
An Equivalence Class Based Clustering Algorithm for Categorical Data

Liu Qingbao, Wang Wanjun, Deng Su
Sci. and Technol. on Inf. Syst. Eng. Laboratory

National University of Defense Technology
Changsha, China, 410073

e-mail: liuqingbao@nudt.edu.cn,
wwjunbelieve@gmail.com, Sudeng@sohu.com

Guozhu Dong
Department of Computer Science & Engineering

Wright State University
Dayton, Ohio, USA 45435

e-mail: guozhu.dong@wright.edu

Abstract—Categorical data clustering plays an important role in
data mining for many applications, including popular
applications involving text mining and blog mining. While most
traditional clustering methods rely on a distance function.
However, the distance between categorical data is hard to define,
especially for exploratory situations where the data is not well
understood. As a result, many clustering methods do not perform
well on categorical datasets. In this paper we propose a novel
Equivalence Class based Clustering Algorithm for Categorical
data (ECCC). ECCC takes the support transaction sets of
selected frequent closed patterns as the candidate clusters. We
define a novel quality measure to evaluate the suitability of
frequent closed patterns to form the clusters; the measure is
based on two factors: cluster coherence expressed in terms of
closed patterns, and cluster discriminativeness expressed in terms
of quality and diversity of minimal generator patterns. ECCC
uses that measure to select the high quality frequent closed
patterns to form the final clusters.

Keywords-clustering analysis; categorical data; equivalence
class

I. INTRODUCTION
Clustering is unsupervised and highly explorative. It is an

important approach, widely used in life science, medicine,
social science, engineering and many other fields [1]. Most
traditional clustering methods rely on a distance function. Since
the distance between categorical data is hard to define,
especially for exploratory situations where the data is not well
understood, many clustering methods do not work well on
categorical datasets.

Several clustering methods have been recently developed to
handle categorical data, including k-ANMI introduced in [2],
Squeezer proposed in [3], GAClust in [4], ccdByEnsemble in
[5], the Entropy-based algorithm in [6], and ECCLAT in [7].
However, these methods have various shortcomings; for
example, the Entropy-based algorithm emphasizes intra-cluster
purity while ignoring inter-cluster separation.

 Here we detail the ECCLAT algorithm, which we will
compare our method with. Firstly, it is necessary to explain the
term “frequent closed itemset” in a general manner: a closed
itemset is a maximal set of items shared by a set of transactions;
when the frequency of a closed itemset is larger than the
frequency threshold (denoted as: minfr), it is called a frequent
closed itemset. ECCLAT extracts a subset of concepts from the
lattice of frequent closed itemsets, using the evaluation
measure interestingness(X) = (homogeneity(X) +

concentration(X))/2 [7] (X is an itemset). More specifically,
ECCLAT first mines the set of frequent closed itemsets; it
views the support transaction set of each frequent closed
itemset as a candidate cluster. Then, it computes the
interestingness of the candidate clusters, and iteratively selects
the next candidate cluster having the highest interestingness as
the next final cluster. ECCLAT is an approximate clustering
algorithm and allows the clusters to have transaction overlap.
The concentration(X) measure is defined to limit the overlap of
transactions between clusters by taking into account the
number of candidate clusters where each transaction of X
appears. Checking the definition of concentration(X) in [7], we
can see that it treats all candidate clusters as equally important.
Such weaknesses of ECCLAT lead to poor clustering results.

In this paper, we propose a novel method called ECCC (an
Equivalence Class based Clustering Algorithm for Categorical
data). The main contribution of the paper is to provide a better
quality measure to replace the concentration quality measure of
ECCLAT. Our quality measure, called inter-cluster
discriminativeness index, will consider the quality and
diversity/richness of the minimal generator patterns.
Specifically, our algorithm first mines the equivalence classes
[9] of patterns, including the closed patterns and their
associated sets of generator patterns. Similarly to ECCLAT, we
also regard the support transaction set of each closed pattern as
a candidate cluster. We combine the intra-cluster homogeneity
index of ECCLAT and our inter-cluster discriminativeness
index into a general and objective quality index on clusters.
Our algorithm then selects the high quality clusters from the
candidate clusters using that quality index.

Compared against ECCLAT, our ECCC uses both the
closed pattern and the generator patterns, instead of just the
closed patterns, of equivalence class to define the
discriminativeness index. ECCC prefers the equivalence
classes that have a long closed pattern and many short
generator patterns. The first advantage of ECCC is that it
avoids the drawback of ECCLAT mentioned above. The
second advantage is that there is no transaction overlap among
the final clusters. The third advantage is that ECCC needs only
one parameter (minfr) while ECCLAT needs two parameters
(minfr and M [7]). As a result, ECCC is more accurate in
recovering expert defined classes than ECCLAT.

