
Towards a New Generation of NFC Secure Mobile
Services

Pascal Urien
LTCI, UMR 5141

Telecom ParisTech
Paris, France

Pascal.Urien@Telecom-ParisTech.fr

Abstract— This paper presents the technical foundations
for a new generation of NFC secure mobile services. It
introduces trusted mobile applications based on secure
elements such as SIM modules or NFC external cards, and uses
services built over the OpenMobileAPI framework, the Host
Card Emulation (HCE) environment from Android, and the
emerging Remote APDU Call Secure (RACS) protocol.

Keywords—Cloud of Secure Elements; HCE; TLS; Security.

I. INTRODUCTION

Internet technologies increasingly rely on mobile devices.
As an illustration, one billion smart phones [1] and more than
300 million tablets [2] were sold in 2013. According to [3],
50 billion connected objects are expected by 2020. In this
context, the security of mobile applications is a very critical
topic. In this paper, we focus on applications involving Near
Field Communication (NFC) interfaces and delivering
payments or access control services.

Android is today’s dominant operating system in the
mobile market. In 2011, the SIMAlliance organization
released the OpenMobileAPI [4] that implements a secure
framework for SIM access. In November 2011, the NexusS
was the first android phone supporting a NFC interface [5].
In October 2013, the Host Card Emulation [6] technology
was introduced by the KitKat Android version.

A secure element [7] is a trusted microcontroller whose
security is enforced by multiple hardware and software
countermeasures. This tamper resistant chip is used by
various devices such as SIM modules (see Figure 1), EMV
payment cards, transportation tickets or electronic passports.

Fig. 1. A SIM secure microcontroller, according to [8].

Furthermore, we recently introduced an open protocol
called RACS (Remote APDU Call Secure [9]) whose goal is
the remote use of secure elements hosted in the cloud.

In this paper, we analyze how these four technologies
(OpenMobileAPI, NFC, Host Card Emulation, and RACS)
could collaborate in order to build the foundations of a new
generation of secure mobile applications based on Secure
Element (SE).

This paper is constructed according to the following
outline. Section 2 briefly introduces the state of art for NFC
mobile services. Section 3 describes the main
OpenMobileAPI functionalities. Section 4 presents the
Android NFC interface. Section 5 details the Host Card
Emulation facility in Android. Section 6 summarizes the
RACS protocol features. Section 7 illustrates the SIM
personalization required by the OpenMobileAPI services.
Section 8 shows the architecture of the next generation of
secure NFC mobile services. Finally, Section 9 concludes
this paper.

II. STATE OF ART

The first generation of NFC mobile services [10] is based
on NFC-enabled SIMs. Smartphones are equipped with NFC
controllers. The SIM chip uses the Single Wire Protocol
(SWP, [11]) in order to exchange ISO7816 messages with
the NFC controller (see Figure 2).

Fig. 2. First generation of NFC Mobile Services

NFC services, for example EMV payment applications,
are stored and executed in the SIM module. Usually, there
are remotely downloaded from TSM (Trusted Service
Manager) servers thanks to the OTA (Over The Air)
technology.

This architecture is limited by the three following issues

- The memory size of current SIMs available for
application storage (about 100KB)

5 mm

46Copyright (c) IARIA, 2015. ISBN: 978-1-61208-433-6

ICWMC 2015 : The Eleventh International Conference on Wireless and Mobile Communications

- The security issues for service providers who do not
want to store their applications in non trusted (SIM) devices,
owned by mobile operators.

- The functional complexity of OTA and TSM
frameworks.

Hopefully these limitations may be overcome by a set of
new emerging techniques, which are detailed in the next
sections.

III. THE OPEN MOBILE API

The OpenMobileAPI [4] is a Java API whose
specification is released by the SimAlliance organization
(simalliance.org). This framework provides a secure and
trusted access for mobile applications in an android context
(see [12] for more details). It comprises two packages:

- org.simalliance.openmobileapi

- and org.simalliance.openmobileapi.service.

The first package defines four classes SEService, Reader,
Session and Channel.

- SEService.class is the abstract representation of all
Secure Elements (SE) available for applications running in
the mobile phone.

SEService seService = new SEService(this,this)

An instance of SEService is typically created at run time
of an Android activity. A callback function defined in the
SEService.CallBack interface

public void serviceConnected(SEService service)

is invoked when the service has been successfully
launched by the Android operating system. The SEService is
shutdown typically when the activity is destroyed according
to the procedure

seService.shutdown()

-The Reader class is the logical interface with a Secure
Element. It is an abstraction from electronics devices which
are needed for contact (ISO 7816) and contactless (ISO
14443) smartcards. The procedure

Reader[] readers = seService.getReaders()

returns an array of available Readers. Generally, only one
reader associated to a SIM card is available in a smartphone

-The Session class opens and closes a session with an
embedded Reader thanks to methods

Session session = readers[0].openSession()

and session.close() or readers[0].closeSessions()

It establishes the logical path with the Secure Element
managed by the Reader.

