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Abstract—In the paper, we propose several new density-
based algorithms for outlier detection. We present the detailed
synoptic theoretical analysis of the algorithms that compute
the local outlier factor as a function of the densities of the
neighborhood of the objects in a set of objects. Based on this
analysis we propose a new calculation of the radius of the neigh-
borhood and we create 66 algorithms to compute the outlier
factor. All the algorithms are tested in the complex experiments
to describe their basic and also specific characteristics. The
results are presented and discussed. Intuitively it seems that
the way how the radius of the neighborhood is calculated is
important. This idea led to numerous modifications of this
part of the algorithms, but on the basis of the experiments we
demonstrate that these modifications have only little influence,
and we describe which part of the algorithms influence the
outlier score the most and we recommend three generally
applicable algorithms with specific characteristics.

Keywords-local outlier factor; density-based algorithm; outlier
detection.

I. INTRODUCTION

In real data files, outliers, as objects considerably in-
consistent with other objects from the same dataset, are
often present. Some statistical and data mining methods
regard these outliers as a noise that should be identified and
eliminated as they falsify the analysis. However, outliers can
also contain useful information and therefore it is important
to investigate outliers in detail.

The outlier detection can be used in clustering methods
that applied in the segmentation and typology of students
[1], in the text mining and consequently in the information
retrieval [2], in the database merge in medicine [3], or in
the prediction of inflation [4].

There are different approaches to outlier detection. We
focus on local density-based algorithms that can capture
not only global outliers, but also local outliers. The original
concept to score the local outliers compares a local density
of an object with local densities of its k-nearest neighbors
[5]. There are several modifications of this approach. In
general, we can say that local density-based algorithms for
outlier detection assign to every object of a set of objects
a value that quantifies the density of the neighborhood of
the object, and by comparing the value with the values of
the objects in its neighborhood they assign to every object a
score representing a degree of being an outlier. The score is

mostly computed as a ratio of a density of a neighborhood
of an object to an average density of neighborhoods of the
objects in the object’s neighborhood.

The important subject of the papers concerning about
the local density-based algorithms has been the attempt
to determine a meaningful neighborhood of an object that
should be compared [5], [6], [7]. It is startling that even
though these methods have been widely developed, the
fundamentals are not synoptically formalized. That leads to
the existence of many confusing structures whose idea is
difficult to understand.

There exist two basic approaches for determining a den-
sity of a neighborhood. The first one is to determine a
radius and then to compute how many objects lie in the
neighborhood O(xp) of the object xp, where the radius of
the neighborhood Rp is the parameter of the algorithm [8],
[7]. As the analysis is usually performed on all the N objects
of the set of objects, p = 1, . . . , N. The second approach
is determining the number k of the nearest neighbors of the
object xp and then to find out the radius as a function of the
distance between the object xp and the k nearest neighbors
[5], [6], [9], [10], [11]. In both cases, it is necessary to
have a priori knowledge of the set of objects. In the first
case we need to know at least a range of clusters in the
set of objects and in the second case we need to know at
least a minimal number of objects in clusters in the set of
objects. Usually, it is more difficult to determine the minimal
range correctly; therefore, generally, it is more proper to
determine the minimal number of objects in a cluster, as
it can also represent a border between clusters that will be
considered for the analysis and clusters that are too small
for the intended analysis and will be considered as a noise.

In the paper, the computation of the outlier factor is
synoptically explained. First, there is a discussion about
how to calculate the average radius, then how to calculate
the radius of the object‘s neighborhood. On the basis of
these mentioned discussions, we propose 66 different com-
binations of the averages and radii to calculate the outlier
factor. Some of these combinations represent the original
algorithms, but most of them are newly proposed by us. In
the fourth section, the algorithms are applied on synthetic
datasets and compared in the complex experiments, the
results are presented and discussed and in the last section
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we propose the recommendation which algorithm to apply
for what purpose or dataset type.

II. RELATED WORK

Breunig et al. [5] is the first to introduce the concept of
local density outliers and a local outlier factor (LOF). It
compares a local density of an object with local densities
of its k-nearest neighbors. The local density is estimated by
a specific distance at which a point can be reached from
its neighbors, called reachability distance, what produces
stable results within clusters. LOF value of approximately 1
indicates that the point is located in a region of homogenous
density. Higher LOF values signify an outlier, as it is a
degree of being an outlier, but the scaling is different for
different datasets.

An advantage of the LOF algorithm is that it can detect
outliers even if the clusters of a dataset have different density
and different size. This algorithm depends only on one
parameter k; however this parameter strongly affects the
outlierness of an object. If the parameter k is set too low,
LOF does not detect outliers which are close to a dense
cluster if the parameter is set too high, small clusters are
regarded as outliers.

The LOF algorithm was modified several times especially
with an aim to speed up the algorithm. An improvement
of LOF known as Connectivity Outlier Factor (COF) [11]
was proposed to overcome an ineffectiveness of LOF in
detecting outliers in sparse datasets. Another modification of
the LOF algorithm is LOF’, LOF” and GridLOF [6]. LOF’
simplifies the formula of LOF for ease of understanding,
LOF” distinguishes between a neighborhood for computing
the density of an object and a neighborhood for comparing
the densities of the neighbors of an object. The GridLOF
utilizes grid-based method to prune objects that are not
outliers and then compute LOF score.

Another density-based algorithm was proposed by Pa-
padimitriou et al. [7] named Local Correlation Integral
(LOCI) based on the idea of a multi-granularity deviation
factor (MDEF). The difference between LOF and LOCI is
that LOCI uses neighborhood instead of k nearest neighbors.
LOCI is less sensitive to input parameters than LOF.

The outlier scores provided by various outlier algorithms
differ widely in their scale, range and meaning. For most
methods the outlier scores are not comparable from dataset
to dataset, for many methods the outlier scores are not
comparable even within one dataset. The same outlier score
for one object means that this object is an outlier and for
another object (even within the same dataset, but from a
different cluster) that this object is not extraordinary.