In Section II, we describe our discriminativeness index and
ECCC algorithm, after giving relevant preliminaries. In Section
III, we report experimental results. Our conclusions are
presented in Section IV.

Supported by the National Natural Science Fund of China under
Grant No.70771110.

127

IMMM 2011 : The First International Conference on Advances in Information Mining and Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-162-5

II. ECCC
In this section we will present our method, namely ECCC,

after firstly giving some definitions.

A. Preliminaries
We assume that we are given a dataset D (a set of

transactions) in the following definitions. For each itemset z, let
fD(z)={t∈D|z⊆ t} denote the support set of transactions for z.

Definition 1 (EC: Equivalence Class) [9]. An equivalence
class EC is a (maximal) set of frequent itemsets (also called
frequent patterns) that have a common support set of
transactions.

So, if EC is an equivalence class and x and y∈EC, then
fD(x)=fD(y).

Here we give the definition of “frequent closed itemset”
which is called “closed pattern” in our ECCC.

Definition 2 (cp: closed pattern) [9]. Given an equivalence
class EC, the closed pattern cp of EC is

p EC
cp p

∈
= ∪ . (1)

Definition 3 (gp: generator pattern) [9]. Given an
equivalence class EC, a pattern gp∈EC is a generator pattern
of EC if, for∀ z∈EC s.t. z≠ gp, it is the case that z⊄ gp.

It is well known that an equivalence class has only one
closed pattern and it has one or more generator patterns. We
will represent an equivalence class EC as EC=[G(cp),cp] [9],
where G(cp)={gpi|1 ≤ i ≤ k} which is the set of generator
patterns and cp is the closed pattern of EC.

Definition 4 (candidate cluster). A set of transactions
CC⊆ D satisfying CC=fD(cp) for some closed pattern cp is
called a candidate cluster associated with cp; this CC will be
denoted by CC(cp).

B. Homogenity and Discriminativeness Measures
There are often many candidate clusters, and only a few

candidate clusters can become the final clusters. For example,
with minfr = 5%, there are 9738 candidate clusters in the
mushroom dataset. So we need quality measures to select the
candidate clusters as final clusters. Our algorithm will use one
factor’s formula used by ECCLAT, and replaces the other
factor’s formula using a new one.

Definition 5 (HI: Homogeneity Index). The Homogeneity
Index [7] of a candidate cluster CC(cp) is defined by:

| () | | |()
() | () | | |CC

CC cp cpHI cp
divergence cp CC cp cp

×
=

+ ×
 (2)

where
()

() | |
Dt f cp

divergence cp t cp
∈

= −∑ , and |S| denotes the

cardinality of a set S.

Homogeneity Index is used to measure the intra-cluster
similarity. Larger values are better. Using this index, we prefer
those candidate clusters whose closed patterns are very long. If
a candidate cluster CC(cp) has a very long closed pattern cp,
then all the transactions in CC(cp) share all items in cp,
implying that CC(cp) is highly coherent; we note that
divergence(cp) is small and HICC(cp) is large in this situation.

For the inter-cluster diversity, we propose a novel measure
called Discriminativeness Index which is defined below.

Definition 6 (DI: Discriminativeness Index). The
discriminativeness index of a candidate cluster CC(cp) is
defined as:

()

| |() (1)
| |

i

i
CC

gp G cp

cp gpDI cp
cp∈

−
= +∏ (3)

where |cp| and |cp-gpi| are the number of items in cp and cp-gpi,
respectively.

Larger DICC(cp) values are better. Using this
Discriminativeness Index, we prefer the candidate cluster
which has a very long closed pattern and many short generator
patterns. Our rationale for Discriminativeness Index is similar
to that in [10]. If a candidate cluster CC(cp) has many short
generator patterns, then each such short generator pattern gp is
a strong discriminator that can be used to easily separate and
distinguish CC(cp) from the other candidate clusters. The
shorter gp is the easier it is to do the separation. The more such
short gp patterns we have, the more different ways we have to
describe the cluster and discriminate it from other clusters. So
we think the high DICC(cp) value implies that this candidate
cluster CC(cp) is significantly different from other candidate
clusters, is identified very easily, and has better quality.

Definition 7 (QI: Quality Index). The EC based Quality
Index of the candidate cluster CC(cp) is defined as follows:

() () ()CC CC CCQI cp HI cp DI cp= × . (4)

 Our idea is to select these candidate clusters with high
Quality Index as the final clusters. The next section presents an
algorithm for this task.

