
Keep it Flat (KiF): Resource Management in
Integrated Cloud-Fog Networks

Neam M. Farroukh
Computer Science Department
American University of Beirut

Beirut, Lebanon
Email: nmf14@mail.aub.edu

Mohamed Nassar
Computer Science Department
American University of Beirut

Beirut, Lebanon
Email: mn115@aub.edu.lb

Shady Elbassuoni
Computer Science Department
American University of Beirut

Beirut, Lebanon
Email: se58@aub.edu.lb

Haidar Safa
Computer Science Department
American University of Beirut

Beirut, Lebanon
Email: hs33@aub.edu.lb

Abstract—Fog computing extends the cloud services and brings
them to the edge of the network. By taking advantage of edge
devices that have sufficient resources (i.e., storage, compute, and
bandwidth), the cloud becomes closer to the edge. The fog has
been proved as a promising solution for avoiding unbearable
latency and network capacity saturation with the proliferation
of Internet of Things (IoT) end-devices. Lately, researchers have
investigated the impact of cloud-fog cooperation on the perfor-
mance of the network in terms of latency, network capacity and
security. While the cloud can handle heavy-weight delay-tolerant
tasks, the fog becomes in charge of all light-weight delay-sensitive
tasks. In such integrated networks, resource management be-
comes a key challenge that must be addressed effectively. In this
paper, we design and study two different resource management
strategies at the fog layer: a flat one versus a clustered one.
Both strategies are formalized as optimization problems and
constrained by minimum resource allocation requirements, as
well as Quality of Service (QoS) and privacy requirements. The
comparison of the two strategies shows the superiority of the flat
approach in terms of overall performance and fog delay, while
the clustered approach results in lower number of overall tasks
being rejected.

Keywords—fog computing; resource management; security;
latency; optimization.

I. INTRODUCTION

Computing in general is an on-demand utility model where
users opt to benefit from services without worrying about
where these services are hosted or how they will be delivered.
Cloud computing is a well established technology defined as
a tool that provides ready-to-consume resources like CPU,
I/O, and memory based on the users’ demands. Lately, the
number of smart end-devices, renowned as the Internet of
Things (IoT), has been proliferating at a tremendous scale.
Consequently, such a number of devices is going to produce
trillion gigabytes of data [1]. Imagine this huge amount of
data being sent to a centralized and far located cloud. This
will cause network saturation and severe degradation in users’
experience. Thus, cloud computing will lose its luster for

Cloud Server Cloud Server

Cloud Server

Controller

Controller

F2F

F2C

F2C

F2C

Fog
Nodes

Fog
NodesRe

qu
es

t

D
ecision

Cloud Layer

Fog Layer

IoT Layer

Figure 1. Network Architecture.

latency-sensitive applications that require resources just in the
vicinity.

To address this issue and to meet the delay and mobility
requirements of various IoT applications, it is necessary to
have an intermediate control layer that resides between the
end-devices and the far located cloud. This shifting from the
core to the edge of the network is termed as edge computing.
Subsequently, Cisco proposed Fog Computing (FC) in 2012
[2]. According to Cisco, the fog is just another cloud layer
that is closer to the IoT devices. The fog extends the assets
of the original cloud as storage, computing and networking
services to the edge of the network by taking advantage of
devices, e.g., access points, routers, that are rich in resources
and located near end-devices. The aim of the fog is to provide
lower latency and better user experience.

Resource management in fog computing is still considered
as a key challenge due to the limited computational resources
of edge devices and their heterogeneity. It is essential to
address this challenge in a way that optimizes the fog resources
while satisfying the QoS and privacy requirements of the
IoT applications and their computational tasks. Therefore,
the research question that we address in this paper is the

28Copyright (c) IARIA, 2021. ISBN: 978-1-61208-878-5

ICWMC 2021 : The Seventeenth International Conference on Wireless and Mobile Communications

following: Given a backend cloud with ”infinite” resources
and considerable latency, a pool of fog nodes with different
characteristics and arriving IoT tasks with different require-
ments, what is the best distributed and hierarchical strategy
to support scheduling and assignment decisions?

