
Efficient Selection of Pairwise Comparisons for Computing Top-heavy Rankings

Shenshen Liang

Technology and Information Management
University of California, Santa Cruz

Santa Cruz, California 95136
Email: sliang@soe.ucsc.edu

Luca de Alfaro

Computer Science
University of California, Santa Cruz

Santa Cruz, California 95136
Email: luca@ucsc.edu

Abstract—Crowdsourcing provides an efficient way to gather
information from humans for solving large scale problems. Learn-
ing to rank via pairwise comparison is one of the most essential
tasks in crowdsourcing, and it is widely used in applications, such
as recommendation systems, online contests, player matching, and
more. While much research has been done on how to aggregate
the comparison data into an overall ranking, comparatively
less research has been done on how to optimally select items
for pairwise comparison. In this research, we consider ranking
problems where the benefit for each item to be ranked in position
n is a geometrically decreasing function of n. This geometric
dependence between ranking and benefit is common online and
on the web. We define the quality of a ranking as the total mis-
allocated benefit, so that in learning a ranking, we are more
sensitive to errors in the ordering of top items than errors
in items ordered in the long tail. We propose and compare
several active learning methods for selecting pairs for comparison.
The methods actively search for the pairs to compare, present
them to the crowd, and update the ranking according to the
comparison outcomes. We show experimentally that the best-
performing method selects pairs on the basis of the expected
benefit mis-allocation between the items in the pair. As the size
of the ranking problem grows, the computational cost of selecting
the optimal pair for each comparison becomes prohibitive. We
propose and show an efficient algorithm that selects items in
batches while retains nearly optimal performance, at a cost per
comparison that grows only logarithmically with the total number
of items.

Keywords–Top-heavy Ranking; Pairwise Comparison; Active
Learning; Crowdsourcing.

I. INTRODUCTION

Crowdsourcing systems obtain small pieces of information
from ordinary crowds and have been proven effective to get
human-power information with relatively low cost [1]. They
have been extensively used online, such as Wikipedia, Amazon
Mechanical Turk, Quora and Stack Exchange Network.

Ranking is one of the key problems in crowdsourcing
and is widely used in a variety of applications. Typically,
it is performed on the basis of three types of input: binary
relevance label, which categorizes data into two types such
as relevant/irrelevant, true/false, etc.; graded relevance label,
which classifies data into multiple ordinal levels; and pairwise
preference, where a label is expressed as preference between
two items rather than an absolute judgment. Each type of input
is a tradeoff between potential information gain and difficulty
of getting effective information. For example, for data with
five star graded relevance labels, while it obtains finer-grained
information than binary relevance labels, users are more prone

to bias and errors. Pairwise preference, on the other hand, is a
simple expression of preference between two items. Such data
is relatively easy to obtain, it is less prone to errors because of
its simplicity, and can be expanded to graded relevance label
[2]. As a result, ranking via pairwise comparisons becomes an
essential task in ranking problems.

Extensive research has been done on how to aggregate
pairwise comparisons into accurate rankings, such as Mallows
[3], nuclear norm minimization [4], Bradley-Terry [5], Glicko
[6], TrueSkill [7] and so on [8][9]. However, it is still very chal-
lenging to efficiently obtain data with minimal computational
cost. Therefore, we concentrate on studying active learning
strategies for selecting pairs of items to be sent to the crowd
for comparison, so that rankings will converge as quickly as
possible to the correct rank. Specifically, in this paper we
focus on rankings where an ordinal rank k is associated with
a benefit proportional to its position. These type of geometric
benefit distributions are typical in online settings, where higher
rank commands geometrically higher visibility, and revenue
[2][10][11].

In setting the problem, we assume that each item in a
ranking has an intrinsic “quality”, and we define a “top-
heavy” version of ranking distance where the mis-placement
of items is weighed according to 1/kλ for rank k with λ > 0;
this will be used to judge the speed of convergence of the
proposed methods. Thus, errors in the head of the ranking will
be weighed more heavily than errors in the tail. As ranking
aggregation is not our primary focus, we perform ranking
aggregation by applying the Glicko [6] and TrueSkill [7],
which are well-established on-line aggregation algorithms.