To overcome this problem, a new method has been
proposed in [12] to unify outlier scores provided by different
outlier algorithms. They propose two types of operations,
regularization and normalization. Regularization means that
the score is transformed into a range [0;∞), score equals

approximately 0 for inliers, higher values signify outliers.
The outlier factor can be regularized only if there exist an
unambiguous numerous border between inliers and outliers.
Such a border is not common for the existing algorithms.
Normalization transforms scores into a range [0; 1]. These
transformations do not change the ordering obtained by the
original score. The contribution of this approach is not only
unification of outlier scores, but also the fact that these
operations can increase a contrast between outlier and inlier
scores. A transformed outlier score is a rough probability,
if an object is an outlier. Transformed outlier scores are
therefore easier to understand and to interpret.

III. COMPUTATION OF OUTLIER FACTOR

The outlier factor (degree of outlierness) is defined as the
ratio of the radius of the neighborhood of the object to the
average radius of the neighborhoods of the objects in the
neighborhood of the object xp, i. e.,

OF = Rp/Ravg . (1)

It means that the more is the object xp suspected of being
an outlier the higher is the outlier factor.

A. Discussion about the Average Radius

The density of the neighborhood of the selected object xp
can be defined as

d = k/CnR
n , (2)

where k is the number of objects in the neighborhood of
the object xp and CnRn is the volume of the neighborhood
(n-dimensional hypersphere), Cn = π

n
2

Γ( n
2 +1) .

The outlier factor is calculated according to the formula
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where Ri is the individual radius of the neighborhood O(xi)
of the object xi ∈ O(xp), ki is the number of objects in
the individual neighborhoods O(xi), kp is the number of
objects in the neighborhood O(xp) and Rp is the radius of
its neighborhood O(xp).
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follows:
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(a) The depiction of the dataset generated by the uniform
distribution.

(b) The depiction of the dataset generated by the normal
distribution.

(c) The depiction of the dataset generated for the third
experiment.

Figure 1. The illustrative pictures of the objects (·) in the datasets and
added objects (+) for the outlier factor tests.

where

Ravg =
−n

√∑k
i=1R

−n
i

k
(5)

is the radius of the average dense neighborhood.
It is important to say that we define the score differently

than the authors of LOF [5] and LOF’ [6], who define the
outlier factor as

OF =
Rp

−1

√∑k

i=1
R−1

i

k

. (6)

From this formula, it is evident that the authors replace the
volume by the radius what we do not consider a felicitous
solution.

B. Discussion about the Radius

The radius of the neighborhood of the object xp is in the
algorithms LOF’ and DSNOF [9] an average of a set of dis-
tances Dp = {d(xp, xi)}ki=1, where d(a,b) is the Euclidean
distance of an object a from b. The LOF’ algorithm finds
the maximum distance and the DSNOF algorithm finds the
median distance. Using median in the DSNOF algorithm is
a similar idea as using k1 and k2, where k2 < k1, in the
LOF” [6] algorithm. The LOF algorithm uses more difficult
calculation, the radius is computed as the arithmetic mean of
the values that are either the distances d(xp, xi) or distances
d(xi, xik) between an object xi and its k-th nearest neighbor
xik. The set Qp = {qi}ki=1, which is used to calculate the
radius Rp in LOF, contains values that fulfill the condition
qi = max({d(xp, xi, ), d(xi, xik)}). It is expected that this
operation decreases the radius of the neighborhood of the
object on the border of the cluster and therefore objects on
the border of clusters obtain lower outlier factor OF then
in case of the LOF’ algorithm. It seems that to calculate
Rp as the mean of distances similar to (5) is geometrically
meaningful alternative to the computation of the arithmetic
mean.

We assume, in the case of one very numerous cluster
generated by the uniform or normal distribution (without
a noise) and simultaneously if quantile or mean of a set of
distances is used as a radius determination, that the radius
of the neighborhood of the object on a border of this cluster
has to be approximately twice greater than the radius of its
k-th most distant neighbor. From this reflection, we propose
to determine the radius not only as the average of distances,
but also to use some kind of a measure of dispersion.
Inspired by the Box’s M test that uses the determinants
of the sample covariance matrices to test the equality of
covariance matrices we propose to determine the radius
using the determinants of the sample covariance matrices. As
the number of objects in the sample is the same, we do not
have to adjust the determinants and we can compare them
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directly. We compute Rp as a determinant of a covariance
matrix Cp of a set of objects Kp = {{xi}ki=1, xp},

Rp = detCp . (7)

C. Determining the Outlier Factor

On the basis of the above mentioned reflections, we
can compute the outlier factor OF in several ways. The
radius Rp of the object xp can be calculated from the set
Dp or Qp using the following characteristics: first decile,
maximum, median, arithmetic mean and the mean similar to
(5). Minimum is not an appropriate characteristic because
of its low information value about the neighborhood of
xp and consequent computational instability. The eleventh
possibility to calculate the radius Rp is to compute the
determinant of a covariance matrix Cp of a set of objects
Kp proposed by us.

The calculation of Rp can be combined with the calcu-
lation of Ravg, which can be calculated according to the
original algorithms as a harmonic mean of a set of radii Ri
of neighborhoods of objects xi

Ravg =
−1

√∑k
i=1R

−1
i

k
, (8)

or as an average (5) or as a maximum, minimum, median
or ninth decile of a set of a set {Ri}. We have to mention
that a maximum, resp. a minimum of {Ri} is equivalent to
minimum, resp. maximum of densities, no matter whether
the density is computed as a function R−1 or R−n. By
combining the different averages, radii and sets we create
66 (11 · 6) algorithms to calculate the outlier score.

Because there are many combinations, it is necessary to
distinguish individual computations, systematically. For the
purpose of this paper we have decided to create the names of
individual combinations by combining the shortcuts of the
functions included. The first characters represent a shortcut
of the chosen average used for the calculation of the radius
Rp, the following capital letter represents the set used for
the computation of Rp and the characters on the third place
represent a shortcut of the average used for the calculation
of Ravg. Minimum is denoted as min, maximum as max,
median as med, arithmetical mean as mean, harmonic mean
as hean, the mean defined in (5) as nean, the first decile
as 0.1 and the ninth decile as 0.9. The calculation of the
radius Rp as a determinant of the covariance matrix will be
denoted with the prefix det.

For example, the original LOF algorithm will be denoted
as meanQhean, because it computes Rp as an arithmetic
mean of the set Qp and Ravg is computed as a harmonic
mean. LOF’ algorithm will be denoted as maxDhean, be-
cause it computes Rp as a maximum of the set Dp and
Ravg is computed as a harmonic mean. An algorithm that
will use the determinant of the covariance matrix of the set

Kp to compute Rp and that will compute Ravg according
to (5) will be denoted as detKnean, and so on.