The rest of the paper is organized as follows: In Section II,
we present background information. In Section III, we review
related work. Section IV discusses the system model. The
scheduling strategies are detailed in Section V. Simulation and
experimental results are tailored in Section VI. Finally, Section
VII concludes the paper and sheds the light on future work.

II. BACKGROUND

Cloud computing replaced traditional hosting by enabling
customers to rent compute resources like applications, storage
and virtual machines through Internet. Similar to any other
utility like water and electricity, users do not need to worry
about managing and maintaining the utility infrastructure [3].
Cloud computing follows the Pay-as-You-Go usage model,
which facilitates the scaling and customization of computing
resources. The edge is any computing and network resources
that reside between the end-users and the cloud data centers.
The aim behind fog computing is to perform all the processing
and computing at the proximity of data resources and thus
to minimize the latency. An IoT device is any device that
is able to transmit and receive data, and has an attached
sensor or actuator. IoT devices are becoming part of every
aspect of our lives since they give more control on routine
work and personal tasks. For that, IoT applications have been
deployed in various areas such as smart homes, smart cities,
transportation, and healthcare. Examples of IoT applications
are door locks, smart heating, coagulation testing in medicine
and smart traffic signals.

III. RELATED WORK

A task scheduling algorithm in the fog layer based on
priority levels is proposed in [4]. The fog nodes in the fog
layer can communicate with each other for efficient resource
allocation and load balancing. The tasks are first processed
in the fog layer based on their priority levels. Only when all
the micro datacenters in the fog layer are saturated that tasks
are propagated to the cloud layer. A more real-time oriented
resource management approach is proposed in [5]. Factors,
such as fluctuating relinquish probability of the customer,
service type, service price, and variance of the relinquish prob-
ability are taken into account. In the proposed architecture,
the fog node is capable of predicting the consumption of
resources for a particular customer. The Distributed Earliest
deadline First (DEF) algorithm was proposed in the context
of symbiotic fog computing [6]. The presented model accounts
for dynamic resources that arrive into the system for an interval
of time and lend a fraction of their computing capacities
against financial incentives. The assignment design is seen as a
recommendation system. Given a task’s requirements, multiple
nodes can be recommended based on task similarity, node
similarity and node previous performance on a similar task.

A Fog Resource Selection algorithm (FResS) is proposed in
[7]. The proposed model collects and maintains a repository
of performance data in the form of execution logs, and uses
the data to train a neural network model. When a new
task arrives, the neural network model predicts the amount
of required resources and uses it for task placement and
estimating the execution time. The load balancing problem
under the constraint of achieving the minimum latency in
Fog networks is also addressed in [8]. A reinforcement Q-
learning based decision-making process is proposed to find the
optimal offloading decision with the assumption of unknown
reward and transition functions. The proposed process allows
fog nodes to offload an optimal number of tasks to the
cloud. The lack of approaches for the leasing and releasing
of resources in fog computing is also highlighted in [9]. A
conceptual framework and an optimization problem for fog
resource provisioning are presented. The optimization problem
has the goal to provide delay-sensitive utilization of available
fog nodes. The resource provisioning plan is generated by
an orchestration node. We follow a similar approach in this
paper. Our work is different from previous related work for
two reasons: (1) we focus on the orchestration topology and
differentiate between a flat one versus a clustered one, (2) we
add abstract variables representing security and privacy to our
model.

IV. SYSTEM MODEL

Our model (Figure 1) is derived from [10]: the cloud
manages the fog and handles the heavy-weight delay-tolerant
IoT tasks, while the fog is responsible for handling the light-
weight delay-sensitive IoT tasks. Each fog cluster is assigned
a number of IoT devices that are directly connected to it.
In the flat scenario, an IoT device can reach to any of the
other fog clusters for requesting a task. In the clustered
scenario, the task issued from an IoT device is directed to
the controller of the cluster it is connected to. Fog controllers
communicate to migrate a task from a cluster to another.
Inter-cluster communication should be harnessed to achieve
load balancing and efficient task distribution. Moreover, fog
controllers communicate with the cloud to avoid fog saturation
and offload tasks that are deemed heavy weight or delay-
tolerant.