C. The Process of ECCC
On dataset D, we first use DPMiner algorithm [9] to mine

the closed patterns and their generators simultaneously, using a
minimal frequency threshold minfr. Then, we determine the
candidate clusters of the frequent closed patterns, calculate the
quality of each candidate cluster, and select the candidate
cluster CC(cp*) with highest quality as a final cluster C(cp*).
When there are two and more highest quality candidate clusters,
we prefer the candidate cluster with larger number of
transactions. For any remaining candidate cluster CC(cp) such
that cp ≠ cp* and CC(cp) ∩ C(cp*) ≠ ∅ , we modify the
candidate cluster CC(cp) as CC(cp)=CC(cp)-C(cp*). If
|CC(cp)|<minfr, we delete the candidate cluster CC(cp). Then
we recalculate HICC(cp), DICC(cp) and QICC(cp) of the

128

IMMM 2011 : The First International Conference on Advances in Information Mining and Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-162-5

candidate clusters, and select the candidate cluster CC(cp*)
with highest quality as the next final cluster. We repeat the
process above, until there is no candidate cluster. At the end,
we classify all remaining transactions into the trash set.

The pseudo-codes of ECCC are given below.

Input:
 D is a dataset to be clustered;

minfr is the frequency threshold;
Output:

CL is the set of Clusters;
Trash is the set of the trash transactions;

Description:
1. mine CP={cpk|1≤ k≤N}, G(cpk), CC(cpk);
2. for each cp∈CP do
3. calculate HICC(cp) and DICC(cp);
4. QICC(cp)= HICC(cp)×DICC(cp);
5. end for
6. select CC(cp*), s.t. QICC(cp*)=

kcp CP
max

∈
{ QICC(cpk)};

7. C(cp*)= CC(cp*);
8. delete CC(cp*);
9. insert C(cp*) into CL;
10. for each CC(cp) ∧ (CC(cp)∩ C(cp*)≠ ∅) do
11. CC(cp)=CC(cp)-C(cp*);
12. if |CC(cp)|<minfr then
13. delete CC(cp);
14. else
15. recalculate HICC(cp), DICC(cp) and QICC(cp);
16. end if
17. end for
18. repeat steps 6--17 until there is no candidate cluster;
19. classify the remaining transactions of D into the Trash;
20. return CL and Trash;

III. EXPERIMENT RESULTS
We now use experiments to demonstrate that (1) the ECCC

algorithm is accurate and (2) the ECCC algorithm is scalable.

Experiments were conducted on a desktop computer with a
2.33 GHz Intel CPU and 3 GB memory running the Windows
XP.

A. Accuracy test on Mushroom Dataset and Zoo Dataset
We evaluate the accuracy of our algorithm ECCC on two

real datasets available at the UCI Repository [8]. One is the
well known mushroom dataset which has 22 attributes, 8124
transactions, and two class labels provided by domain experts.
The other is the zoo database (101 transactions with 7 class
labels provided by domain experts) which has 15 boolean
attributes and a numerical one (“legs”), we used the six values
of “legs” as categorical values.

1) Error rates test on mushroom dataset
In this section, we present experiment results of ECCC on

the mushroom dataset.

a) Compare against ECCLAT algorithm
For minfr = 5% and M = minfr, ECCLAT obtains 16

clusters and a trash cluster with slight overlapping between
clusters 14 and 16 [7]. Also ECCC can obtain 16 clusters and a
trash cluster without overlapping when minfr = 4%.

The comparison between the above two clusterings is
shown in Table I. It is obvious that the ECCC clustering errors
are lower than that of the ECCLAT clustering.

TABLE I. COMPARISON BETWEEN ECCC AND ECCLAT

ECCC (minfr = 4%) ECCLAT (M=minfr = 5%) Cluster
No. #Poisonous #Edible # Poisonous # Edible

1 0 576 0 432

2 432 0 0 432

3 0 384 0 432

4 0 384 0 432

5 864 0 648 0

6 576 0 648 0

7 576 0 432 0

8 576 0 432 0

9 0 400 432 0

10 0 400 432 0

11 272 96 0 768

12 72 528 0 512

13 128 384 352 96
14 0 384 288 896

15 144 384 0 416

16 240 96 72 560

Trash 36 192 180 160

Error 572 616

b) Average clustering error rates comparison

To further test the clustering errors of ECCC, we repeated
ECCC with 10 different minfrs from 1% to 10% on mushroom
dataset. The 10 results are shown in Table II.

TABLE II. RESULTS IN TERM OF THE DIFFERENT MINFRS

minfr(%)
#Clusters

(including the trash cluster) # Errors
1 28+1 252

2 24+1 252

3 20+1 172

4 16+1 572

5 12+1 890

6 11+1 890

7 11+1 890

8 6+1 890

9 6+1 890

10 5+1 890

129

IMMM 2011 : The First International Conference on Advances in Information Mining and Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-162-5

Table II shows that the clustering errors change with
different minfrs. For minfr =3%, the result is the best. And for
minfr =4%, the result is the middle. But when minfr changes
from 5% to 10%, the errors do not change. So we can think the
ECCC is a stable clustering algorithm.

