems as many “next
informations of interest” as possible can be dynamically
calculated in parallel, near real-time, in order to be of any
practical use. In the following passages we will show an
environmental component exactly using this implementation
for many thousands of points of interest.

Due to the complexity of integrated information and
computing systems, we have applied meta-instructions and
signatures for algorithms and interfaces. For these cases,
envelopes and IPC has been used to provide a unique event

and process triggered interface for event, computing, and
storage access.

III. SYSTEM PREREQUISITES

For implementation and testing a suitable system archi-
tecture and hardware had been neccessary. A single local
system had to fulfill the following minimal criteria:

• Capacity for more than 5000 subjobs per job.
• At least one compute core available per subjob.
• Interactive batch system.
• No distributed compute and storage resources.
• Fast separate InfiniBand networks for compute and IO.
• Highly performant parallel filesystem.
• Available for being fully configurable.

A system provided being fully configurable means especially
configuration of hardware, network, operating system, mid-
dleware, scheduling, batch system. At this size this normally
involves a time interval of at least three to six months.

It should be obvious that there are not many installations
of some reasonable size and complexity that could be
provided, configured and operated that way if in parallel
to normal operation and production.

The available HPC and distributed resources at ZIV
and HLRN as well as commercially provided High End
Computing installations have been sufficient to fulfill all the
necessary criteria.

IV. BASIC RESOURCES CONFIGURATION

Elementary operating system components on the resources
involved are: AIX, Solaris, and various Linux distribu-
tions (SLES, Scientific Linux). Elementary middlewares,
protocols, and accounting systems used for the integrated
components are: Globus Toolkit, SGAS, DGAS. Unicore,
SAGA, SOAP, and many others can be integrated, too. For
communication and parallelisation MPI (Open-MPI [8], MPI
from SGI, Intel, HP, IBM), OpenMP, MPICH, MVAPICH
and other methods have been used along with IPC regarding
to the type of operation and optimisation of algorithms
needed. For the scheduling and batch systems the resources
used Moab, Torque, LoadLeveler, and SGE.

All these “tools” are only middleware components, pro-
tocols, interfaces or isolated applications. They are certainly
used on the system resources but they cannot integrate
anything, not on the disciplines/application level, not on the
services level, not on the resources level. So we want to
concentrate on the important high-level issues for the further
advanced view of components.

V. COMPONENTS

Using the following concepts, we can, mostly for any
system, implement:

• Application communication via IPC.
• Application triggering on events.
• Storage object requests based on envelopes.

2

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-161-8

• Compute requests based on envelopes.
For demonstration and studies flexible and open Active
Source Information System components have been used for
maximum transparency. This allows OO-support (object, el-
ement) on application level as well as multi-system support.
Listing 1 shows a simple example for application commu-
nication with framework-internal and external applications
(Inter-Process Communication, IPC).
1 catch {
2 send {rasmol #1} "$what"
3 }

Listing 1. Application communication (IPC).

This is self-descriptive Tcl syntax. In this case the IPC
send is starting a molecular graphics visualisation tool and
catching messages for further analysis by the components.

Listing 2 shows an example of how the communication
triggering can be linked to application components.
1 text 450.0 535.0 -tags {itemtext relictrotatex} -fill

yellow -text "Rotate x" -justify center
2 ...
3 $w bind relictrotatex <Button-1> {sendAllRasMol {rotate

x 10}}
4 $w bind relictballsandsticks <Button-1> {sendAllRasMol

{spacefill 100}}
5 $w bind relictwhitebg <Button-1> {sendAllRasMol {set

background white}}
6 $w bind relictzoom100 <Button-1> {sendAllRasMol {zoom

100}}

Listing 2. Application component triggering.

Tcl language objects like text carry tag names
(relictrotatex) and dynamical events like Button
events are dynamically assigned and a user defined subrou-
tine sendAllRasMol is executed, triggering parallel vi-
sualisation. Storage object requests for distributed resources
can be done via OEN. Listing 3 shows a small example for
a generic OEN file.
1 <ObjectEnvelope><!-- ObjectEnvelope (OEN)-->
2 <Object>
3 <Filename>GIS_Case_Study_20090804.jpg</Filename>
4 <Md5sum>...</Md5sum>
5 <Sha1sum>...</Sha1sum>
6 <DateCreated>2010-08-01:221114</DateCreated>
7 <DateModified>2010-08-01:222029</DateModified>
8 <ID>...</ID><CertificateID>...</CertificateID>
9 <Signature>...</Signature>

10 <Content><ContentData>...</ContentData></Content>
11 </Object>
12 </ObjectEnvelope>

Listing 3. Storage object request (OEN).