Each fog node fj is represented as a profile vector {CPUj ,
Memoryj , PMj} corresponding to its available CPU type and
available Instructions Per Second (IPS), memory, and privacy,
at time t, respectively. We omit t to simplify the notation.
The privacy measure is a trust value representing the security
and privacy strength of a fog node. Many approaches can be
used to build such a trust model, [11] in particular. Each task
Ti arriving at the fog layer is represented by a profile vector
{CPUi, Memoryi, SLi, ICi, Bytesi, MADi, SCi}. The entries in
the vector correspond to the minimum required CPU type and
available IPS, the minimum required memory, the minimum
security level, the task instruction count, the task data size in
bytes, the maximum allowed delay, and the scheduling class
(priority level), respectively. The scheduling class is one if

29Copyright (c) IARIA, 2021. ISBN: 978-1-61208-878-5

ICWMC 2021 : The Seventeenth International Conference on Wireless and Mobile Communications

(a) Choosing a Local Fog Node.

(b) Choosing a Local Node in another Fog.

(c) Offloading Task to Cloud.

Figure 2. Three Possible Scenarios for an IoT task.

the task is delay tolerant and zero otherwise. The maximum
allowed delay attribute determines the latency requirement of
the task. Thus, a fog node can be assigned a task if the
total time it takes to process the task along with the total
transmission, routing and propagation delays do not exceed the
maximum allowed delay attribute of the task. We represent the
link between any two network devices, source s and destination
d, by the profile vector {BWs,d, PDs,d} corresponding to the
upload bandwidth and propagation delay, respectively.

Each fog controller is logically connected to a set of IoT
devices. The IoT device is homed with one or more fog
controllers. Upon receiving a request from an IoT device, the
controller’s job is to take a decision on the best way to handle
this task. The controller replies to the IoT source with the
decision and additional information that helps proceeding with
the task. As shown in Figure 2, three scenarios are possible:

(a) the controller predicts that the task can be accomplished
by a local node and responds with the IP address of this
node,

(b) the controller has a busy cluster, estimates that some extra
delay is tolerable and forwards the task to a neighbor
cluster’s controller. Note that this can be done in an
iterative way by forwarding the task and relaying the
response to the client, or in a recursive way by directly
responding with the IP address of the next fog controller.

(c) the controller decides that the task is delay-tolerant and not
computationally affordable at the fog layer at this moment,
the task can be offloaded to the cloud. The controller
replies with IP address of the cloud service.

In case where the constraints cannot be fulfilled by any of

these three scenarios, the task is rejected and the IoT device
has to try at another time, or try another controller in the case
of multi-homing.

V. THE TASK ALLOCATION STRATEGIES

Our formulation uses Integer Linear Programming (ILP)
since our decision variables are discrete (0 or 1). ILP problems
are NP-complete, however, efficient solvers can be used to
deal with our formulations. For instance, we have used the
pywraplp linear solver module from OR-Tools [12].

A. Flat-Based Fog Node Selection
In this variation, the controller has the full knowledge of

the fog layer. It can build this knowledge by receiving periodic
updates from the other controllers. The updates contain timely
information about the available fog nodes and their capabili-
ties. The controller has to keep measurements of the Round
Trip Times (RTTs) for all the nodes. We define Xj

i as the
decision variable for our optimization problem. Xj

i = 1 means
that Task Ti is assigned to fog node fj and 0 otherwise. In
case where the output of the optimization is all-zeros decision
variables, none of the reachable fog nodes is suitable for
executing the task. If the scheduling class of the task is one, the
decision will be to offload the task to the cloud, otherwise the
task will be rejected. The Spare Time (ST j

i) is the difference
between the maximum allowed delay and the predicted total
delay for node fj (TDj

i) as in (1) and (2).

