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Abstract—Beamforming (BF) appropriately weights the ampli-
tude and phase of individual antenna signals to create narrowly
focused radiation. This makes it possible to provide better
coverage in an indoor environment and at the edge of a cell.
To make the best use of this technology, it is important to
know the location of the device to direct the antenna beam
of the radio Base Station (BS). Consequently, the Direction of
Arrival (DOA) method is becoming very crucial and essential in
this time. This paper proposes a Machine Learning (ML) based
approach for DOA by evaluating three models: Support Vector
Classification (SVC), Decision Tree (DT) and Bagging Classifier
(BC). These models are trained using a public database built from
drone’s radio frequency signals. The proposed model significantly
outperforms the techniques presented in previous work.

Index Terms—Beamforming; Direction of Arrival; Machine
Learning.

I. INTRODUCTION

Up to the Fifth Generation Mobile Network (5G), the de-
velopment of the cellular systems focused on communication
aspects, while other services, had low priority. Diverging from
current networks, future communication systems will become
pervasive across multiple industry verticals by enabling a
plethora of services that require location, such as assets
tracking, context-aware marketing, transportation and logistics
systems, Cross Reality (XR) experiences, and health care.

For location services, the Direction of Arrival (DOA)
method estimates the direction angle of a source transmitting
a signal to a receiver. DOA is highly applicable in wireless
communications, astronomical observations, radar, and sonar
[1]. In addition, with the beginning of the studies of the 6G
network, the DOA methods assumes a new importance.

One of the key technologies in 6G is expected to be
Beamforming (BF), specifically Holographic Beamforming
(HBF) [2]–[5]. BF is a technique that focuses a wireless signal
towards a specific receiving device, rather than having the
signal spread in all directions from a broadcast antenna, as it
usually would. Therefore, it is important to know the location
of mobile devices and Internet of Things (IoT) terminals
to direct the antenna beam of the radio BS. The resulting
connection is faster and more reliable than it would be without
BF.

The location technique for BF in 6G should be autonomous,
reconfigurable, adaptive, and fast responsive. It is impossible

to manually adjust the BF direction due to the extensive
enhancement of the capacity of communication networks. ML
has been considered part of the most important technologies
in 6G [2], [6]–[10] due to the high capacity of communication
networks and the massiveness of IoT devices.

ML is presented as a promising technology to be used for
DOA. ML-based methods are data-driven and it can be more
robust than other methods because they adapt better to array
geometry imperfections and sensor imperfections. They also
do not depend of the array geometry shape [1]. In addition,
ML offers low-cost implementation and simplicity.

In [11], the authors propose a new DOA method based
on an ML model to estimate the azimuth angle of a signal.
The system employs only four antennas to find the direction
of eight possible signal provenance angles. With this system
was obtained a dataset named as Dround Data New, which
contains well-known signals transmission powers for the eight
angles. The authors trained and validated the dataset with a
Deep Neural Network (DNN) model. The main goal of this
work is to propose another ML model in order to increase the
accuracy during prediction and decrease the training time over
the same dataset Dround Data New.

The article is organized as follows. Section II is an overview
of the related work. Section III extends the system architecture,
the training dataset, the data modification for classification,
and the proposed ML model. Section IV compares and
discusses the results of the proposed DOA model with the
approach presented in [11]. Finally, Section V concludes the
paper.

To promote reproducible research, the code to generate the
results of this paper is available here: [12].

II. RELATED WORK

Inherently multi-channel techniques, Multiple Signal Clas-
sification (MUSIC) [13], and Estimation of Signal Parameters
Via Rotational Invariance Techniques (ESPRIT) [14], are con-
sidered to be the most popular DOA methods. However, there
have been many problems associated with their application
due to the base-band data from all antenna elements should
be extracted simultaneously. A data correlation matrix needs
to be formulated. Therefore, calibrating the values of each
Radio Frequency (RF) channel becomes necessary to have a
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coherent multi-channel receiver [11]. A technique that does
not require phase calibration is proposed in [15] as a Sparse
Signal Representation (SSR) technique. However, this scheme
cannot offer adequate accuracy.