OEN are containing element structures for handling and
embedding data and information, like Filename and
Content. An end-user public client application may be
implemented via a browser plugin, based on appropriate
services. With OEN instructions embedded in envelopes,
for example as XML-based element structure representation,
content can be handled as content-stream or as content-
reference. Algorithms can respect any meta-data for objects
and handle different object and file formats while staying

transparent and portable. Using the content features the
original documents can stay unmodified. The way this will
have to be implemented for different use cases depends on
the situation, and in many cases on the size and number
of data objects. but the hierarchical structured meta data
is uniform and easily parsable. Further it supports signed
object elements (Signature), validation and verification
via Public Key Infrastructure (PKI) and is usable with
sources and binaries like Active Source. Compute requests
for distributed resources are handled via CEN interfaces.
Listing 4 shows a generic CEN file with embedded compute
instructions. Content can be handled as content-stream or
as content-reference (Content, ContentReference).
Compute instruction sets are self-descriptive and can be pre-
configured to the local compute environment.

1 <ComputeEnvelope><!-- ComputeEnvelope (CEN)-->
2 <Instruction>
3 <Filename>Processing_Batch_GIS612.pbs</Filename>
4 <Md5sum>...</Md5sum>
5 <Sha1sum>...</Sha1sum>
6 <Sha512sum>...</Sha512sum>
7 <DateCreated>2010-08-01:201057</DateCreated>
8 <DateModified>2010-08-01:211804</DateModified>
9 <ID>...</ID>

10 <CertificateID>...</CertificateID>
11 <Signature>...</Signature>
12 <Content><DataReference>https://doi...</DataReference><

/Content>
13 <Script><Pbs>
14 <Shell>#!/bin/bash</Shell>
15 <JobName>#PBS -N myjob</JobName>
16 <Oe>#PBS -j oe</Oe>
17 <Walltime>#PBS -l walltime=00:10:00</Walltime>
18 <NodesPpn>#PBS -l nodes=8:ppn=4</NodesPpn>
19 <Feature>#PBS -l feature=ice</Feature>
20 <Partition>#PBS -l partition=hannover</Partition>
21 <Accesspolicy>#PBS -l naccesspolicy=singlejob</

Accesspolicy>
22 <Module>module load mpt</Module>
23 <Cd>cd $PBS_O_WORKDIR</Cd>
24 <Np>np=$(cat $PBS_NODEFILE | wc -l)</Np>
25 <Exec>mpiexec_mpt -np $np ./dyna.out 2>&1</Exec>
26 </Pbs></Script>
27 </Instruction>
28 </ComputeEnvelope>

Listing 4. Compute request (CEN).

In this case standard PBS batch instructions like
walltime and nodes are used. The way this will have
to be implemented for different use cases depends on the
situation, an in many cases on the size and number of data
objects. An important benefit of content-reference with high
performant distributed or multicore resources is that refer-
ences can be processed in parallel on these architectures.
The number of physical parallel resources and the transfer
capacities inside the network are limiting factors.

VI. INTEGRATED SYSTEMS WITH COUPLED RESOURCES

Figure 1 shows the applied integration of the information
and communication systems with coupled computation re-
sources, namely compute resources and storage resources.
For integrating the features of information and communica-
tion systems with powerful compute resources and storage,

3

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-161-8

Figure 1. Integrated systems and resources.

it has been necessary to implement interfaces and software
applications being able to efficiently use the benefits of High
End Computing resources.

Following the results of the long-term case studies [9]
three columns namely disciplines (as geosciences), services
(as middleware and compute services), resources (computing
and storage) had to be figured out for this scenario.

The discipline column shows application components with
the state for a compute task and an application component
with state for a storage task. Local tasks, ordinary communi-
cation between the applications without the need for external
computing power, can as usual be done using a local service,
for example using Inter-Process Communication (IPC).

Using services, requests can be sent to the configured
compute object request service for compute intensive tasks.
Results delivered from the computation are delivered for
the compute object response service, giving the desired
information back the one of the application components.
Compute Envelopes (CEN) can be used for exchange of the
compute requests.

The resources column does provide compute resources for
processing and computing as well as storage resources for
object storage. Commonly these resources are separated for
backend use with high end applications customised on the
compute resources.

Application components may trigger storage tasks using
a storage object request service. Data objects are handled by
the service and delivered to the storage resources. Request

for retrieval from the storage are handled by the storage
object response service. Object Envelopes (OEN) can be
used for exchange of the object requests.