ST j
i =MADi − TDj

i (1)

ST j
i ≥ 0 (2)

We denote P j
i the difference between the minimum required

privacy/security level for task Ti and the privacy measure PMj

of the fog node fj as in (3) and (4).

P j
i = SLi − PMj (3)

P j
i ≥ 0 (4)

Assuming that a fog controller receives a batch of tasks
i = 1, 2, .., N and has a set of reachable nodes j = 1, 2, ...,M ,
the controller has to solve for a sequence of objective func-
tions. Each function finds an integer vector assignment Xi

that maximizes the weighted average of the spare time and the
privacy difference as controlled by a variable α. The sequence
of objective functions is depicted in (5) and is subject to
constraints (6), (7), (8), (9), and (10).

maximize
M∑
j=1

(αST j
i + (1− α)P j

i) ∗X
j
i

∀i ∈ {1, . . . , N}
(5)

Each task can be assigned to exactly one fog node. This
constraint is formalized in (6). To guarantee (2) and (4), we
add the constraints in (7) and (8).∑M

j=1X
j
i ≤ 1 ∀i

Xj
i ∈ Z ∀j ∀i

Xj
i ≥ 0 ∀j ∀i

(6)

30Copyright (c) IARIA, 2021. ISBN: 978-1-61208-878-5

ICWMC 2021 : The Seventeenth International Conference on Wireless and Mobile Communications

∑M
j=1(ST

j
i ∗X

j
i) ≥ 0 ∀i (7)∑M

j=1(P
j
i ∗X

j
i) ≥ 0 ∀i (8)

Moreover, we need to meet the resources requirements of
CPU and memory of the task by comparing it to the dynamic
remaining (available) CPU and memory at the node as in (9)
and (10). ∑M

j=1(CPUR
j − CPUi) ∗Xj

i ≥ 0 ∀i (9)∑M
j=1(MemR

j −Memi) ∗Xj
i ≥ 0 ∀i (10)

B. Clustered-Based Fog Node Selection

A second variation is to go along the clustered topology. We
allow the controller to select the best cluster instead of directly
searching for the best node. For this purpose, we represent
each fog cluster k by a profile vector: {AvgCPUk, AvgMemk,
AvgPMk}. This vector specifies the cluster’s average available
CPU, average available memory, and average privacy measure,
respectively. These values are computed based on the profile
vectors of the fog nodes belonging to each cluster. Each fog
controller periodically receives timely cluster profiles from
the other controllers. The profile can also be retrieved in a
pull manner. This method reduces the size of the optimization
problem as we are currently looking for the best cluster rather
than the best fog node. We define Yk

i as the decision variable
for the cluster Ck and task Ti. Y k

i = 1 means that cluster Ck

is selected for task Ti, and the request will be forwarded to
its fog controller. If Ck happens to be the controller’s cluster,
a local fog node is selected. If the output of the optimization
is the all-zeros vector, the decision is solely based on the task
scheduling class. If it is delay tolerant, we offload it to the
cloud, otherwise, we reject it.

The Spare Time (ST k
i) is the difference between the max-

imum allowed delay and the predicted total delay for a node
fj in cluster Ck in average, as in (11) and (12).

ST k
i =MADi − TDk

i (11)

ST k
i ≥ 0 (12)

We denote P k
i the difference between the minimum required

privacy/security level for task Ti and the average privacy
measure of the cluster Ck, as in (13) and (14).