In order to avoid the phase synchronization mechanism and
antenna calibration mechanism, the authors in [11], [16], [17]
used a system consisting of a single channel receiver, an M
independent antennas, and a rotating switch similar to the
one depicted in Figure 1. The authors in [16], examined the
potential in using the different radiation patterns of a Switched
Parasitic Antenna (SPA) for DOA. The DOA performance of
the SPA is examined by calculating a lower bound on DOA
accuracy, which is called the Cramer-Rao lower Bound (CRB).
Then, all DOA estimation schemes derived from a general
antenna array can also be applied to a parasitic antenna by
inserting a new steering matrix. The authors in [17], employ
a receiver, which is connected to one of M available sensors.
Each sensor is enabled for reception every MT , where T
is the time a sensor is enabled. The single-channel receiver
has an RF switch that selects one sensor at a time. For the
direction estimate, the posterior distribution of DOA is derived.
Then, the Bayesian maximum posterior probability is applied
to select the direction angle. The results of that work show high
accuracy for the direction estimate of signals arriving from
10◦ and 40◦ angles simultaneously. However, the convergence
time for the estimate is not clear because it is presented as a
dimensionless quantity.

In [18], a comprehensive study is conducted to optimize
the channel estimation and DOA estimation fields of massive
Multiple Input Multiple Output (MIMO) based on the deep
learning technique. Simulation results corroborate that the
proposed scheme can achieve better performance in terms
of DOA estimation compared with conventional methods.
However, the system is complex and expensive because it em-
ploys 128 antennas. The authors in [19], proposed a cascaded
neural network, which can be implemented to estimate the
DOA of two closely spaced sources. The cascaded network
consists of two parts: a SNR classification network and a
DOA estimation network. The latter network contains two
estimation subnetworks, which are applied to high and low
SNRs to train the noisy data. The results of that work show
better performance than other DOA techniques by detecting
two signals coming from two directions separated by angles
less than 5◦. However, the performance is worse than the other
techniques for sources with greater separation.

The authors in [11] used a system consisting of a single
channel receiver, four antennas, and a rotating switch like
the one depicted in Figure 1. There, the receiver sequentially
activates the n-th antenna element at a time using the rotating
switch, and measures the corresponding received power (Pn)
where n ∈ {1, ..., N}. Then, the value of the normalized power
measured in the n-th antenna will be given as:

xn =
Pn∑N
i=1 Pi

(1)

Next, the obtained normalized power values are fed to a

Sparse Denoising Autoencoder (SDAE)-based DNN to find the
azimuth angle of the transmitted signals. The SDAE makes
compression and later a reconstruction of the power values
to obtain a version of the power values with only essential
information. Then, it starts the DNN training phase. DNN
comprises three fully connected hidden layers and a softmax
layer [20] for the classification task. The model achieved an
overall accuracy of 96.25%. However, this paper proposes
another ML method using the same dataset than in [11] to
show improvements in both the overall accuracy and the
elapsed training time for DOA.

III. SYSTEM MODEL AND DATASET

A. System overview

The system model consists of a single-channel receiver,
and N directional antennas arranged circularly, see Figure
1. The antenna array is connected to the receiver using a
non-reflective Single-Pole-N-Throw (SPNT) RF switch, which
sequentially activates each antenna, and measures the received
power values. The power measurements (P1, P2, P3, ..., PN)
corresponding to each switching cycle are fed to the proposed
ML model. Then, it is performed the DOA by exploiting the
sparsity property of the incoming signal, and the gain variation
property of the directional antenna array.

N-element
Directional

Antenna Array

P1

P2

P3

PN

...

Single-pole-N-throw
Antenna Switch

Single Channel
SDR

Machine Learning
Classifier

Fig. 1. The System Model.

B. Dround Data New dataset review

The Dround Data New dataset was collected by Software
Defined Radio (SDR) (USRP B210), and a four-element sector
antenna. The authors in [11], use only a single RF receiving
channel for the SDR. Thus, the SDR is connected to the
antenna using a non-reflective Single-Pole-4-Throw (SP4T)
RF switch. The DJI Phantom 3 drone is the device that
has been involved in this dataset. It is considered as the
target device throughout the experiment. The drone downlink
channel occupies the bandwidth from 2.401 GHz to 2.481
GHz. Each drone transmits a 10 MHz bandwidth Orthogonal
Frequency Division Multiplexing (OFDM) signal. The OFDM
signal transmitted by the drones is the main source to perform
the DOA task. Figure 3a in [11] represents the environment
that they used for the training data collection. The scenario
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represents a large ground with an open area. Also, there was
a negligible RF intereference on the 2.0401 GHz - 2.481 GHz
range due to the experiment occurring in a remote area.