IV. EXPERIMENTS

We compared the algorithms in three experiments. The
first two experiments are very simple, just to show the basic
characteristics of the algorithms. We generated two datasets
consisting of 1000 vectors. The first dataset was generated
by the two–dimensional uniform distribution within the
borders of the sphere with radius 1 and center (0, 0)T .
We added 3 vectors with the coordinates vA = (0, 1

3 )
T ,

vB = (0,−1)T and vC = ( 4
3 , 0)

T (see Fig. 1 (a)). The
second dataset was created by the two–dimensional normal
distribution with the mean (0, 0)T and the standard deviation
of every variable σ = 1

3 . We added 6 vectors to the
datasets with the coordinates vD = (0, 0)T , vE = (0, 1

3 )
T ,

vF = (− 2
3 , 0)

T , vG = (0,−1)T , vH = ( 4
3 , 0)

T and
vI = (0, 5

3 )
T (see Fig. 1 (b)). For both experiments we

set k = 40. We performed both experiments ten times. The
sample mean and the sample standard deviation of outlier
factors of the added vectors for the tested algorithms are
presented in the Table I, where the double vertical line
separates these two experiments and the simple vertical
lines highlight the hypothetical boarder of the clusters. We
suppose that the mean values of the computed outlier factors
should be strongly higher for the vectors to the right from the
line to highlight the outliers. The horizontal lines separate
the different groups of algorithms.

The third experiment is more complex to show further
characteristics of the algorithms. There are 5 clusters in the
dataset and we add 9 vectors denoted vJ to vR on which we
will demonstrate the behavior of the algorithms. There is one
big cluster consisting of 1000 vectors created by the two–
dimensional uniform distribution with the center (0, 0)T and
radius 10 units. On the border of this cluster is the center
(10, 0)T of another cluster with the radius 1 unit consisting
also of 1000 vectors created by the two–dimensional uniform
distribution. Around the big cluster there are three other
clusters consisting of 21, 40 and 40 vectors generated by
the two–dimensional normal distribution with mean vectors
vJ = (10, 10)T , vK = (−10, 10)T and vM = (−10,−10)T
respectively. Next to the cluster with the mean vector vK is
an outlying vector vL = (−12, 12)T . The vectors vK and
vL have a similar set of k neighbors, but the vector vL is an
obvious outlier while the vector vK is an obvious inlier. Each
of the vectors vK and vM has one significantly distant vector
in its neighborhood, for the vector vK it is the outlier vL and
for the vector vM it is an inlier from the big sparse cluster in
the middle of the dataset, but the vector vM does not belong
to the set of k neighbors of this vector. The vectors vJ , vQ
and vM are placed in the centers of the small clusters and
therefore they are inliers. The vector vN = (7, 0)T belongs
to the cluster generated by the two–dimensional uniform
distribution, within its neighborhood are few or none vectors
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Table I
OUTLIER FACTORS (x̄± s

′
) OF ADDED VECTORS (1. AND 2. EXPERIMENT).