P k
i = SLi −AvgPMk (13)

P k
i ≥ 0 (14)

The sequence of objective functions is defined in (15) and is
subject to constraints (16), (17), (18), (19), and (20).

maximize
M∑
j=1

(αST k
i + (1− α)P k

i) ∗Xk
i

∀i ∈ {1, . . . , N}
(15)

α is a hyper-parameter used to control the weights of privacy
versus QoS. Each task can be assigned to exactly one cluster

node as in (16). To guarantee (12) and (14), we add the
constraints in (17) and (18), respectively.∑K

k=1 Y
k
i ≤ 1 ∀i

Y k
i ∈ Z ∀k ∀i
Y k
i ≥ 0 ∀k ∀i

(16)

∑K
k=1(ST

k
i ∗ Y k

i) ≥ 0 ∀i (17)∑K
k=1(P

k
i ∗ Y k

i) ≥ 0 ∀i (18)

The selected cluster also needs to meet the resources re-
quirements of CPU and memory of the task by comparing
them to the dynamic available average CPU and average
memory at the cluster, as in (19) and (20).∑K

k=1(AvgCPUR
k − CPUi) ∗ Y k

i ≥ 0 ∀i (19)∑K
k=1(AvgMemR

k −Memi) ∗ Y k
i ≥ 0 ∀i (20)

C. Delay Calculation

The Total Delay (TD) is an important optimisation factor
since it represents the QoS contribution to the decision taken
by the controller. The total (or end-to-end delay) for a given
task is the time difference between the moment when the task
has been issued and the moment marking the end of the task
execution. The controller has to estimate the round trip time
between the IoT device and each of the fog nodes in the
selection pool. We describe the delay calculation for the flat
versus clustered scenarios:

Flat. The delay for task Ti is the sum of the delay at the
controller Cj and the delay at the selected fog node
fj :

TDj
i = dCj

+ dfj (21)

Clustered. The delay for task Ti is the sum of the delay
at the controller Cj , the delay at the chosen cluster’s
controller Ck and the delay at the selected fog node
fk′ :

TDj
i = dCj + dCk

+ dfk′ (22)

Other delay calculations are also possible. For in-
stance, a task can be forwarded from a cluster to
another more than one time. The task can be of-
floaded to the cloud, or rejected. We do not consider
the delay calculation for these cases in our work.
Note that we overloaded the notation of a cluster
Ck to denote the controller at this cluster. We only
consider the iterative scenarios.

The delay at a controller Ck or at fog node j is calculated
as the sum of four terms:

d = dtransmission + dpropagation + dprocessing + dqueuing (23)

Note that some of these terms are also composed as a sum of
multiple delays of the same nature. For example, dtransmission
involves the round trip transmission. dpropagation involves the
round trip propagation as well. The profile vectors {BWs,d,
PDs,d} ∀s ∀d are used in these calculations.

31Copyright (c) IARIA, 2021. ISBN: 978-1-61208-878-5

ICWMC 2021 : The Seventeenth International Conference on Wireless and Mobile Communications

VI. SIMULATION AND EXPERIMENTAL RESULTS

To implement and analyze our proposed variations, we
used the Yet Another Fog Simulator (YAFS) [13]. Preliminary
simulations showed that a value of α = 0.9 achieves a
good balance in between privacy and QoS. Four types of
topology were created, each containing 5, 10, 15, and 20
clusters, respectively. Each fog cluster consists of a number
of fog nodes, having a single controller and a number of
IoT devices directly connected to it. Each cluster in every
type of topology has a small number of fog nodes, since as
mentioned in [10], small scale fogs would result in better
performance metrics. In the simulation, the number of fog
nodes belonging to a cluster ranges between 4 and 8. Each
fog cluster has a range between 3 to 5 IoT devices directly
connected to it. To set the characteristics of the fog nodes,
we used values from real servers. As for the privacy measure
attribute, we sampled values from a uniform distribution. We
assumed that each cluster has a range of privacy measures.
The privacy measure for any fog node belonging to the cluster
is within this specified range. For example, assume having
fog cluster k with privacy measure range between 0.3 and
0.5. Each value in the range represents a trust value. The
trust value can be obtained in reality based on a security and
privacy assessment tool as described in [11]. The CPU and
IPS parameters of the cloud are set higher than any value
being set to the fog nodes. This is due to the fact that the
cloud has higher processing capabilities than any fog node.
As for the connections, the bandwidth between an IoT device
and a fog node could be either 54 Mbits/s as in wireless
802.11g networks or 100 Mbits/s as in fast Ethernet. The
bandwidth between the controllers, which act as routers for
IoT devices, and the cloud is set to 10 Gbits/s. While the
bandwidth between fog controllers is set to 100 Mbits/s. We
adopted these values from the topology created in [14]. We
created five sets each containing 100 different types of tasks.
For every set of tasks and each type of topology (which differs
by the number of clusters available), four experiments were
performed. In each experiment, different simulation times were
set to increase the number of tasks being generated.