To simplify the experiment, the authors in [11] virtually
divided the area into eight octants (see Figure 3b in [11]).
Therefore, Dround Data New is made up of octants. Each
octant is considered as one direction (azimuth angle). For
example, the first octant is considered as the angle’s range 0◦-
45◦, while the second octant is considered as the angle’s range
45◦-90◦, and so on. Therefore, when the drone is flying, its
direction is indicated by its corresponding octant. The dataset
just has one type of data labeling for the classification of
the azimuth angles. The Dround Data New dataset consists
of 120 samples per angle’s range. It is important to clarify
that in the future more tests can be done and more data can
be obtained to achieve a more precise direction. For example,
instead of splitting the area into octants it can be splitted into
sixteen or sixty-four parts.

C. Dataset modifications

It is common practice when performing a supervised ML
experiment to hold out part of the available data as a validation
set. The validation dataset is not used for training, instead, it
is used to validate the trained model by predicting the labels
of those unseen data. In [11], the dataset is divided into data
to train and data to validate. The Dround Data New consists
of 110 samples per angle for training and 10 samples for val-
idation (representing approximately 8.33% of the total data).
It is not a convincing validation dataset because it is small
compared with the entire dataset due to the Pareto principle
[21]. Besides, the data to train and validate were divided into
different files in a fixed way, which makes it difficult to do
different tests with different sizes of data for training and
validation. Therefore, this data was joined in the same file and,
shuffled, and splitted by using the train test split [22] method
from the Scikit-Learn (sklearn) library to readjust dynamically
the training and validation dataset sizes. In this work, the
train test split method take as input: an array holding the
samples, an array holding the class labels for the samples,
a parameter called test size which represents the proportion
of the dataset to include in the validation dataset, and the
parameter called random state which controls the shuffling
applied to the data before applying the split.

D. Classification model

In this subsection, a brief review of the ML model and the
ensemble methods used in this work is given.

1) Support Vector Classification (SVC): SVC tries to find
the best hyperplane to separate different classes by maximizing
the distance between sample points and the hyperplane. The
SVC model takes as input the following parameters:

• kernel: Selects the type of hyperplane used to separate
the data. It must be one of linear, poly, rbf, sigmoid,
precomputed or a callable.

• C: Is the penalty parameter of the error term. It controls
the trade off between smooth decision boundary and
classifying the training points correctly.

• gamma: Kernel coefficient for rbf, poly and sigmoid.
2) Decision Tree (DT): DT models are one of the simplest

and most successful forms of ML models [23]. The goal of DT
is to create a model that predicts the value of a target variable
by learning simple rules inferred from the data features. The
DT models build a tree during training that is the one applied
when making the prediction. The input and output values can
be discrete or continues. The DT model takes as input the
following parameter:

• max depth: This indicates how deep the tree can be.
3) Bagging Classifier (BC): It is an ensemble meta-

estimator that fits base classifiers each on random subsets
of the original dataset and then aggregates their individual
predictions (either by voting or by averaging) to form a final
prediction [24]. This work uses the Bagging Classifier class
from the sklearn library and it takes as input the following
parameters:

• base estimator: Applied to random subsets of the dataset.
The base classifier used was DT [25].

• n estimators: The number of base estimators (in this case,
the number of DTs in the ensemble.

• max samples: The number of samples to extract from the
training data to train each base estimator.

• bootstrap: Defines whether samples are drawn with re-
placement. If False, sampling without replacement is
performed.

• n jobs: Tells Scikit-Learn the number of CPU cores to
use for training and prediction. n jobs is None by default,
which means unset; it will generally be interpreted as
n jobs=1, which means that only one core will be used
by Scikit-Learn. n jobs=-1 tells Scikit-Learn library to
use all available cores. For n jobs below -1, number of
cores + 1 + n jobs are used. For example, with n jobs=-
2, all CPUs but one is used.

• random state: Provided to control the random number
generator used. The values of random state can be: None
(default), an integer, and a numpy.random.RandomState
instance. random state=None calls the function multiple
times. It will reuse the same instance, and it will produce
different results. If random state is an integer, it is going
to use a new random number generator seeded by the
given integer. Using an integer will produce the same
results across different calls. Popular integer random
seeds are 0 and 42. The numpy.random.RandomState
instance uses the provided random state, only affecting
other users of that same random state instance.