In addition, we used the EM algorithm [11] which is
implemented in WEKA [12] to generate clustering for
comparison against the ECCC. Results are given in Table III.

TABLE III. AVERAGE CLUSTERING ERROR RATES COMPARISON

Algorithm Average Clustering
Error Rates

ECCC 0.081
EM 0.133

k-ANMI 0.165
ccdByEnsemble 0.315

GAClust 0.393
Squeezer 0.206

Table III indicates that the average clustering error rate in
Table II is lower than that of EM and the algorithm of [2].

2) Purity test on zoo dataset
We now report experiments on the zoo database, to

demonstrate that ECCC is accurate with high purity, and to
compare it against Entropy-based algorithm and K-means
algorithm. Table IV indicates that our ECCC is better than
Entropy-based algorithm and K-means algorithm on purity.
(The purity of a clustering (C1,…,Cm) against an expert given
clustering (C’1,…,C’k) is defined as follows: For each cluster Ci,
let C’i* denote the expert cluster with the largest overlap with
Ci. Purity of Ci is defined as |Ci ∩ C’i*| / |Ci|. The purity of the
clustering (C1,…,Cm) is defined as the weighted average of the
purity of the clusters.)

TABLE IV. RESULTS COMPARISON ON ZOO DATASET

 ECCC Entropy-based K-means

Purity 0.9208 0.9000 0.8400

In summary, these experimental results on both mushroom
dataset and zoo dataset demonstrate the accuracy and stability
of the ECCC algorithm.

B. Scalability Test
The purpose of this experiment is to test the scalability of

the ECCC algorithm when the sizes of the datasets increase.
We picked the first 1K, 2K, 3K, 4K, 5K, 6K, 7K and 8K
records respectively from the mushroom dataset to form 8
testing datasets. Figure 1 shows the run time of ECCC testing
on the 8 datasets.

0

2
4

6

8

1 2 3 4 5 6 7 8
Number of transactions in 1,000

R
u
n

t
i
m
e

i
n

s
e
c
o
n
d
s

Figure 1. time vs. number of transactions

From Figure 1, it is easy to see that the computation cost
increases linearly in terms of the number of transactions, which
is highly desired in real data mining applications.

IV. CONCLUSION
In this paper, we gave a better quality index (especially the

Discriminativeness Index) based on equivalence classes of
frequent patterns, and proposed an equivalence class based
clustering algorithm (ECCC) for categorical data. ECCC mines
clusters with high intra-cluster similarity, strong inter-cluster
diversity and no cross-cluster overlap. The experiment results
showed that our method is accurate, stable and scalable on the
real datasets.

For future work, we will find a good way to merge some
clusters for reducing the number of clusters according to user’s
requirement.

ACKNOWLEDGMENT
Thanks go to the authors of [9] for the C++ code of DPMiner.

REFERENCES
[1] Weining Qian and Aoying Zhou. Analyzing Popular Clustering

Algorithms from Different Viewpoints. Journal of Software, 13(8):
1382-1394, 2002.

[2] Z. He, X. Xu and S. Deng. K-ANMI: A mutual information based
clustering algorithm for categorical data. Information Fusion, 9:223-233,
2008.

[3] Z. He, X. Xu and S. Deng. Squeezer: an efficient algorithm for
clustering categorical data. Journal of Computer Science & Technology,
17(5): 611-624, 2002.

[4] D. Cristofor and D. Simovici. Finding median partitions using
information-theoretical-based genetic algorithms. Journal of Universal
Computer Science, 8(2): 153-172, 2002.

[5] Z. He, X. Xu and S. Deng. A cluster ensemble method for clustering
categorical data. Information Fusion, 6(2): 143-151, 2005.

[6] T. Li, S. Ma and M. Ogihara. Entropy-based criterion in categorical
clustering. ICML, 2004.

[7] Nicolas Durand and Bruno Cr´emilleux. ECCLAT: a New Approach of
Clusters Discovery in Categorical Data. 22nd SGAI International
Conference on Knowledge Based Systems, December 2002.

[8] http://archive.ics.uci.edu/ml/datasets.html, July 2011.
[9] J. Li, G. Liu and L. Wong. Mining Statistically Important Equivalence

Classes and Delta-Discriminative Emerging Patterns. KDD, 2007.
[10] Qingbao Liu and Guozhu Dong. A Contrast Pattern based Clustering

Quality Index for Categorical Data. IEEE ICDM, 2009.
[11] G. McLachlan and T.Krishnan. The EM algorithm and extensions.

Journal of Classification, 15(1): 154-156, 1997.
[12] www.cs.waikato.ac.nz/ml/weka/, August 2010.

130

IMMM 2011 : The First International Conference on Advances in Information Mining and Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-162-5