We then formulate and compare two active learning strate-
gies for selecting the next pairs of items to compare. In
particular, we define the loss (or error) involved in each pair
of items, and we consider and justify strategies that select
pairs for comparison that have maximum loss, or that lead
to maximum ranking change. We identify one such strategy,
maximum loss, as the one that leads to overall best results, as
demonstrated by our simulations.

These pair selection strategies are computationally ex-
pensive, as they require at each round the computation of
many alternatives in order to select the best. To address this
problem, we propose and develop efficient batched versions
of the pair selection strategies, which deliver essentially the
same performance while exhibiting complexity that grows only
logarithmically with the number of items, the dominant step
being a sorting step.
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Our contributions can be summarized as follows:

• We define a distance to measure “top-heavy” rankings.
• We propose two active learning strategies for selecting

pairs effectively which reduce ranking loss rapidly.
• We propose an efficient batch algorithm with low

computational cost.

After a review of related work in Section II, we define
the problem precisely, and describe the Glicko and TrueSkill
methods for ranking aggregation (Section III). In Section IV
we present our active learning methods for selecting pairs, and
in Section V we present and analyze the experimental results.

II. RELATED WORK

Obtaining data from crowdsourcing is widely applied in
many fields, such as advertising, ranking, knowledge shar-
ing, elections, opinion collection, and so on [12][13]. Many
applications collect boolean or grade-based feedback about
individual items. For example, StackOverFlow provides a vote
up and vote down mechanism and allows users stating whether
a question is useful. Yelp asks users to grade merchants in a
1 to 5 star grade-based rating system.

Much research has been done on how to aggregate com-
parison outcomes into a ranking [14]–[19]. Generally, ranking
aggregation methods can be categorized into three types:
permutation-based, such as researches in Mallows [3] and
CPS [15] models; matrix factorization, such as work in [4];
and score-based probabilistic method, such as Plackett-Luce
[20][21], Bradley-Terry [5], Thurstone [22], etc. Permutation
methods are generally computational expensive, while matrix
factorization methods do not have sufficient probabilistic inter-
pretations. As a result, we use score-based methods for ranking
aggregation in this paper.

Score-based methods assign a score to each item, and use
all scores to generate rankings. Among score-based methods
learning from pairwise data, the Elo ranking method is perhaps
the first Bayesian pairwise ranking algorithm [23], and it is
widely used in ranking sports and estimating the underlying
skills of players. A player’s skill is assumed to follow a
Gaussian distribution with two parameters as average skill
level and players uncertainty. Glickman extended Bradley-
Terry model and updated player skills based on designed length
of period, assuming same Gaussian distribution of player
skills [6]. Trueskill by Microsoft is another Bayesian ranking
system with Gaussian distribution assumption [7]. It extendes
a Thurstone-Mosteller model which adds a latent variable as
player performance.

Ranking aggregation via pairwise comparisons aims at
computing a ranking for items that can represent all the
comparison outcomes with minimum data disagreement. The
problem that concerns us in this paper is how to optimally
select pairs for comparison, so that a “good” ranking can be
obtained with as few comparisons as possible, and thus, as
efficiently as possible.

Active learning is an effective way to improve efficiency
and promote performance. It has been recognized that by
properly selecting items, learning tasks achieve better accu-
racy and require less data for training [24]–[27]. There are
mainly three types of active learning methods. The first one
is uncertainty sampling, which targets at finding items that

the system is most uncertain about [28][29]. Another one is
minimizing expected loss, which focuses on searching for
items that can reduce highest expected error [30]. Lastly,
query by committee method looks for items that a set of
learners (refers as committee) having largest disagreement with
[31][32]. While extensive research has been performed on
active learning, most of them are for binary or graded based
problems [33]–[39].