IV. SIMULATION RESULTS

A. Tuning the parameters and the validation set

Figures 2 and 3 show the validation curves and learning
curves for SVC and DT respectively. Figure 2a shows the
behavior of the training score and validation score against the
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a. Validation Curve for the parameter.C

b. Validation Curve for the parameter.gamma

c. Learning Curve.

Fig. 2. Validations curves and Learning curves of SVC.

values of the parameter C. It is observed that the training
score is always increasing and the validation score decreases
slightly for a value of C equal to 100. Therefore, the value
of C will be 100 to avoid overfitting, which means that the
noise or random fluctuations in the training data is picked up
and learned as concepts by the model. Figure 2b shows the
training scores and validation scores of an SVC for different
values of the kernel parameter gamma. Until gamma equal to
approximately 100, it can be seen that both the training score
and the validation score are increasing. After gamma equal
to 100 the training score keeps increasing but the validation
score decreases; therefore, the classifier overfit. The problem
is that these concepts do not apply to new data and negatively
impact the models ability to generalize.

Figure 3a shows that for low values of max depth the
DT model is underfitting, which means that it can neither

a. Validation Curve for the parameter.max_depth

b. Learning Curve.

Fig. 3. Validations curves and Learning curves of DT.

model the training data nor generalize to new data. With the
previous analysis and with the use of the search grid provided
by GridSearchCV [26]—which exhaustively considers all
parameter combinations to optimize a model— the best
parameters for the SVC and DT models are summarized in
Table I.

TABLE I
INPUT PARAMETER VALUES OF THE SCV AND DT MODELS.

Model Parameters Value

SVC kernel rbf
C 100

gamma 100
DT max depth 16

Figure 2c shows that the validation score is maximum after
approximately 700 training samples and then remains almost
constant, and the training score is still around the maximum.
Therefore, 700 samples were destined for training, which
represents 72.9% of the total samples (the total samples is
960). As a result of the total data, 70% was allocated for
training and 30% to validate the SVC model. The same is
observed in Figure 3b for the DT model. Therefore, 70% of
the samples will also be used for training the DT model.

As BC is designed to reduce the possibility of overfitting
complex models there is no need to analyze their validation
curves. Table II shows the values given to the BC input
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parameters. The values of n estimators and max samples have
been decided with the use of the search grid provided by
GridSearchCV [26]. Figure 4 shows the learning curve of the
BC model with a behavior similar to that of SVC and DT.
Therefore, 70% of the data from Dround Data New dataset
was also used to train the BC model.

Fig. 4. Learning curves of BC.

TABLE II
INPUT PARAMETER VALUES OF THE Bagging Classifier.

base estimator Decision Trees
n estimators 300
max samples 0.55

bootstrap False
n jobs -1

random state 42

B. Results

The performance of the SDAE-DNN model used in [11],
SVC model, DT model and the BC model is shown in Figure
5 by means of confusion matrices and in Table III. It can be
concluded that the DT and BC models present a better result
than the SDAE based DNN and SVC models despite using
less data to train. It can be seen that the BC and DT results
are practically the same but with a longer time in BC (which
makes sense as it is a more complex method). Therefore, the
use of BC in this case does not make sense since DT provides
the same results in a shorter time.

TABLE III
COMPARISON BETWEEN MODELS

Model Validation Elapsed time Accuracy
dataset size

SDAE-DNN 8.33% 109.29s 96.25%
SVC 10% 0.02s 95.83%
DT 30% 0.0s 98.61%
BC 30% 5.23s 98.61%

Fig. 5. Confusion matrix.
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V. CONCLUSION

The necessity of having an intelligent system for DOA with
reliable accuracy is becoming crucial for Next Generation
Mobile Networks techniques like BF in 6G to improve the
communication. These systems can integrate well-trained ML
models to improve the robustness in performance. In this work,
different ML models were trained using a public dataset. The
best results were obtained for the DT model, overcoming
another model proposed in the literature.

In future works, we will include not only the azimuth angle
for DOA but also the elevation angle using the analyzed ML
models. It will be considered an angle resolution of 5◦ instead
of 45◦ to reduce the antenna beam and increase its directivity.
The performance of the ML models will be evaluated by
simulation results.
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