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Abstract—Categorical data clustering plays an important role in 
data mining for many applications, including popular 
applications involving text mining and blog mining. While most 
traditional clustering methods rely on a distance function. 
However, the distance between categorical data is hard to define, 
especially for exploratory situations where the data is not well 
understood. As a result, many clustering methods do not perform 
well on categorical datasets. In this paper we propose a novel 
Equivalence Class based Clustering Algorithm for Categorical 
data (ECCC). ECCC takes the support transaction sets of 
selected frequent closed patterns as the candidate clusters. We 
define a novel quality measure to evaluate the suitability of 
frequent closed patterns to form the clusters; the measure is 
based on two factors: cluster coherence expressed in terms of 
closed patterns, and cluster discriminativeness expressed in terms 
of quality and diversity of minimal generator patterns. ECCC 
uses that measure to select the high quality frequent closed 
patterns to form the final clusters. 

Keywords-clustering analysis; categorical data; equivalence 
class 

I.  INTRODUCTION  
Clustering is unsupervised and highly explorative. It is an 

important approach, widely used in life science, medicine, 
social science, engineering and many other fields [1].  Most 
traditional clustering methods rely on a distance function. Since 
the distance between categorical data is hard to define, 
especially for exploratory situations where the data is not well 
understood, many clustering methods do not work well on 
categorical datasets.  

Several clustering methods have been recently developed to 
handle categorical data, including k-ANMI introduced in [2], 
Squeezer proposed in [3], GAClust in [4], ccdByEnsemble in 
[5], the Entropy-based algorithm in [6], and ECCLAT in [7]. 
However, these methods have various shortcomings; for 
example, the Entropy-based algorithm emphasizes intra-cluster 
purity while ignoring inter-cluster separation.  

 Here we detail the ECCLAT algorithm, which we will 
compare our method with. Firstly, it is necessary to explain the 
term “frequent closed itemset” in a general manner: a closed 
itemset is a maximal set of items shared by a set of transactions;  
when the frequency of  a closed itemset is larger than the 
frequency threshold (denoted as: minfr), it is called a frequent 
closed itemset. ECCLAT extracts a subset of concepts from the 
lattice of frequent closed itemsets, using the evaluation 
measure interestingness(X) = ( homogeneity(X) + 

concentration(X))/2 [7] (X is an itemset). More specifically, 
ECCLAT first mines the set of frequent closed itemsets; it 
views the support transaction set of each frequent closed 
itemset as a candidate cluster. Then, it computes the 
interestingness of the candidate clusters, and iteratively selects 
the next candidate cluster having the highest interestingness as 
the next final cluster. ECCLAT is an approximate clustering 
algorithm and allows the clusters to have transaction overlap. 
The concentration(X) measure is defined to limit the overlap of 
transactions between clusters by taking into account the 
number of candidate clusters where each transaction of X 
appears. Checking the definition of concentration(X) in [7], we 
can see that it treats all candidate clusters as equally important. 
Such weaknesses of ECCLAT lead to poor clustering results.  

In this paper, we propose a novel method called ECCC (an 
Equivalence Class based Clustering Algorithm for Categorical 
data). The main contribution of the paper is to provide a better 
quality measure to replace the concentration quality measure of 
ECCLAT. Our quality measure, called inter-cluster 
discriminativeness index, will consider the quality and 
diversity/richness of the minimal generator patterns. 
Specifically, our algorithm first mines the equivalence classes 
[9] of patterns,  including the closed patterns and their 
associated sets of generator patterns. Similarly to ECCLAT, we 
also regard the support transaction set of each closed pattern as 
a candidate cluster. We combine the intra-cluster homogeneity 
index of ECCLAT and our inter-cluster discriminativeness 
index into a general and objective quality index on clusters. 
Our algorithm then selects the high quality clusters from the 
candidate clusters using that quality index.  

Compared against ECCLAT, our ECCC uses both the 
closed pattern and the generator patterns, instead of just the 
closed patterns, of equivalence class to define the 
discriminativeness index. ECCC prefers the equivalence 
classes that have a long closed pattern and many short 
generator patterns. The first advantage of ECCC is that it 
avoids the drawback of ECCLAT mentioned above. The 
second advantage is that there is no transaction overlap among 
the final clusters. The third advantage is that ECCC needs only 
one parameter (minfr) while ECCLAT needs two parameters 
(minfr and M [7]). As a result, ECCC is more accurate in 
recovering expert defined classes than ECCLAT. 