Some research was done on active learning for ranking
from pairwise comparisons. Donmez et al. applied their doc-
ument selection algorithm to RankSVM and RankBoost [40].
Also using RankSVM, Yu proposed to add most ambiguous
document pairs to training dataset [41]. Chen et al. proposed
a framework to find reliable annotators and informative pairs
jointly, which requires annotator quality information [42]. A
maximum likelihood based algorithm was proposed by Guo et
al. to locate the topmost item in a ranking [43]. Other research
based on pairwise comparisons includes work done by Chu et
al. [44], Ailon [45], Jamieson et al. [46] and so on. Notably,
a majority of them focus on selecting annotators rather than
items.

III. TOP-HEAVY RANKING

A ranking problem consists in sorting a set of items
S = {s1, s2, . . . , sn} according to their quality. Ranking
problems are solved via crowdsourcing when assessing the
quality of an item requires human judgement, as is the case,
for instance, when assessing the quality or appeal of videos,
images or merchandise. We consider here ranking problems
that are top-heavy in their reward: being ranked in position k
has value proportional to 1/k.

These top-heavy problems find application whenever the
ranking is used to display the items to users. In such cases, a
higher rank commands a larger amount of user engagement,
which can be measured in item views, page visits, user votes
and so forth, according to the nature of the items being
ranked. As user attention is valuable (and can be monetized),
we assume that the value of being ranked in position k is
proportional to 1/kλ, for some λ > 0. We call this a λ-
top heavy ranking. This is equivalent to assuming that user
attention follows a Zipf distribution, an assumption that has
been validated on the Web [47].

A. Ranking Quality

To measure the quality of a ranking, we introduce a
measure of distance between top-heavy rankings. Our distance
will give more weight to differences among top positions than
to differences among positions in the tail of rankings. This
reflects the intuition that errors in top rankings matter more
than errors in the tails of rankings, as there is much more value
in the top than in the tail. For instance, in a sport competition
where athlete sponsorship is proportional to the inverse of the
rank, it would obviously be worse to get the order wrong
between the first and second positions than between the 101st
and the 102nd.

Precisely, for our set of items S = {s1, s2, . . . , sn},
consider two rankings r and r′ so that r(i) is the position
(the ordinal) of item si according to ranking r, for 1 ≤ i ≤ n,
and similarly for r′. We define the distance d(r, r′) between r
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and r′ by:

d(r, r′) =

n∑
i=1

∣∣∣∣ 1

r(i)λ
− 1

r′(i)λ

∣∣∣∣ , (1)

where λ is the coefficient of the λ-top heavy ranking. Equation
(1) can be understood as follows. If r is the correct ranking,
and r′ is another ranking, then | 1

r(i)λ
− 1
r′(i)λ

| is the amount of
value that item i receives in error, either in positive or negative.
Thus, the quantity (1) represents the total value mis-allocation
of ranking r′, measured with respect to ranking r.

In particular, if r∗ is the correct ranking, we denote by

L(r) = d(r, r∗) (2)

the loss of r, measured as its distance from optimality.

B. Learning Top-Heavy Rankings
Our goal consists in developing algorithms for learning top-

heavy rankings via crowdsourcing. The algorithms we develop
follow the following scheme:

1) We start with a random ranking.
2) At each round:

a) We select two items, and we ask a user to
compare them.

b) We use the result of the comparison to update
the rankings.

We rely on binary comparisons because they are the most
elementary of comparisons, and they require less cognitive
load on the user than multi-way comparisons. The goal of
the above process is to converge as quickly as possible to the
optimal ranking according to distance (1), that is, to reduce
the loss of the rank as quickly as possible. As our distance is
top-weighed, this means identifying the top items early.

In this paper, we focus on step 2a: the selection of the
items to be compared. Once two items are compared, there
are several classical methods for updating a ranking according
to the comparison outcome; we describe two such alternative
methods, Glicko and Trueskill, in the following. Our focus
here is on how to choose the elements whose comparison will
reduce ranking loss in the fastest possible way, and with low
computational cost. Intuitively, choosing the elements to com-
pare entails estimating which elements might be incorrectly
ranked, keeping into account that errors at the top matter more
than errors in the tail of the ranking. As the choice of the pairs
to be compared uses information from the ranking update step,
we first describe the ranking update step, and subsequently our
proposed methods for item selection.