The results were evaluated based on the average fog delay
which is the delay of tasks being executed in the fog layer,
the average total delay, the number of tasks being rejected,
and the number of tasks being offloaded to the cloud. We
present the results for when a low and a high number of
tasks are generated based on simulator time (138 tasks and
816 tasks on average). Our goal is to evaluate the behavior of
both variations when the number of tasks being generated in
the network increases. The results for both approaches are
shown in Figure 3. The results of the flat based approach
show that the number of tasks being rejected and offloaded
to the cloud and the average fog and total delay decreases as
the number of fog clusters in the network increases from 5
to 20. This decrease is due to the higher probability of task
to node assignment with the increase in the number of fog
nodes that the generated IoT tasks can be assigned to in the

.
(a) Average Total Delay.

.
(b) Average Fog Delay.

.
(c) Rejected Tasks.

.
(d) Offloaded Tasks to Cloud.

Figure 3. Flat Based vs. Clustered Based.

network. As for the results of the clustered based approach, it
shows that the average fog delay and number of tasks being
rejected and offloaded to the cloud decreases as the number of
clusters available in the network increases. The average total
delay starts to decrease as the number of clusters increases to
reach 15 then increases as this number reaches 20. This can
be justified by the increase in the number of clusters that the
controller has to examine when selecting a suitable fog node
for assignment. Comparing results of both variations in Figure
3 shows that the flat based variation is more applicable when
having a large scale fog topology consisting of 20 or more
clusters. This can be justified by the fact that this variation
gives lower values for the fog and total delays as desired
and decreases the number of tasks being propagated to higher
layers (cloud). On the other hand, when having an average
scale topology of around 15 clusters, both variations behave
the same and thus both are applicable.

Figure 4 and Figure 5 show the impact of including and
excluding the privacy and security factors from the formalized
optimization problem. The figures show that a security aware
variation leads to a higher probability of task rejection and task
propagation to higher layers. For repeatability, we provide the

32Copyright (c) IARIA, 2021. ISBN: 978-1-61208-878-5

ICWMC 2021 : The Seventeenth International Conference on Wireless and Mobile Communications

.
(a) Average Total Delay.

.
(b) Average Fog Delay.

.
(c) Rejected Tasks.

(d) Offloaded Tasks to Cloud.

Figure 4. Flat Based Fog Selection: Security Aware vs. Non Security Aware.

source code of all experiments at [15].

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed, designed and studied two
run-time resource allocation strategies, flat-based fog node
selection and clustered-based fog node selection.

The results showed that the flat-based strategy permits better
performance, especially when the number of clusters in the fog
increases. We attribute this result to the potential number of
layers of indirection required for demanding IoT tasks. The
flat approach promotes a ”take it or leave it” behaviour.

In future work, we intend to provide more insights on
solving the optimisation problems and the scalability of the
solving method for large-scale settings. We want to report
measurements on using different solvers, their solving time
and accuracy. We will also consider the comparison between
solving the optimization problems in batch mode and in direct
(one-by-one) mode. We will also consider refining our model
to include inter-cluster communication and the exchange of
updates. We would like to assess our approaches based on real-
world data, and explore whether using reinforcement learning
can lead to better recommendations for task allocation in the
fog.

ACKNOWLEDGEMENTS

This work was partially supported by a grant from the
university research board of the American University of Beirut

.
(a) Average Total Delay.