In Section II, we describe our discriminativeness index and 
ECCC algorithm, after giving relevant preliminaries. In Section 
III, we report experimental results. Our conclusions are 
presented in Section IV. 
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II. ECCC  
In  this section we will  present our method, namely ECCC, 

after firstly giving some definitions. 

A. Preliminaries  
We assume that we are given a dataset D (a set of 

transactions) in the following definitions. For each itemset z, let 
fD(z)={t∈D|z⊆ t} denote the support set of transactions for z. 

Definition 1 (EC: Equivalence Class) [9]. An equivalence 
class EC is a (maximal) set of frequent itemsets (also called 
frequent patterns) that have a common support set of 
transactions.  

So, if EC is an equivalence class and x and y∈EC, then 
fD(x)=fD(y). 

Here we give the definition of “frequent closed itemset” 
which is called “closed pattern” in our ECCC. 

Definition 2 (cp: closed pattern) [9]. Given an equivalence 
class EC, the closed pattern cp of EC is   

p EC
cp p

∈
= ∪ .                                       (1) 

Definition 3 (gp: generator pattern) [9]. Given an 
equivalence class EC, a pattern gp∈EC is a generator pattern 
of EC if, for∀  z∈EC s.t. z≠ gp, it is the case that z⊄ gp. 

It is well known that an equivalence class has only one 
closed pattern and it has one or more generator patterns. We 
will represent an equivalence class EC as EC=[G(cp),cp] [9], 
where G(cp)={gpi|1 ≤ i ≤ k} which is the set of generator 
patterns and cp is the closed pattern of EC. 

Definition 4 (candidate cluster). A set of transactions 
CC⊆ D satisfying CC=fD(cp) for some closed pattern cp is 
called a candidate cluster associated with cp; this CC will be 
denoted by CC(cp). 

B. Homogenity and Discriminativeness Measures 
There are often many candidate clusters, and only a few 

candidate clusters can become the final clusters. For example, 
with minfr = 5%, there are 9738 candidate clusters in the 
mushroom dataset. So we need quality measures to select the 
candidate clusters as final clusters. Our algorithm will use one 
factor’s formula used by ECCLAT, and replaces the other 
factor’s formula using a new one.  

Definition 5 (HI: Homogeneity Index). The Homogeneity 
Index [7] of a candidate cluster CC(cp) is defined by: 

| ( ) | | |( )
( ) | ( ) | | |CC

CC cp cpHI cp
divergence cp CC cp cp

×
=

+ ×
         (2) 

where 
( )

( ) | |
Dt f cp

divergence cp t cp
∈

= −∑ , and |S| denotes the 

cardinality of a set S. 

Homogeneity Index is used to measure the intra-cluster 
similarity. Larger values are better. Using this index, we prefer 
those candidate clusters whose closed patterns are very long. If 
a candidate cluster CC(cp) has a very long closed pattern cp, 
then all the transactions in CC(cp) share all items in cp, 
implying that CC(cp) is highly coherent; we note that 
divergence(cp) is small and HICC(cp) is large in this situation. 

For the inter-cluster diversity, we propose a novel measure 
called Discriminativeness Index which is defined below.  

Definition 6 (DI: Discriminativeness Index). The 
discriminativeness index of a candidate cluster CC(cp) is 
defined as: 

( )

| |( ) (1 )
| |

i

i
CC

gp G cp

cp gpDI cp
cp∈

−
= +∏               (3) 

where |cp| and |cp-gpi| are the number of items in cp and cp-gpi, 
respectively.  

Larger DICC(cp) values are better. Using this 
Discriminativeness Index, we prefer the candidate cluster 
which has a very long closed pattern and many short generator 
patterns. Our rationale for Discriminativeness Index is similar 
to that in [10]. If a candidate cluster CC(cp) has many short 
generator patterns, then each such short generator pattern gp is 
a strong discriminator that can be used to easily separate and 
distinguish CC(cp) from the other candidate clusters. The 
shorter gp is the easier it is to do the separation. The more such 
short gp patterns we have, the more different ways we have to 
describe the cluster and discriminate it from other clusters. So 
we think the high DICC(cp) value implies that this candidate 
cluster CC(cp) is significantly different from other candidate 
clusters, is identified very easily, and has better quality. 