C. Ranking Update Methods
We describe here two ranking update methods: Glicko [6],

and TrueSkill [7].
1) Glicko: The Glicko [6] method for ranking update mod-

els each item as having a score that has a Gaussian distribution.
Thus, for each item si, Glicko stores the median µi and the
standard deviation σi of the score. The model further assumes
that if two items si, sj have scores Xi and Xj (sampled from
their respective distributions), then the probability that a user
prefers si to sj is proportional to

eκ(Xi−Xj)

1 + eκ(Xi−Xj)
,

where κ > 0 is an arbitrary scaling constant. This is known
as the Bradley-Terry model of match outcomes [5]. In [6],
the constant is κ = (log 10)/400, and was chosen to scale
the resulting scores so that they would approximate the scores
of the Elo ranking for chess players [23]. The value of the
constant is immaterial to the ranking being produced (it is
simply a scaling for the scores), and we choose κ = 1 in our
implementation.

With these choices, once a comparison is done, the Glicko
model parameters are updated as follows. Denote with sij the
outcome of comparison between item si and item sj :

sij =

{
1 if i wins j
0 if j wins i

Let also for i = 1, 2,

g(σ2
i ) =

1√
1 + 3q2σ2/π2

The update formulas for the mean and standard deviations are:

µ′i = µi +
q

1
σ2
i

+ 1
δ2i

g(σ2
j )(sij − zj)

σ′2i =

(
1

σ2
i

+
1

δ2i

)−1
where

zj =
1

1 + e−g(σ
2
j )(µ−µj)

δ2i =
[
q2
(
g(σ2

j )
)2
zj(1− zj)

]−1
.

The above update formulas are obtained from [6] as the special
case in which time decay of the scores does not occur. Glicko
models time decay of scores, so that as players remain inactive,
their score median decreases, and their score standard deviation
increases, modeling increased uncertainty about their abilities.
Such time dependence is appropriate in modeling tennis and
chess scores, but not in modeling the quality of items in
crowdsourcing batches of short temporal duration.

2) TrueSkill: The TrueSkill rating system [7] also assumes
a Gaussian belief on online game players’ skills. It estimates
skills by constructing a factor graph, connecting players that
have had a match together, and using approximate message
passing. Trueskill was developed for players belonging to
teams; we present here a simplified version without teams (or,
more precisely, where all teams have one player only), which
corresponds to the problem at hand.

The skill of player si, denoted as Xi, is again assumed to be
Gaussian-distributed with mean µi and standard deviation σi.
The performance of player i, denoted by Yi, is also assumed
to be Gaussian distributed, with mean value equal to Xi and
standard deviation β, with β constant for all players. Thus, Xi

models the intrinsic quality of item si, whereas Yi models the
actual performance of player si in a specific match. Translated
into our setting, Yi models how the quality of an item is
perceived by the worker performing the comparison. A tie
between si and sj occurs when |Yi − Yj | ≤ ε for a chosen ε,
while si is preferred to sj when Yi − Yj > ε.

If denote Z as whole set of game outcomes, the skills of
all players as X , the performances of all players as Y , and
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all differences between the performances of two players as D,
the general Bayesian inference problem is:

p(X|Z) ∝
∫∫

p(Z,D,Y ,X) dD dY

=

∫∫
p(Z|D)p(D|Y )p(Y |X)p(X) dD dY

where the joint density of the entire system is presented as a
product of distributions. So, the problem consists in computing
a marginal probability. To solve it, Trueskill implements an
approximate message passing method between nodes that cor-
respond to the parameters of the problem. The message passing
iterations stop when convergence is reached, yielding the
player’s skills, which correspond for us to the item qualities.

We apply TrueSkill after each comparison, updating the
scores of the two items that took part in the comparison itself.