For enabling overall scalable integrated systems, mostly
for large and voluminous data, the computing and storage
resources can communicate for using stored data from within
compute tasks and for provisioning and staging of data.

These services are so far using a loosely coupled parallel
computing, parallelised on the application component level.
Each single task can itself contain scalable and loosely
to highly parallel computing jobs running on the available
compute resources. MPI and OpenMP can be used here.
The CEN Envelopes are used to transfer the tasks and their
description.

The user has to ensure that with using the resources the
interactivity and latencies of the integrated system still result
in appropriate and usable comprehensive system.

Among the compute and storage resources a provisioning
and staging mechanism for data and resources requests and
responses can be used. Therefore triggering of computing
for storage operations and triggering of storage operations
for computing are available.

VII. TIME DEPENDENCE

The same reason why opening large resources for in-
formation system purposes is desirable, there is still a
dependence on time consumption for interactive and batch
processing. Table I shows the characteristic tasks and times
that have been considered practical [9] with the current infor-
mation system applications, for example with environmental
monitoring and information system components.

Table I
TASKS AND TIMES REGARDING THE OVERALL INTEGRATED SYSTEMS.

Task Compute / Storage Times

In-time events requests 1–3 seconds
Interactive requests up to 3 minutes
Data processing 1–24 hours
Processing data transfer n days
Object storage interval n weeks
Object archive interval n years

The different tasks afford appropriate policies for interac-
tive and batch use inside the resources network. Besides that,
the user and the developer of the application components can
use the computing and storage interfaces in order to extend
the application facilities using these non-local resources.

Nevertheless for configuring the system and for imple-
menting new operations the decisions have to be made which
type of implementation would be more suitable.

Interactive request are mostly not acceptable when re-
sponse time are longer than a few minutes, even for spe-
cialised information systems. HPC systems have shown a
good performance for parallelisation of interactive subjobs,

4

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-161-8

being in the range of minutes. Whereas distributed resources
are much less scalable and provide less performance due
to smaller and mostly different resource architecture types
and non-exclusive use. Compute times for 1 to 24 hours
will force to decide about the field of operation of the
system application, when assigning the tasks and events.
For example those compute resources doing computation on
large jobs are the computational bottleneck for interactive
use. One the other hand for information system purposes, for
example needing visual updates within longer intervals, like
for special monitoring purposes for environmental, weather,
volcano or catastrophes monitoring and using remote sens-
ing, this scenario is very appropriate. Storage resources
and object management can reduce the upload and staging
times for objects that can be used more than once. Service
providers are confronted with the fact that highly perfor-
mant storage with reliable and long time interval archiving
facilities will be needed at a reasonable price.

VIII. IMPLEMENTED SYSTEM

The system implemented integrates the component fea-
tures described from the projects and case studies. Figure 2
shows the implementation of the integrated systems and
resources. The components were taken from the GEXI
case studies and the well known actmap components [9],
[10]. These components handle information like spatial and
remote sensing data, can be used for dynamical cartography
and trigger events, provide IPC and network communication,
and integrate elements from remote compute and storage
resources as available with existing compute resources [5],
[6], [7]. Processing and computing tasks can for example
consist of raytracing, seismic stacking, image transformation
and calculation, pattern recognition, database requests, and
post processing. The modularisation for development and
operation of advanced HPC and application resources and
services can improve the multidisciplinary cooperation. The
complexity of operation and usage policies is reduced.

A. Application components

The integrated system is built in three main columns, ap-
plication components in use with scientific tasks for various
disciplines, meaning the conventional scientific desktop and
information system environment, services, and resources.
These columns are well understood from the Grid-GIS house
framework. In opposite to the conventional isolated usage
scheme, interaction and communication is not restricted to
happen inside the disciplines and resources columns only.
Non isolated usage can speed up the development of new
components and the modification of existing components in
complex environments. The workflows with the application
scenarios (Figure 2) are:

a) Application communication.
b) Storage task.
c) Compute task.

These tasks can consists of a request, triggered by some
event, and a response, when the resources operation is
finished. The response can contain data with the status or
not, in case that for example an object has been stored on
the resources. Based on this algorithm, task definition can
be reasonably portable, transparent, extendable, flexible, and
scalable.

B. Application communication

A) Request: The internal and framework-external appli-
cation is triggered from within the framework components
(rasmol is used in the example). From within an actmap
component a task to an application component is triggered.
IPC calls are used with data and information defined for the
event.

Response: A framework-external application is started
(rasmol locally on the desktop). The external application
can further be triggered from the applications available.