A B C D E F G H I
0.1Dmin 1.7± 0.39 2.6± 0.81 9.6± 1.25 1.5± 0.38 1.7± 0.69 2.2± 0.77 4.9± 1.03 13± 2.77 18± 4.24
0.1Dnean 1.1± 0.18 1.5± 0.37 6.4± 0.57 1.0± 0.15 1.0± 0.31 1.3± 0.22 2.7± 0.38 6.9± 1.08 9.7± 1.19
0.1Dhean 1.1± 0.17 1.5± 0.34 6.2± 0.54 1.0± 0.15 1.0± 0.30 1.2± 0.21 2.4± 0.32 6.3± 0.96 8.9± 0.95
0.1Dmed 1.1± 0.18 1.4± 0.31 6.2± 0.64 1.0± 0.14 0.9± 0.26 1.2± 0.24 2.3± 0.40 6.0± 0.91 8.3± 1.19
0.1D0.9 0.8± 0.13 1.1± 0.22 4.5± 0.31 0.7± 0.11 0.7± 0.21 0.7± 0.13 1.1± 0.26 2.7± 0.44 4.2± 0.88
0.1Dmax 0.7± 0.13 0.9± 0.22 3.8± 0.36 0.6± 0.12 0.6± 0.17 0.5± 0.15 0.7± 0.24 1.6± 0.37 2.6± 0.65
neanDmin 5.7± 8.32 5.7± 2.68 16± 8.77 3.6± 2.82 2.1± 0.59 3.0± 1.10 7.5± 1.94 22± 10.9 23± 8.85
neanDnean 1.8± 1.71 2.2± 0.51 7.0± 1.71 1.5± 0.76 1.2± 0.27 1.3± 0.38 3.1± 0.29 8.2± 2.20 10± 1.58
neanDhean 1.2± 0.49 1.8± 0.36 6.2± 0.89 1.3± 0.46 1.1± 0.27 1.2± 0.33 2.7± 0.28 6.7± 1.30 8.7± 0.74
neanDmed 0.9± 0.26 1.5± 0.34 5.3± 0.51 1.0± 0.21 1.0± 0.30 1.1± 0.34 2.3± 0.42 5.6± 0.65 7.6± 0.80
neanD0.9 0.7± 0.22 1.1± 0.23 3.9± 0.25 0.8± 0.13 0.8± 0.19 0.7± 0.19 1.2± 0.27 2.7± 0.41 3.8± 0.57
neanDmax 0.7± 0.21 0.9± 0.23 3.2± 0.28 0.7± 0.14 0.7± 0.16 0.5± 0.17 0.8± 0.17 1.6± 0.38 2.4± 0.45
medDmin 1.2± 0.15 1.7± 0.22 4.1± 0.42 1.3± 0.15 1.2± 0.10 1.8± 0.25 3.1± 0.29 5.8± 0.76 8.1± 1.11
medDnean 1.0± 0.10 1.4± 0.13 3.2± 0.30 1.0± 0.07 1.0± 0.06 1.2± 0.14 2.1± 0.13 4.0± 0.38 5.2± 0.39
medDhean 1.0± 0.10 1.4± 0.12 3.1± 0.29 1.0± 0.07 1.0± 0.06 1.2± 0.13 2.0± 0.11 3.8± 0.34 5.0± 0.35
medDmed 1.0± 0.09 1.4± 0.13 3.1± 0.26 1.0± 0.07 1.0± 0.06 1.2± 0.13 2.1± 0.17 3.9± 0.35 5.0± 0.44
medD0.9 0.9± 0.10 1.1± 0.08 2.5± 0.15 0.9± 0.07 0.8± 0.07 0.8± 0.11 1.2± 0.13 2.1± 0.28 2.8± 0.39
medDmax 0.8± 0.10 1.0± 0.08 2.2± 0.17 0.9± 0.07 0.8± 0.06 0.6± 0.08 0.8± 0.14 1.4± 0.24 2.0± 0.28
meanDmin 1.2± 0.09 1.6± 0.17 4.0± 0.51 1.1± 0.10 1.1± 0.11 1.7± 0.23 3.0± 0.24 5.8± 0.70 8.2± 0.99
meanDnean 1.0± 0.06 1.4± 0.09 3.3± 0.30 1.0± 0.06 1.0± 0.06 1.2± 0.12 2.1± 0.14 4.0± 0.42 5.4± 0.36
meanDhean 1.0± 0.06 1.4± 0.08 3.2± 0.29 1.0± 0.06 1.0± 0.06 1.2± 0.11 2.0± 0.12 3.9± 0.38 5.1± 0.33
meanDmed 1.0± 0.05 1.4± 0.07 3.3± 0.31 1.0± 0.06 1.0± 0.05 1.2± 0.12 2.0± 0.19 4.0± 0.38 5.2± 0.49
meanD0.9 0.9± 0.07 1.1± 0.05 2.6± 0.15 0.9± 0.06 0.8± 0.06 0.8± 0.08 1.1± 0.12 2.2± 0.29 2.9± 0.41
meanDmax 0.9± 0.07 1.0± 0.05 2.4± 0.14 0.9± 0.07 0.8± 0.07 0.6± 0.05 0.8± 0.14 1.5± 0.26 2.1± 0.31
maxDmin 1.1± 0.05 1.6± 0.13 3.0± 0.34 1.1± 0.07 1.2± 0.09 1.7± 0.19 2.7± 0.16 4.6± 0.55 6.3± 0.67
maxDnean 1.0± 0.03 1.3± 0.07 2.5± 0.24 1.0± 0.04 1.0± 0.05 1.2± 0.11 1.9± 0.11 3.3± 0.32 4.2± 0.26
maxDhean 1.0± 0.03 1.3± 0.07 2.4± 0.24 1.0± 0.04 1.0± 0.05 1.2± 0.10 1.8± 0.10 3.1± 0.30 4.0± 0.23
maxDmed 1.0± 0.03 1.3± 0.08 2.4± 0.27 1.0± 0.04 1.0± 0.04 1.2± 0.10 1.9± 0.14 3.2± 0.31 4.1± 0.29
maxD0.9 0.9± 0.05 1.0± 0.04 2.0± 0.17 0.9± 0.04 0.9± 0.08 0.8± 0.07 1.1± 0.12 1.9± 0.23 2.4± 0.26
maxDmax 0.9± 0.05 1.0± 0.04 1.9± 0.12 0.9± 0.04 0.8± 0.08 0.7± 0.04 0.8± 0.13 1.4± 0.21 1.8± 0.22
0.1Qmin 1.1± 0.05 1.2± 0.11 2.2± 0.28 1.0± 0.03 1.1± 0.05 1.5± 0.15 2.2± 0.17 3.7± 0.41 5.9± 0.68
0.1Qnean 1.0± 0.02 1.1± 0.06 2.1± 0.25 1.0± 0.02 1.0± 0.02 1.2± 0.08 1.7± 0.11 2.9± 0.34 4.2± 0.32
0.1Qhean 1.0± 0.02 1.1± 0.05 2.1± 0.25 1.0± 0.02 1.0± 0.02 1.1± 0.08 1.6± 0.10 2.8± 0.33 4.1± 0.30