IV. ACTIVE LEARNING FOR PAIR SELECTION

Our active learning strategies aim at selecting the pair
whose comparison will reduce ranking loss most effectively. In
designing pair selection strategies, we focus on strategies that
select items which might be incorrectly ranked, as comparing
such items is likely to be more beneficial. We propose two
strategies: maximum loss and maximum ranking changes.

A. Maximum Loss

The maximum loss ranking strategy selects for comparison
at each step the pair of items that have the largest expected
mis-allocation of reward. To make this expected value mis-
allocation precise, we define the expected loss of a pair of
items as the product of the probability of the two items having
incorrect relative orders by the amount of error resulting from
this situation. If we denote the item with higher rank as si
and the one with lower rank as sj , the probability of a pair
having incorrect relative orders is essentially the probability
of item sj having a larger sampled value than that of item
si from their distributions respectively. The amount of value
mis-allocation resulting from incorrect relative orders in a top-
heavy ranking is

∣∣∣ 1
r(i) −

1
r(j)

∣∣∣. So, our strategy of selecting
maximum expected loss selects the items i, j given by:

arg max
(i,j)

{
Prob.(s̃i < s̃j) ∗

∣∣∣∣ 1

r(i)
− 1

r(j)

∣∣∣∣} (3)

where s̃i, s̃j are sampled values from distributions of item
si, sj , Prob.(s̃i < s̃j) is the probability of si, sj having in-
correct relative orders, and r(i), r(j) are the ranking positions
of the items. By the properties of Gaussian distributions, the
probability of r(i), r(j) having incorrect relative orders can
be calculated as:

Prob.(s̃i < s̃j) = Prob.(s̃i − s̃j < 0) = Φ

−|µi − µj |√
σ2
i + σ2

j


where µi, µj are the means and σi, σj are the standard devia-
tions of the distributions of si, si respectively.

B. Maximum Ranking Change
The maximum ranking change strategy selects the items

whose comparison is going to have the greatest impact on the
current ranking. Intuitively, if two items with incorrect relative
orders change their rankings after a comparison, it implies
that a big problem exists potentially and the previous ranking
is unstable or unreliable. In consideration of this implication,
we propose a strategy selecting pairs that will get the largest
expected ranking change after comparison, for items having
incorrect relative rankings.

The expected ranking change for items having incorrect
relative order is the product of the probability of two items
having incorrect relative orders and the expected amount of
change to rankings after the pair comparison. With the same
notations as first strategy, and denoting the expected amount of
change for items having incorrect relative order as g(si ≺ sj),
ideally we would like to select a pair of items i, j as follows:

arg max
(i,j)

{Prob.(s̃i < s̃j) ∗ g(si ≺ sj)} (4)

where Prob.(s̃i < s̃j) is computed as before. The expected
amount of change for items having incorrect relative order can
be calculated by:

g(si ≺ sj) =

∣∣∣∣ 1

r(i)
− 1

r(i)si≺sj

∣∣∣∣+

∣∣∣∣ 1

r(j)
− 1

r(j)si≺sj

∣∣∣∣
where r(i)si≺sj and r(j)si≺sj are the updated rankings of item
si and si, if item sj wins si in comparison.

The problem with the selection (4) is that it requires
computing the outcome of all possible pair comparisons. This
is very expensive computationally: in order to get the future
ranking positions of the items in a pair, the algorithm has to
perform quality updates for both items, and sort all items for a
new ranking. To address this problem, we analyze the equation
and propose an approximate version.

Equation (4) can also be expressed as:

Prob.(s̃i < s̃j) ∗ g(si ≺ sj) (5)

= Prob.(s̃i < s̃j) ∗
(

1

r(i)
− 1

r(i)si≺sj
− 1

r(j)
+

1

r(j)si≺sj

)
Equation (5) holds because with a comparison of sj winning
si, the ranking update algorithms will update the ranking so
that r(j)si≺sj ranks higher than or equivalent to r(j), while
r(i)si≺sj ranks lower than or equivalent to r(i). This result
is consistent with the intuition that one item shall get a lower
ranking if loses, while the other shall rank higher if wins.