C. Storage task

B) Request: From within an actmap component a storage
task is triggered. The stored OEN definition is used to trans-
mit the task to the services. The services do the validation,
configuration checks, create the data instructions and initiate
the execution of the object request and processing for the
resources.

Response: The processing output is transmitted to the ser-
vices for element creation and the element (in this example
a photo image) is integrated into the actmap component.

D. Compute task

C) Request: From within an actmap component a compute
task is triggered. The stored CEN definition is used to trans-
mit the task to the services. The services do the validation
(configuration checks, create the compute instructions and
initiate the execution of the compute request and compute
job for the resources.

Response: The processing output is transmitted to the ser-
vices for element creation and the element (in this example
a remote sensing image and vector object) is integrated into
the actmap component.

IX. EVALUATION

The target has been to integrate application communica-
tion, computing, and storage resources for handling comput-
ing requests and content for distributed storage within one
system architecture. The technical details of the components
have been discussed in several publications and used in
applications publically available. The case study has demon-
strated that existing information systems and resources can
be easily integrated using envelope interfaces in order to
achieve a flexible computing and storage access. As the
goal has been to demonstrate the principle and for the
modular system components used and due to the previous

5

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-161-8

Disciplines Services Resources

Instructions
Data

Configuration

Validation

addressing
Resources

Execution

OutputElement

Validation

Processing

Element

Compute job

Output

Computing

Compute task CEN

Element integration

Storage task OEN

Element integration

c
Application communication IPC

b

a

Figure 2. Implementation of the different tasks with integrated systems and resources.

experiences, the services necessary for integration afforded
minimal scripting work.

With modern information and computing systems object
management is a major challenge for software and hard-
ware infrastructure. Resulting from the case studies with
information systems and compute resources, signed objects
embedded in OEN can provide a flexible solution.

The primary benefits shown from the case studies of this
implementation are:

• Build a defined interface between dedicated information
system components and computing system components.

• Uniform algorithm for using environment components.
• Integration of information and computing systems.
• Speed-up the development of new components and

the modification of existing components in complex
environments.

• Portable, transparent, extendable, flexible, and scalable.
• Hierarchical structured meta data, easily parsable.
• OO-support (object, element) on application level.
• Multi-system support.
• Support for signed object elements, validation and

verification via PKI.
• Usable with sources and binaries like Active Source.
• Portable algorithms in between different object and file

formats, respecting meta-data for objects.
• Original documents can stay unmodified.
• The solution is most transparent, extendable, flexible,

and scalable, for security aspects and modularisation.

• Handling of cooperation and operation policies is less
complex [11].

• Guaranteed data integrity and authentication derived
from the cryptographic strength of current asymmetric
algorithms and digital signature processes.

• Flexible meta data association for any object and data
type, including check sums and time stamps.

Main drawbacks are:

• Additional complexity due to additional resources
and system environment features like batch scripting
(Condor [12], Moab / Torque [13]) and using verifica-
tion/PKI.

• Complexity of parsing and configuration.
• Additional software clients might come handy to handle

resources and generate, store and manage associated
data and certificates.

The context is an important aspect, though it cannot be called
“drawback” here. With closed products, e.g., when memory
requirements are not transparent, it is difficult for users to
specify their needs. Anyhow, testing is in many cases not
the answer in productive environments. Separate measures
have to be taken to otherwise minimise possible problems
and ease the use of resources in productive operation.

Even in the face of the drawbacks, for information systems
making standardised use of large numbers of accesses via
the means of interfaces, the envelopes can provide efficient
management and access, as programming interfaces can.

6

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-161-8

X. LESSONS LEARNED

Integrating information system components and external
resources has provided a very flexible and extensible solution
for complex application scenarios. OEN and CEN, based on
generic envelopes, have provided a very flexible and exten-
sible solution for creating portable, secure objects handling
and processing components with integrated information and
computing systems.

The case study showed that very different kinds of object
data structures and instruction sets may be handled with
the envelopes, in embedded or referenced use. Meta data,
signatures, check sums, and instruction information can be
used and customised in various ways for flexibly imple-
menting information and computing system components.
Support for transfer and staging of data in many aspects
further depends on system configuration and resources as
for example physical bottlenecks cannot be eliminated by
any kind of software means.

For future integrated information and computing systems
an interface layer between user configuration and system
configuration would be very helpful. From system side
in the future we need least operation-invasive functioning
operating system resources limits, e.g., for memory and
a flexible limits management. Homogeneous compute and
storage resources and strong standardisation efforts for the
implementation could support the use of high end resources
regarding economic and efficient operation and use.