0.1Qmed 1.0± 0.02 1.1± 0.06 2.1± 0.26 1.0± 0.01 1.0± 0.01 1.1± 0.08 1.6± 0.15 3.0± 0.36 4.2± 0.34
0.1Q0.9 1.0± 0.04 1.0± 0.03 1.9± 0.20 1.0± 0.03 0.9± 0.03 0.9± 0.06 1.1± 0.09 1.9± 0.30 2.8± 0.39
0.1Qmax 0.9± 0.05 1.0± 0.04 1.8± 0.17 0.9± 0.05 0.9± 0.05 0.7± 0.05 0.9± 0.12 1.4± 0.30 2.1± 0.38
neanQmin 1.1± 0.03 1.3± 0.10 2.3± 0.25 1.0± 0.03 1.1± 0.04 1.6± 0.15 2.3± 0.15 3.8± 0.41 5.7± 0.64
neanQnean 1.0± 0.01 1.1± 0.05 2.1± 0.21 1.0± 0.01 1.0± 0.01 1.2± 0.08 1.7± 0.10 2.9± 0.31 4.1± 0.26
neanQhean 1.0± 0.01 1.1± 0.05 2.1± 0.21 1.0± 0.01 1.0± 0.01 1.2± 0.07 1.7± 0.09 2.9± 0.29 4.0± 0.24
neanQmed 1.0± 0.01 1.1± 0.05 2.1± 0.22 1.0± 0.01 1.0± 0.02 1.2± 0.06 1.7± 0.14 3.0± 0.31 4.0± 0.28
neanQ0.9 1.0± 0.04 1.0± 0.02 2.0± 0.16 1.0± 0.02 0.9± 0.03 0.9± 0.05 1.1± 0.09 1.9± 0.25 2.6± 0.31
neanQmax 0.9± 0.04 1.0± 0.03 1.9± 0.12 0.9± 0.03 0.9± 0.03 0.7± 0.05 0.9± 0.12 1.4± 0.24 2.0± 0.28
medQmin 1.1± 0.04 1.3± 0.11 2.4± 0.27 1.0± 0.04 1.1± 0.06 1.6± 0.19 2.4± 0.15 4.1± 0.48 5.9± 0.66
medQnean 1.0± 0.02 1.2± 0.05 2.2± 0.23 1.0± 0.02 1.0± 0.02 1.2± 0.11 1.8± 0.10 3.1± 0.32 4.2± 0.26
medQhean 1.0± 0.02 1.1± 0.05 2.2± 0.23 1.0± 0.02 1.0± 0.02 1.2± 0.10 1.7± 0.09 3.0± 0.30 4.1± 0.23
medQmed 1.0± 0.02 1.2± 0.05 2.2± 0.26 1.0± 0.01 1.0± 0.02 1.2± 0.09 1.7± 0.15 3.1± 0.32 4.1± 0.27
medQ0.9 1.0± 0.04 1.0± 0.04 2.0± 0.18 1.0± 0.03 0.9± 0.04 0.9± 0.07 1.1± 0.10 2.0± 0.25 2.6± 0.31
medQmax 0.9± 0.05 1.0± 0.05 1.9± 0.14 0.9± 0.04 0.9± 0.05 0.7± 0.04 0.9± 0.13 1.4± 0.23 2.0± 0.27
meanQmin 1.1± 0.03 1.3± 0.10 2.3± 0.25 1.0± 0.03 1.2± 0.04 1.6± 0.15 2.3± 0.14 3.8± 0.42 5.6± 0.64
meanQnean 1.0± 0.01 1.1± 0.05 2.1± 0.21 1.0± 0.01 1.0± 0.01 1.2± 0.07 1.7± 0.11 2.9± 0.30 4.0± 0.25
meanQhean 1.0± 0.01 1.1± 0.05 2.1± 0.21 1.0± 0.01 1.0± 0.01 1.2± 0.07 1.6± 0.09 2.8± 0.29 3.9± 0.23
meanQmed 1.0± 0.01 1.1± 0.05 2.1± 0.22 1.0± 0.01 1.0± 0.02 1.2± 0.06 1.7± 0.14 3.0± 0.29 3.9± 0.28
meanQ0.9 1.0± 0.03 1.0± 0.02 2.0± 0.15 1.0± 0.02 0.9± 0.02 0.9± 0.04 1.1± 0.09 1.9± 0.25 2.6± 0.29
meanQmax 0.9± 0.04 1.0± 0.03 1.9± 0.11 0.9± 0.03 0.8± 0.03 0.7± 0.05 0.9± 0.11 1.4± 0.24 2.0± 0.27
maxQmin 1.1± 0.06 1.3± 0.10 2.2± 0.28 1.1± 0.04 1.2± 0.10 2.0± 0.21 2.3± 0.41 3.2± 0.37 4.3± 0.48
maxQnean 1.0± 0.02 1.1± 0.03 1.9± 0.12 1.0± 0.04 1.0± 0.05 1.3± 0.12 1.6± 0.29 2.2± 0.21 2.9± 0.16
maxQhean 1.0± 0.02 1.1± 0.03 1.9± 0.12 1.0± 0.04 1.0± 0.05 1.3± 0.11 1.5± 0.26 2.1± 0.21 2.8± 0.15
maxQmed 1.0± 0.02 1.0± 0.03 1.9± 0.12 1.0± 0.04 1.0± 0.06 1.3± 0.13 1.5± 0.26 2.1± 0.23 2.7± 0.21
maxQ0.9 1.0± 0.02 1.0± 0.02 1.8± 0.10 0.9± 0.05 0.8± 0.04 0.8± 0.06 1.0± 0.05 1.4± 0.28 2.0± 0.17
maxQmax 1.0± 0.03 1.0± 0.02 1.8± 0.08 0.9± 0.05 0.8± 0.02 0.7± 0.11 0.9± 0.08 1.0± 0.10 1.7± 0.32
detKmin 1.7± 0.56 2.1± 1.07 3.9± 1.37 1.7± 0.49 1.9± 0.75 6.1± 2.64 14± 6.19 24± 10.4 51± 32.2
detKnean 1.2± 0.26 1.3± 0.33 2.7± 0.79 1.1± 0.25 1.1± 0.26 2.7± 0.87 6.7± 3.82 11± 4.41 21± 9.91
detKhean 1.1± 0.24 1.3± 0.27 2.6± 0.75 1.1± 0.21 1.0± 0.22 2.2± 0.61 5.3± 2.84 9.3± 3.34 17± 6.30
detKmed 1.1± 0.20 1.2± 0.14 2.5± 0.72 1.1± 0.21 1.0± 0.16 1.7± 0.39 3.9± 2.01 8.3± 2.72 13± 5.19
detK0.9 0.8± 0.22 0.8± 0.18 1.9± 0.58 0.7± 0.16 0.6± 0.14 0.6± 0.14 1.1± 0.13 2.4± 0.76 4.6± 1.10
detKmax 0.7± 0.20 0.8± 0.19 1.7± 0.52 0.6± 0.16 0.5± 0.11 0.4± 0.15 0.8± 0.16 1.2± 0.22 2.8± 0.86
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Table II
OUTLIER FACTORS (x̄± s