Assuming the ranking changes for both items are in same
scale of α > 0, i.e.,{ 1

r(i)si≺sj
= 1

r(i) ∗ (1 + α)

1
r(j)si≺sj

= 1
r(j) ∗ (1− α)

then (5) can be further expressed as:

Prob.(s̃i < s̃j) ∗
(

1

r(i)
− 1

r(i)si≺sj
− 1

r(j)
+

1

r(j)si≺sj

)
= Prob.(s̃i < s̃j) ∗

(
1

r(i)
· α

(1 + α)
+

1

r(j)
· α

(1− α)

)
(6)
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By first order Tyler Series, while α → 0, α
(1+α) → α,

α
(1−α) → α. Assuming α→ 0, (6) can be approximated by:

Prob.(si ≺ sj) ∗
(

1

r(i)
+

1

r(j)

)
· α (7)

∝ Prob.(si ≺ sj) ∗
(

1

r(i)
+

1

r(j)

)
We assume α approaches 0 because we believe that in

a ranking system with sufficient comparisons, one single
comparison shall not change any item’s ranking dramatically.
As an example, a tennis player will not get a huge ranking
drop just because he loses one game.

In light of the above approximations, the maximum ranking
change strategy selects the items i, j as follows:

arg max
(i,j)

{
Prob.(si ≺ sj) ∗

(
1

r(i)
+

1

r(j)

)}
. (8)

Thus, the maximum ranking change pair selection strategy only
relies on the current positions of items, and the computational
complexity is significantly reduced.

C. Stochastic Pair Drawing
Deterministically selecting for comparison the pair with

the highest value, as done in (3) and (8), carries the risk
of trapping the ranking in a local optimum. To deal with
this problem, we propose to use a randomized version of our
pair selection strategies. In the randomized version, we select
each pair with probability proportional to the arguments of
(3) and (8), respectively. The algorithms thus still focus on
the most promising pairs for comparison, but their randomized
nature makes them more robust. In experiments we performed,
the randomized version of the selection algorithms always
outperformed the deterministic ones, so that for this paper we
opted for presenting the results only for the stochastic versions,
for the sake of conciseness.

D. Batch Algorithm for Efficient Selection
In many online applications, the volume of items in a

ranking is huge. With such size, it is very computational expen-
sive, or even impossible to evaluate all candidate pairs. Also,
updating the ranking after every user comparison sequentially
is impractical and will impose vast burden on the system. As
a result, in practice, instead of sequential algorithms, batch
active learning methods are widely used. Therefore, we design
a batch algorithm to reduce the computational cost and make
our algorithms more efficient.

In the above pair selection algorithms, we observe that
items close in rank are more likely to be selected, because
they have a higher probability of being incorrectly ranked.
We make use of this observation in our batch algorithm
to narrow the candidate pair space. For any item si with
position r(i), when selecting its candidate pairing set, we
do not consider all other items: rather, the batch algorithm
only looks for a subset of items immediately below si and
evaluates the corresponding pairs. In this way, we are able to
cut down evaluation pairs dramatically. Since the ranking can
be incorrect, we also include in the evaluation pairs items that
are sampled randomly. This randomness improves the stability
of the algorithm.

Once the batch algorithm determines candidate pairing sets
for all items, it uses the same active strategies to calculate val-
ues for all pairs. Then, it selects a batch of pairs stochastically,
where each pair is selected with probability proportional to its
value. All selected pairs are presented to users concurrently
for their comparisons. After the comparison outcomes are
collected, the batch algorithm updates the ranking with all
outcomes at once and a new batch will be selected. In this
way, the expensive process of computing pair evaluations is
performed only once for every batch, rather than once for every
pair presented to users.

V. EXPERIMENTS

A. Experiment Settings
We conduct experiments with simulated data as it can

provide precise “true” ranking for evaluation. We assume there
are 100 items, each of them has an underlying score with
a Gaussian distribution, and sample its mean and variance
respectively. Specifically, we sample all items’ means from one
Gaussian distribution as opposed to any heavy-tailed distribu-
tion, because in this paper, we focus on the intrinsic “qualities”
of items that represent their strength or greatness, such as
competitiveness of sports players, skills of online gamers,
ratings of merchandise, reviews of restaurants; and a ranking is
generated based on items’ qualities. In contrast, a heavy-tailed
distribution is usually assumed in relevance ranking problems,
which sort items by their degree of relevance.