XI. CONCLUSION AND FUTURE WORK

It has been demonstrated that integrated information and
computing systems can be successfully built, employing a
flexible and portable envelopes framework. For this imple-
mentation Object Envelopes, Compute Envelopes, and IPC
have been used. For the case study Active Source com-
ponents and Distributed and High Performance Computing
resources provided the information system and computing
environment. With integrated information and computing
systems the following main results have been achieved. Lo-
cal and inter-application communication can be done using
IPC. Object Envelopes can be natively used for handling ob-
jects and implementing validation and verification methods
for communication. Compute Envelopes can be used in order
to define information system computation objects and embed
instruction information. These algorithms provide means for
generic data processing and flexible information exchange.

The concept used has been found to be least invasive
to the information system side as well as to the resources
used while being very modular and scalable. The services
in between can hold most of the complexity and standard-
isation issues and even handle products that are meant to
be commercially used or licensed. In the future we will
have to integrate the features into a global framework for
communication purposes and defining standardised inter-
faces. This implementation has demonstrated a flexible basic

approach in order to begin to pave the way and show the
next aspects to go on with for future integrated information
and computing systems.

ACKNOWLEDGEMENTS

We are grateful to all national and international academic
and industry partners in the GEXI cooperations for the inno-
vative constructive work and to the colleagues at the Leibniz
Universität Hannover, IRI, HLRN, WWU, ZIV, D-Grid for
participating in fruitful case studies and the participants of
the EULISP Programme for prolific discussion of scientific,
legal, and technical aspects over the last years.

REFERENCES

[1] C.-P. Rückemann, “Using Parallel MultiCore and HPC
Systems for Dynamical Visualisation,” in Proceedings,
GEOWS 2009, Cancun, Mexico. IEEE CSP, IEEE
Xplore, 2009, pp. 13–18, ISBN: 978-0-7695-3527-2,
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=
4782685&isnumber=4782675 [accessed: 2011-02-20].

[2] C.-P. Rückemann, “Envelope Interfaces for Geoscientific
Processing with High Performance Computing and
Information Systems,” in Proceedings, GEOProcessing
2011, Gosier, Guadeloupe, France. XPS, 2011, pp. 23–28,
ISBN: 978-1-61208-003-1, URL: http://www.thinkmind.org/
download.php?articleid=geoprocessing 2011 2 10 30030
[accessed: 2011-03-20].

[3] “D-Grid, The German Grid Initiative,” 2008, URL: http:
//www.d-grid.de [accessed: 2009-11-16].

[4] ZIVGrid, “ZIV der WWU Münster – ZIVGrid,” 2008, URL:
http://www.uni-muenster.de/ZIV/Server/
ZIVGrid/ [accessed: 2008-12-23].

[5] “ZIVHPC, HPC Computing Resources,” 2011, URL: https://
www.uni-muenster.de/ZIV/Technik/ZIVHPC/index.html [ac-
cessed: 2011-07-10].

[6] “HLRN, North-German Supercomputing Alliance (Nord-
deutscher Verbund für Hoch- und Höchstleistungsrechnen),”
2011, URL: http://www.hlrn.de [accessed: 2011-07-10].

[7] “ZIVSMP, SMP Computing Resources,” 2011, URL: https:
//www.uni-muenster.de/ZIV/Technik/ZIVHPC/ZIVSMP.html
[accessed: 2011-07-10].

[8] “Open-MPI,” 2011, URL: http://www.open-mpi.org [ac-
cessed: 2011-07-12].

[9] “Geo Exploration and Information (GEXI),” 1996, 1999,
2010, 2011, URL: http://www.user.uni-hannover.de/cpr/x/
rprojs/en/index.html#GEXI (Information) [acc.: 2011-02-20].

[10] “Applications with Active Map Software, Screenshots,”
2005, URL: http://wwwmath.uni-muenster.de/cs/u/ruckema/
x/sciframe/en/screenshots.html [accessed: 2011-02-20].

[11] “EULISP Lecture Notes, European Legal Informatics Study
Programme, Institute for Legal Informatics, Leibniz Univer-
sität Hannover (IRI / LUH),” 2011, URL: http://www.eulisp.de
[accessed: 2011-02-20].

[12] “Condor, High Throughput Computing,” 2011, URL: http://
www.cs.wisc.edu/condor/ [accessed: 2010-12-26].

[13] “Moab Admin Manual, Moab Users Guide,” 2011, URL:
http://www.clusterresources.com/products/mwm/moabdocs/
index.shtml [accessed: 2011-02-20].

7

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-161-8