′
) OF ADDED VECTORS (3. EXPERIMENT).

J K L M N O P Q R
0.1Dmin 1.3± 0.27 1.3± 0.36 22± 5.54 1.3± 0.41 4.3± 4.20 12± 3.83 12± 2.40 14± 3.61 25± 4.19
0.1Dnean 0.6± 0.14 0.7± 0.14 12± 1.67 0.8± 0.18 1.4± 0.62 6.5± 1.56 7.3± 1.02 8.7± 1.13 17± 1.94
0.1Dhean 0.6± 0.13 0.7± 0.13 11± 1.33 0.7± 0.15 1.2± 0.29 5.4± 1.28 6.8± 0.97 8.4± 0.97 16± 1.71
0.1Dmed 0.4± 0.11 0.6± 0.12 10± 1.13 0.7± 0.17 1.0± 0.20 5.9± 1.81 7.0± 0.73 8.5± 0.95 16± 1.82
0.1D0.9 0.3± 0.06 0.3± 0.08 5.5± 0.81 0.3± 0.09 0.8± 0.19 0.9± 0.10 2.0± 1.56 5.2± 0.50 10± 1.00
0.1Dmax 0.2± 0.05 0.1± 0.02 4.0± 1.01 0.2± 0.03 0.6± 0.13 0.7± 0.08 0.9± 0.07 0.5± 0.01 1.9± 0.03
neanDmin 1.9± 0.78 1.8± 0.74 27± 10.2 2.2± 0.79 5.2± 3.17 21± 16.5 17± 9.17 29± 21.8 48± 28.0
neanDnean 0.7± 0.23 0.8± 0.28 12± 3.01 0.9± 0.33 1.7± 0.54 7.9± 4.14 7.1± 1.93 11± 4.97 18± 5.99
neanDhean 0.6± 0.21 0.7± 0.24 11± 2.00 0.8± 0.29 1.4± 0.31 5.9± 2.62 6.0± 1.31 9.0± 2.40 15± 3.17
neanDmed 0.4± 0.19 0.6± 0.21 9.0± 0.85 0.7± 0.27 1.1± 0.24 5.5± 2.30 5.4± 1.00 7.1± 0.74 12± 1.28
neanD0.9 0.2± 0.11 0.3± 0.12 4.8± 0.53 0.3± 0.12 0.8± 0.19 0.8± 0.27 1.7± 1.13 4.9± 0.46 8.3± 0.78
neanDmax 0.2± 0.09 0.1± 0.03 3.4± 0.63 0.2± 0.07 0.7± 0.18 0.6± 0.20 0.7± 0.13 0.6± 0.01 1.7± 0.03
medDmin 2.1± 0.18 1.1± 0.05 7.6± 0.89 1.0± 0.07 3.8± 2.39 7.4± 0.70 4.7± 0.38 5.2± 0.31 9.1± 0.69
medDnean 1.3± 0.06 0.8± 0.05 5.5± 0.61 0.7± 0.05 1.4± 0.36 4.8± 0.65 3.5± 0.27 4.0± 0.23 7.0± 0.41
medDhean 1.3± 0.05 0.7± 0.05 5.3± 0.58 0.7± 0.05 1.2± 0.15 4.1± 0.65 3.3± 0.28 4.0± 0.22 6.9± 0.39
medDmed 1.1± 0.05 0.8± 0.05 5.4± 0.56 0.7± 0.04 1.0± 0.07 4.9± 1.27 3.6± 0.28 4.0± 0.25 7.0± 0.48
medD0.9 0.9± 0.02 0.5± 0.05 3.5± 0.30 0.5± 0.08 0.9± 0.04 0.8± 0.05 1.4± 0.78 3.1± 0.20 5.4± 0.32
medDmax 0.8± 0.03 0.1± 0.02 2.8± 0.38 0.2± 0.04 0.8± 0.05 0.8± 0.05 0.6± 0.02 0.6± 0.01 1.8± 0.03
meanDmin 2.1± 0.17 1.0± 0.01 6.0± 0.48 1.0± 0.01 3.7± 2.40 6.7± 0.68 4.5± 0.25 5.1± 0.32 8.9± 0.60
meanDnean 1.4± 0.07 0.8± 0.01 4.7± 0.38 0.8± 0.01 1.4± 0.36 4.5± 0.70 3.6± 0.26 4.1± 0.25 7.2± 0.44
meanDhean 1.3± 0.06 0.8± 0.01 4.6± 0.37 0.8± 0.01 1.2± 0.15 3.9± 0.69 3.4± 0.28 4.1± 0.24 7.1± 0.42
meanDmed 1.2± 0.04 0.8± 0.02 4.7± 0.32 0.8± 0.03 1.0± 0.07 4.8± 1.32 3.7± 0.25 4.2± 0.30 7.2± 0.51
meanD0.9 0.9± 0.02 0.5± 0.02 3.3± 0.24 0.5± 0.04 0.9± 0.04 0.8± 0.04 1.5± 0.83 3.2± 0.18 5.6± 0.25
meanDmax 0.9± 0.04 0.2± 0.01 2.8± 0.37 0.3± 0.03 0.9± 0.04 0.7± 0.03 0.6± 0.02 0.6± 0.01 1.8± 0.03
maxDmin 2.7± 0.15 1.3± 0.07 1.6± 0.11 1.6± 0.11 4.2± 2.13 5.2± 0.42 3.6± 0.12 3.8± 0.28 6.2± 0.58
maxDnean 1.7± 0.09 1.0± 0.01 1.3± 0.04 1.0± 0.01 1.5± 0.34 3.5± 0.38 2.7± 0.14 3.0± 0.15 5.0± 0.25
maxDhean 1.6± 0.07 1.0± 0.01 1.3± 0.04 1.0± 0.01 1.3± 0.16 3.1± 0.40 2.6± 0.16 2.9± 0.14 4.9± 0.25
maxDmed 1.4± 0.05 1.0± 0.02 1.2± 0.05 1.0± 0.02 1.0± 0.05 3.8± 0.79 2.8± 0.12 3.0± 0.19 5.0± 0.30
maxD0.9 1.0± 0.02 0.9± 0.03 1.1± 0.03 0.9± 0.01 0.9± 0.05 0.7± 0.05 1.3± 0.59 2.4± 0.11 4.0± 0.17
maxDmax 0.9± 0.03 0.8± 0.03 1.0± 0.03 0.9± 0.01 0.9± 0.05 0.6± 0.04 0.6± 0.03 0.6± 0.01 1.7± 0.03
0.1Qmin 2.5± 0.18 1.0± 0.00 1.0± 0.00 2.0± 0.14 4.1± 1.86 5.0± 0.38 2.9± 0.19 3.0± 0.22 5.7± 0.37
0.1Qnean 1.8± 0.10 1.0± 0.00 1.0± 0.00 1.0± 0.01 1.4± 0.28 3.8± 0.49 2.5± 0.14 2.8± 0.18 5.2± 0.29
0.1Qhean 1.7± 0.08 1.0± 0.00 1.0± 0.00 1.0± 0.00 1.2± 0.11 3.4± 0.50 2.5± 0.15 2.7± 0.17 5.2± 0.29
0.1Qmed 1.5± 0.05 1.0± 0.00 1.0± 0.00 1.0± 0.00 1.0± 0.08 4.3± 1.01 2.7± 0.13 2.8± 0.19 5.3± 0.35
0.1Q0.9 0.9± 0.02 1.0± 0.01 1.0± 0.01 1.0± 0.00 0.8± 0.05 0.8± 0.06 1.4± 0.69 2.5± 0.16 4.8± 0.26
0.1Qmax 0.9± 0.04 1.0± 0.01 1.0± 0.01 1.0± 0.00 0.7± 0.04 0.7± 0.05 0.5± 0.02 0.5± 0.01 1.9± 0.04
neanQmin 2.5± 0.16 1.0± 0.00 1.0± 0.00 1.9± 0.12 4.3± 2.05 5.0± 0.24 3.0± 0.14 3.1± 0.18 5.3± 0.32
neanQnean 1.8± 0.08 1.0± 0.00 1.0± 0.00 1.0± 0.01 1.5± 0.33 3.7± 0.34 2.6± 0.11 2.8± 0.15 4.8± 0.25