All pair selection strategies start with the same non-
informative score estimation. Every time an algorithm requests
a user comparison, we simulate it by sampling from true
distributions of both items. The item with a larger sampled
value is considered the winner. We conduct 20 experiments
for each strategy, with 2,000 pair selections per experiment.
All algorithms are evaluated with respect to the loss (2). In
the experiments, we choose λ values at 0.5, 1, 2 respectively.

B. Algorithm Loss Comparison
Figure 1 shows the loss decrease resulting from the pro-

posed algorithms, for different λ coefficients. Along the x-
axis is the number of selected pairs and along the y-axis
is the average loss per experiment. The error bars indicate
95% confidence intervals, and the random strategy is used as
baseline. After each pairwise comparison, the item scores are
updated via Glicko and TrueSkill respectively, and a new pair
to compare is selected.

The results demonstrate that our two proposed algorithms
perform significantly better than the baseline. With more
pairwise comparisons, it is expected to see the ranking losses
of all the algorithm decreasing, but the proposed algorithms
converge to the true ranking and reduce loss much faster.
The 95% confidence intervals between baseline and proposed
algorithms rarely overlap, illustrating that the reduction in loss
resulting from our algorithms is significant. Maximum loss and
maximum ranking change algorithms get comparable results
at the end of experiments, with maximum loss performing
slightly better. We believe it is because the approximation used
in maximum ranking change introduces some loss.

Relatively, the loss decrease is slower for algorithms eval-
uated with a λ coefficient of 2. We believe that it is due to
the top-heavy reduction effect. With λ > 1, except for the
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very top of the ranking, the losses from mis-ranked elements
become smaller, limiting the scope for loss decrease once the
top-ranked items are correctly ranked. The divergence between
algorithms and evaluation measure results in the performance
decrease.

C. Sequential and Batch Version Comparison
We have also experimented with the batch version of

our algoritms. We start with the same non-informative score
estimation. We use 10% of total items as candidate pairing set
for each item, with half of them sampled from the immediately
lower ranked elements, and half of them sampled randomly.
The batch size is set at 20, so the ranking will be updated after
collecting 20 pairwise comparisons from users.

Sharing the same x-axis and y-axis as Figure 1, Figure
2 shows loss decrease of sequential and batch versions of
each algorithm. It is evident that in spite of evaluating only
10% of all pairs, the batch versions achieve almost same
performances as sequential versions. The results demonstrate
that the batch versions of our algorithms are capable of
getting comparable performance as the sequential versions,
while dramatically reducing the computational cost. Figure 3
illustrates that the average run time per experiment of the batch

versions are significantly smaller than that of the sequential
versions. Collectively, Figures 2 and 3 prove that our batch
algorithms are an effective solution to ranking problems with
large dataset.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose two active learning strategies
for selecting pairwise comparisons for top-heaving rankings,
where top ranking items are considered more critical than items
lower in the rankings. To address the computational challenge
arising from large data volume, an efficient batch algorithm is
proposed and applied. Our experimental results show that both
active learning methods are effective at reducing ranking loss;
overall, the maximum loss method achieves slightly better per-
formance. We also demonstrate how our batch algorithm can
achieve comparable loss decrease results while significantly
reducing computational costs.

We see several directions for future work. It is interesting
to explore other approximation methods for maximum ranking
change strategy. Furthermore, when a ranking only aims at
selecting the top-k items, without caring about their relative
order, different active learning strategies may yield superior re-
sults. Finally, other pairwise comparison aggregation methods

Figure 1. Loss comparison: active learning vs. random strategy.
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Figure 2. Loss comparison: sequential vs. batch.
The loss differences between sequential and batch versions are not significant.

Figure 3. Average run time comparison: sequential vs. batch.

can be explored for better accuracy.
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