Definition 7 (QI: Quality Index). The EC based Quality 
Index of the candidate cluster CC(cp) is defined as follows: 

( ) ( ) ( )CC CC CCQI cp HI cp DI cp= × .                 (4) 

    Our idea is to select these candidate clusters with high 
Quality Index as the final clusters. The next section presents an 
algorithm for this task. 

C. The Process of ECCC  
On dataset D, we first use DPMiner algorithm [9] to mine 

the closed patterns and their generators simultaneously, using a 
minimal frequency threshold minfr. Then, we determine the  
candidate clusters of the frequent closed patterns, calculate the 
quality of each candidate cluster, and select the candidate 
cluster CC(cp*) with highest quality as a final cluster C(cp*).  
When there are two and more highest quality candidate clusters, 
we prefer the candidate cluster with larger number of  
transactions. For any remaining candidate cluster CC(cp) such 
that cp ≠ cp* and CC(cp) ∩  C(cp*) ≠ ∅ , we modify the 
candidate cluster CC(cp) as CC(cp)=CC(cp)-C(cp*). If 
|CC(cp)|<minfr, we delete the candidate cluster CC(cp). Then 
we recalculate HICC(cp), DICC(cp) and QICC(cp) of the 
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candidate clusters, and select the candidate cluster CC(cp*) 
with highest quality as the next final cluster. We repeat the 
process above, until there is no candidate cluster. At the end, 
we classify all remaining transactions into the trash set. 

The pseudo-codes of ECCC are given below. 

Input: 
       D is a dataset to be clustered; 

minfr is the frequency threshold; 
Output: 

CL is the set of Clusters; 
Trash is the set of the trash transactions; 

Description: 
1. mine CP={cpk|1≤ k≤N}, G(cpk), CC(cpk); 
2. for each cp∈CP do  
3.      calculate HICC(cp) and DICC(cp);  
4.      QICC(cp)= HICC(cp)×DICC(cp); 
5. end for 
6. select CC(cp*), s.t. QICC(cp*)=

kcp CP
max

∈
{ QICC(cpk)}; 

7. C(cp*)= CC(cp*); 
8. delete CC(cp*); 
9. insert C(cp*) into CL; 
10. for each CC(cp) ∧ ( CC(cp)∩ C(cp*)≠ ∅ ) do 
11.        CC(cp)=CC(cp)-C(cp*); 
12.       if |CC(cp)|<minfr then 
13.            delete CC(cp); 
14.       else 
15.            recalculate HICC(cp), DICC(cp) and QICC(cp); 
16.        end if 
17. end for 
18. repeat steps 6--17 until there is no candidate cluster; 
19. classify the remaining transactions of D into the Trash; 
20. return CL and Trash; 
 

III. EXPERIMENT RESULTS  
We now use experiments to demonstrate that (1) the ECCC 

algorithm is accurate and (2) the ECCC algorithm is scalable. 

Experiments were conducted on a desktop computer with a 
2.33 GHz Intel CPU and 3 GB memory running the Windows 
XP. 

A. Accuracy test on Mushroom Dataset and Zoo Dataset 
We evaluate the accuracy of our algorithm ECCC on two 

real datasets available at the UCI Repository [8]. One is the 
well known mushroom dataset which has 22 attributes, 8124 
transactions, and two class labels provided by domain experts. 
The other is the zoo database (101 transactions with 7 class 
labels provided by domain experts) which has 15 boolean 
attributes and a numerical one (“legs”), we used the six values 
of “legs” as categorical values.  

1) Error rates test on mushroom dataset 
In this section, we present experiment results of ECCC on 

the mushroom dataset.  

 

a) Compare against ECCLAT algorithm 
For minfr = 5% and M = minfr, ECCLAT obtains 16 

clusters and a trash cluster with slight overlapping between 
clusters 14 and 16 [7]. Also ECCC can obtain 16 clusters and a 
trash cluster without overlapping when minfr = 4%. 

The comparison between the above two clusterings is 
shown in Table I.  It is obvious that the ECCC clustering errors 
are lower than that of the ECCLAT clustering. 