neanQhean 1.6± 0.06 1.0± 0.00 1.0± 0.00 1.0± 0.00 1.3± 0.13 3.3± 0.38 2.5± 0.11 2.8± 0.15 4.8± 0.24
neanQmed 1.4± 0.04 1.0± 0.00 1.0± 0.00 1.0± 0.00 1.0± 0.04 4.2± 0.90 2.7± 0.10 2.8± 0.17 4.9± 0.27
neanQ0.9 1.0± 0.01 1.0± 0.00 1.0± 0.00 1.0± 0.00 0.9± 0.02 0.7± 0.04 1.4± 0.66 2.5± 0.15 4.4± 0.23
neanQmax 0.9± 0.02 1.0± 0.00 1.0± 0.00 1.0± 0.00 0.9± 0.03 0.6± 0.03 0.6± 0.02 0.6± 0.01 1.7± 0.03
medQmin 2.6± 0.16 1.0± 0.01 1.0± 0.00 1.8± 0.12 4.5± 2.20 5.1± 0.25 3.1± 0.17 3.2± 0.13 5.5± 0.27
medQnean 1.8± 0.09 1.0± 0.00 1.0± 0.00 1.0± 0.01 1.6± 0.37 3.7± 0.34 2.6± 0.13 2.8± 0.14 4.9± 0.24
medQhean 1.7± 0.07 1.0± 0.00 1.0± 0.00 1.0± 0.00 1.3± 0.16 3.3± 0.38 2.5± 0.13 2.8± 0.14 4.9± 0.24
medQmed 1.4± 0.03 1.0± 0.01 1.0± 0.00 1.0± 0.00 1.0± 0.02 4.1± 0.85 2.7± 0.13 2.9± 0.16 5.0± 0.28
medQ0.9 1.0± 0.01 1.0± 0.00 1.0± 0.00 1.0± 0.00 0.9± 0.03 0.7± 0.05 1.4± 0.64 2.5± 0.15 4.3± 0.25
medQmax 1.0± 0.02 1.0± 0.00 1.0± 0.00 1.0± 0.00 0.9± 0.04 0.6± 0.04 0.6± 0.02 0.6± 0.01 1.7± 0.02
meanQmin 2.5± 0.16 1.0± 0.00 1.0± 0.00 1.8± 0.11 4.3± 2.14 5.2± 0.26 3.1± 0.16 3.1± 0.19 5.3± 0.33
meanQnean 1.8± 0.08 1.0± 0.00 1.0± 0.00 1.0± 0.00 1.5± 0.35 3.9± 0.36 2.6± 0.11 2.8± 0.15 4.8± 0.25
meanQhean 1.6± 0.06 1.0± 0.00 1.0± 0.00 1.0± 0.00 1.3± 0.14 3.4± 0.39 2.5± 0.11 2.8± 0.15 4.7± 0.24
meanQmed 1.4± 0.03 1.0± 0.00 1.0± 0.00 1.0± 0.00 1.0± 0.03 4.4± 0.96 2.7± 0.12 2.8± 0.17 4.8± 0.27
meanQ0.9 1.0± 0.01 1.0± 0.00 1.0± 0.00 1.0± 0.00 0.9± 0.02 0.7± 0.03 1.4± 0.67 2.5± 0.15 4.3± 0.22
meanQmax 0.9± 0.01 1.0± 0.00 1.0± 0.00 1.0± 0.00 0.9± 0.03 0.7± 0.03 0.5± 0.02 0.6± 0.01 1.7± 0.03
maxQmin 2.2± 0.13 1.0± 0.03 1.0± 0.03 1.7± 0.08 3.8± 2.57 6.6± 0.63 4.2± 0.18 4.6± 0.38 4.5± 0.36
maxQnean 1.6± 0.07 1.0± 0.00 1.0± 0.00 1.0± 0.00 1.4± 0.36 5.0± 0.88 3.7± 0.29 4.0± 0.20 4.0± 0.20
maxQhean 1.5± 0.05 1.0± 0.00 1.0± 0.00 1.0± 0.00 1.2± 0.13 4.3± 0.85 3.5± 0.31 4.0± 0.19 4.0± 0.19
maxQmed 1.3± 0.06 1.0± 0.00 1.0± 0.00 1.0± 0.00 1.0± 0.04 5.6± 1.84 3.9± 0.31 4.0± 0.25 4.0± 0.23
maxQ0.9 1.0± 0.00 1.0± 0.00 1.0± 0.00 1.0± 0.00 0.9± 0.03 0.9± 0.03 1.7± 1.14 3.8± 0.16 3.7± 0.18
maxQmax 1.0± 0.00 1.0± 0.00 1.0± 0.00 1.0± 0.00 0.9± 0.04 0.9± 0.04 0.6± 0.06 1.0± 0.00 1.0± 0.00
detKmin 9.0± 2.39 1.0± 0.00 1.0± 0.00 1.0± 0.03 3080± 4071 679± 227 51± 32.2 23± 7.36 26± 8.95
detKnean 4.8± 1.03 1.0± 0.01 1.0± 0.01 1.0± 0.02 592± 814 389± 104 32± 15.5 15± 4.13 18± 5.37
detKhean 3.7± 0.69 1.0± 0.01 1.0± 0.01 1.0± 0.02 137± 197 302± 82 29± 12.5 14± 3.80 17± 4.96
detKmed 1.7± 0.14 1.0± 0.00 1.0± 0.00 1.0± 0.00 1.2± 0.27 365± 174 30± 11.1 15± 3.64 17± 4.66
detK0.9 1.0± 0.05 1.0± 0.00 1.0± 0.00 1.0± 0.04 0.7± 0.10 0.1± 0.04 4.8± 6.28 8.9± 3.05 10± 3.83
detKmax 0.9± 0.15 0.9± 0.22 0.9± 0.22 0.1± 0.03 0.6± 0.10 0.1± 0.05 0.1± 0.02 0.9± 0.05 1.2± 0.07
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from the much denser cluster. The vectors vO = (8, 0)T ,
vR = (11, 0)T and vP = (8.5, 0)T , vQ = (10.5, 0)T are in
the same distance from the center of the dense cluster, so
we can compare how can the algorithms detect the outliers
in the dataset with noise (vO, vP ) and without noise (vQ,
vR). The vectors vQ and vR are obvious outliers, each of
them lies within the set of k neighbors of the other vector,
but vR is the most distant vector in the neighborhood of
the vector vQ and also in its own neighborhood. Any other
vector, except for the vector vQ and vR, does not have the
vector vQ or vR within its set of k neighbors (see Fig. 1
(c)). The parameter k is set on 40 in all the algorithms. The
experiment was performed ten times. One can see the sample
mean and the sample standard deviation of outlier factors of
the added vectors for the tested algorithm in the Table II,
where the vertical lines highlights the different groups of
selected vectors. The horizontal lines separate the different
groups of algorithms.