.
(b) Average Fog Delay.

.
(c) Rejected Tasks.

.
(d) Offloaded Tasks to Cloud.

Figure 5. Clustered Based Fog Selection: Security Aware vs. Non Security
Aware.

(URB-AUB-2020/2021).

REFERENCES

[1] B. Varghese, N. Wang, D. S. Nikolopoulos, and R. Buyya, “Feasibility
of fog computing,” arXiv preprint arXiv:1701.05451, 2017.

[2] S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts,
applications and issues,” in Proceedings of the 2015 workshop on mobile
big data. ACM, 2015, pp. 37–42.

[3] Y. Jadeja and K. Modi, “Cloud computing-concepts, architecture and
challenges,” in 2012 International Conference on Computing, Electron-
ics and Electrical Technologies (ICCEET). IEEE, 2012, pp. 877–880.

[4] T. Choudhari, M. Moh, and T.-S. Moh, “Prioritized task scheduling in
fog computing,” in Proceedings of the ACMSE 2018 Conference, 2018,
pp. 1–8.

[5] M. Aazam and E.-N. Huh, “Dynamic resource provisioning through fog
micro datacenter,” in 2015 IEEE international conference on pervasive
computing and communication workshops (PerCom workshops). IEEE,
2015, pp. 105–110.

[6] V. Kochar and A. Sarkar, “Real time resource allocation on a dynamic
two level symbiotic fog architecture,” in 2016 Sixth International Sym-
posium on Embedded Computing and System Design (ISED). IEEE,
2016, pp. 49–55.

[7] N. Mostafa, I. Al Ridhawi, and M. Aloqaily, “Fog resource selection
using historical executions,” in 2018 Third International Conference on
Fog and Mobile Edge Computing (FMEC). IEEE, 2018, pp. 272–276.

[8] J.-y. Baek, G. Kaddoum, S. Garg, K. Kaur, and V. Gravel, “Managing fog
networks using reinforcement learning based load balancing algorithm,”
in 2019 IEEE Wireless Communications and Networking Conference
(WCNC). IEEE, 2019, pp. 1–7.

[9] O. Skarlat, S. Schulte, M. Borkowski, and P. Leitner, “Resource provi-
sioning for iot services in the fog,” in 2016 IEEE 9th international
conference on service-oriented computing and applications (SOCA).
IEEE, 2016, pp. 32–39.

33Copyright (c) IARIA, 2021. ISBN: 978-1-61208-878-5

ICWMC 2021 : The Seventeenth International Conference on Wireless and Mobile Communications

[10] L. Peng, A. R. Dhaini, and P.-H. Ho, “Toward integrated cloud–fog
networks for efficient iot provisioning: Key challenges and solutions,”
Future Generation Computer Systems, vol. 88, pp. 606–613, 2018.

[11] R. Shaikh and M. Sasikumar, “Trust model for measuring security
strength of cloud computing service,” Procedia Computer Science,
vol. 45, pp. 380–389, 2015.

[12] L. Perron and V. Furnon, “Or-tools,” Google, https://developers.google.
com/optimization/ [accessed July 2021].

[13] I. Lera, C. Guerrero, and C. Juiz, “Yafs: A simulator for iot scenarios
in fog computing,” arXiv preprint arXiv:1902.01091, 2019.

[14] A. Yousefpour, G. Ishigaki, and J. P. Jue, “Fog computing: Towards
minimizing delay in the internet of things,” in 2017 IEEE international
conference on edge computing (EDGE). IEEE, 2017, pp. 17–24.

[15] N. Farroukh, “KiF Github Repository,” https://github.com/
NeamFarroukh/Keep-it-Flat-KiF-Resource-Management-in-Integrated-
Cloud-Fog-Networks.

34Copyright (c) IARIA, 2021. ISBN: 978-1-61208-878-5

ICWMC 2021 : The Seventeenth International Conference on Wireless and Mobile Communications