TABLE I.  COMPARISON BETWEEN ECCC AND ECCLAT 

ECCC  (minfr = 4%) ECCLAT (M=minfr = 5%) Cluster 
No. #Poisonous  #Edible  # Poisonous # Edible 

1 0 576 0 432 

2 432 0 0 432 

3 0 384 0 432 

4 0 384 0 432 

5 864 0 648 0 

6 576 0 648 0 

7 576 0 432 0 

8 576 0 432 0 

9 0 400 432 0 

10 0 400 432 0 

11 272 96 0 768 

12 72 528 0 512 

13 128 384 352 96 
14 0 384 288 896 

15 144 384 0 416 

16 240 96 72 560 

Trash 36 192 180 160 

Error 572 616 

 
b) Average clustering error rates comparison 

To further test the clustering errors of ECCC, we repeated 
ECCC with 10 different  minfrs from 1% to 10% on mushroom 
dataset. The 10 results are shown in Table II. 

TABLE II.  RESULTS  IN TERM  OF THE DIFFERENT MINFRS 

minfr(%) 
#Clusters 

(including the trash cluster) # Errors
1 28+1 252 

2 24+1 252 

3 20+1 172 

4 16+1 572 

5 12+1 890 

6 11+1 890 

7 11+1 890 

8 6+1 890 

9 6+1 890 

10 5+1 890 
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Table II shows that the clustering errors change with 
different minfrs. For minfr =3%, the result is the best. And for 
minfr =4%, the result is the middle. But when minfr changes 
from 5% to 10%, the errors do not change. So we can think the 
ECCC is a stable clustering algorithm. 

In addition, we used the EM algorithm [11] which is 
implemented in WEKA [12] to generate clustering for 
comparison against the ECCC.  Results are given in Table III.  

TABLE III.  AVERAGE CLUSTERING ERROR RATES COMPARISON 

Algorithm Average Clustering 
Error Rates 

ECCC 0.081 
EM 0.133 

k-ANMI 0.165 
ccdByEnsemble 0.315 

GAClust 0.393 
Squeezer 0.206 

 

Table III indicates that the average clustering error rate in 
Table II is lower than that of EM and the algorithm of [2]. 

2) Purity test on zoo dataset 
We now report experiments on the zoo database, to 

demonstrate that ECCC is accurate with high purity, and to 
compare it against Entropy-based algorithm and K-means 
algorithm. Table IV indicates that our ECCC is better than 
Entropy-based algorithm and K-means algorithm on purity. 
(The purity of a clustering (C1,…,Cm) against an expert given 
clustering (C’1,…,C’k) is defined as follows: For each cluster Ci, 
let C’i* denote the expert cluster with the largest overlap with 
Ci. Purity of Ci is defined as |Ci ∩ C’i*| / |Ci|. The purity of the 
clustering (C1,…,Cm) is defined as the weighted average of the 
purity of the clusters.) 

TABLE IV.  RESULTS COMPARISON ON ZOO DATASET  

 ECCC Entropy-based K-means 

Purity 0.9208 0.9000 0.8400 

 

In summary, these experimental results on both mushroom 
dataset and zoo dataset demonstrate the accuracy and stability 
of the ECCC algorithm.  

B. Scalability Test 
The purpose of this experiment is to test the scalability of 

the ECCC algorithm when the sizes of the datasets increase. 
We picked the first 1K, 2K, 3K, 4K, 5K, 6K, 7K and 8K 
records respectively from the mushroom dataset to form 8 
testing datasets. Figure 1 shows the run time of ECCC testing 
on the 8 datasets. 
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Figure 1.  time vs. number of transactions 

From Figure 1, it is easy to see that the computation cost 
increases linearly in terms of the number of transactions, which 
is highly desired in real data mining applications. 

IV. CONCLUSION  
In this paper, we gave a better quality index (especially the 

Discriminativeness Index) based on equivalence classes of 
frequent patterns, and proposed an equivalence class based 
clustering algorithm (ECCC) for categorical data. ECCC mines 
clusters with high intra-cluster similarity, strong inter-cluster 
diversity and no cross-cluster overlap. The experiment results 
showed that our method is accurate, stable and scalable on the 
real datasets. 

For future work, we will find a good way to merge some 
clusters for reducing the number of clusters according to user’s 
requirement. 
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