On the basis of the two first experiments, we can state
that the usage of the set Q considerably decreases the
deviation of the OF values from 1 compared to the set
D. The shortcoming of the usage of the set Q is clearly
demonstrated on the vector vL, which is in all the cases
labeled as an inlier. It is possible to say that if there is k
considerably detached vectors and the set Q is applied, then
they will be all labeled as inliers, no matter what is their
mutual position. The set Q considerably suppress the effect
of the combination of low quantiles for the calculation of
both Rp and Ravg simultaneously in the case that the cluster
consists of less than k vectors. The algorithm maxQmax is
the only algorithm that labeled the vector vR as an inlier.

The results of the algorithms applying detK are very
similar to the algorithms applying Q, both label the vector
vL as an inlier, but the OF value of outliers strongly
increases. The vector vL is labeled as an inlier, because the
identical set K with the identical distribution was used for
the calculation of the OF value of all the vectors within
the cluster around the vector vK , and also of the vector vL.
Unlike the algorithm . . .Qmin the algorithm detKmin labeled
the vector vM as an inlier.

Low quantiles applied for the calculation of Rp increase
the deviation of the OF values from 1, high quantiles
decrease the deviation of the OF values from 1. The average
nean is similar to a very low quantile, whereas the average
mean is similar to the median or a little higher quantile.
The average nean is computationally unstable when applied
on the set D, especially when combined with a low quantile
for the calculation of Ravg. Vectors of the clusters consisting
of less than k vectors, but simultaneously denser than their
neighborhood, can be labeled as inliers, if a quantile low
enough is applied for the calculation of Rp.

The OF values are influenced the most by the way how
the Ravg is calculated. There are two extremes. When the
minimum is applied, only the vector with the smallest Rp

from all the vectors within its neighborhood is labeled as
an inlier. In other words, only the vector with the dens-
est neighborhood from all the vectors in its neighborhood
is labeled as an inlier. On the other extreme, when the
maximum is applied, only the vector with the biggest Rp
from all the vectors within its neighborhood is labeled as an
outlier. In other words, the vector is labeled as an outlier only
when it is the most outlying vector within its neighborhood.
The averages nean and hean in most cases generate similar
results as the median, but in the case demonstrated by
the vector vN they generate the results similar to lower
quantiles. It means that they are influenced by the presence
of a small number of vectors with strongly higher density
of their neighborhood, in the neighborhood of the examined
vector. The average nean is influenced more.

V. CONCLUSION AND FUTURE WORK

The original algorithms meanQhean (LOF) and maxD-
hean (LOF’) are comparable, maxDhean is little bit faster
and meanQhean has better results for the vectors on the
border of clusters generated by the uniform distribution. We
are convinced that LOF should be defined as neanQnean not
only because it is geometrically much more elegant, but also
because neanQnean increases the OF values for outliers and
therefore highlights them, what is described as convenient
in [12].

As demonstrated by the results of the experiments, the
OF values are only very little influenced by the way how
the Rp is calculated. Therefore we recommend that the
researchers apply the individual quantiles of the set D, which
is easier to calculate, according to whether they want to
detect even denser regions smaller than k. The parameter k
can be set relatively high, it means much more than generally
recommended k = 20.

Especially, if we suppose that the dataset contains a lot
of noise and relatively sparse clusters, it is essential to set
the parameter k high and to apply a low quantile of the set
D what cannot be replaced by the original LOF algorithm.
The similar idea is proposed by the LOF” algorithm.

It is much more important how the Ravg is calculated. If
a researcher wants to find only strong outliers with a low
probability to label an inlier wrongly as an outlier, then it is
important to compute Ravg as a high quantile of the set of
all Ri in the neighborhood of the examined vector. In the
extreme case, it is possible to apply max Ri.

If a researcher wants to be sure that only the vectors
with considerably denser neighborhood will be labeled as
inliers, or if a researcher wants to minimize the probability
to label an outlier wrongly as an inlier, then it is important
to compute Ravg as a low quantile of the set of all Ri in
the neighborhood of the examined vector.

In general, the following algorithms are recommended: the
algorithm 0.1D0.1 with high parameter k for the detection
of the centers of the clusters or in case of a dataset with
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a lot of noise, the algorithm maxD0.9 for the detection
of the most distant outliers or the clusters smaller than k
in the dataset with relatively low portion of noise, and the
algorithm medDmed if a researcher wants to eliminate as
many vectors as possible without the loss of the information.

In the future work, we would like to focus on preparing
the datasets for the clustering, where we would like to use
outlier factors as applicable weights for clustering algo-
rithms. We would like to extend the method experimental
evaluation using large real world datasets such as the one
described in [13]. Thus, we would be able to evaluate impact
of the outlier detection on robustness of AI algorithms used
in the mobile robotics domain [14], [15], especially for an
UAV [16].
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L. Přeučil, “Simple yet stable bearing-only navigation,” J.
Field Robot., 2010.

[16] T. Krajnı́k, M. Nitsche, S. Pedre, L. Přeučil, and M. Mejail,
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