- The Channel class object is associated with an
application identified by an application identifier (AID, a
byte array of 16 elements at the most) and running in the
Secure Element. The procedure,

Channel channel = session.openLogicalChannel(aid)

starts an application in the SIM card, according to a
communication framework called logical channel by the
ISO7816 standards. The method

channel.close(), stops a channel previously opened

Channels objects are used to send ISO7816 requests and
to receive ISO7816 responses to/from SIM cards. These
operations are performed thanks to the method :

byte[] response channel.transmit(byte[] command)

IV. THE NFC INTERFACE

The Android operating system supports NFC (Near Field
Communication) interface since the 2.3 (Gingerbread)
version [5]. Because NFC devices usually embed a secure
element, this inductive coupling interface is another way to
use a SE from a mobile application (see, for example, [13]).

Applications must be registered for
android.permission.NFC events. When the operating system
detects an external NFC card, it sends an INTENT to
registered applications. The NfcManager class enumerates
the NFC adapters available on the Android device board.
Usually there is only one chip, so the static method
getDefaultAdapter() returns an instance the class
NfcAdapter, which represents the hardware NFC controller.

The NfcAdapter.ACTION_TAG_DISCOVERED
INTENT notifies the detection of an external NFC tag.
Thereafter, a Tag object is retrieved from the INTENT,
which is afterwards converted to an IsoDep object (named
Dev in figure 3). As illustrated in Figure 3, it is possible to
exchange ISO7816 requests and responses thanks to the
transceive procedure from the IsoDep class,

byte [] response Dev. transceive (byte[] resquest)

Fig. 3. Android NFC Interface

private void resolveIntent (Intent intent)
throws IllegalArgumentException, IllegalAccessException {

String action = intent.getAction();
if (NfcAdapter.ACTION_TAG_DISCOVERED.equals(action))
{ Tag tag = intent.getParcelableExtra
IsoDep Dev = IsoDep.get(tag) ;
if (TagI== null) return ;

try { Dev.connect();}
catch (IOException e) {return;}

byte request[]= {(byte)0x00,(byte)0xA4,(byte)0x04,(byte)0x00,
(byte)0x07,(byte)0xA0,(byte)0x00,(byte)0x00,
(byte)0x00,(byte)0x30, (byte)0x00,(byte)0x01};

// Send ISO7816 Request, Receive Response
try { byte[] response= Dev.transceive(request);
catch (IOException e) {return;}

try {Dev.close();}
catch (IOException e) {return;}

} }

47Copyright (c) IARIA, 2015. ISBN: 978-1-61208-433-6

ICWMC 2015 : The Eleventh International Conference on Wireless and Mobile Communications

V. HOST CARD EMULATION

Host Card Emulation (HCE, [6]) has been introduced
since the version 4.4 (KitKat) of the android system.

Fig. 4. SWP SIM centric architecture (left part) and the Nexus S Secure
Element embedded in a NFC controller (right part)

Before Android 4.4, some devices, such as the NexusS,
worked with NFC controllers embedding Secure Elements,
while other devices could use SIM card with SWP (Single
Wire Protocol) pad exchanging ISO7816 messages with the
NFC controller (see Figure 4).

Fig. 5. The android KitKat Host Card Emulation

What is new with the HCE paradigm is that the operating
system may have an exclusive control over the NFC
controller (see Figure 5).

Applications intending to use HCE services must be
registered to the android.permission.BIND_NFC_SERVICE
permission, as illustrated in Figure 6. They must include a
dedicated service (named MyHostApduService in Figure 6)
extending from the HostApduService class. A specific xml
file (named apduservice.xml in Figure 7) gives a list of
supported application identifier (AID), as shown in Figure 7.

Fig. 6. The Host APDU service in Android KitKat

<service
android:name=".MyHostApduService"
android:exported="true"
android:permission="android.permission.BIND_NFC_SERVICE" >

<intent-filter>
<action android:name=

"android.nfc.cardemulation.action.HOST_APDU_SERVICE" />
</intent-filter>

<meta-data
android:name="android.nfc.cardemulation.host_apdu_service"
android:resource="@xml/apduservice" />

</service>

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-433-6

ICWMC 2015 : The Eleventh International Conference on Wireless and Mobile Communications
<host-apdu-service
xmlns:android= "http://schemas.android.com/apk/res/android"
android:description="@string/servicedesc"
android:requireDeviceUnlock="false" >

<aid-group
android:category="other"
android:description="@string/aiddescription" >
<aid-filter android:name= "325041592E5359532E4444463031" />
<aid-filter android:name= "a0000000041010aa54303200ff01ffff" />

</aid-group>

</host-apdu-service>
Fig. 7. Host Card Emulation service desrcription in Android KitKat

The HCE service implements two methods for NFC
communication:

-public byte[] processCommandApdu(byte[] apdu,
Bundle extras). This procedure received ISO7816 requests
transmitted by the NFC reader.

- public void sendResponseApdu(byte[] responseAPDU).
This procedure forwards ISO7816 requests to the NFC
reader.

In summary, applications registered for particular AIDs
implement dedicated services that process ISO7816 requests
and produce ISO7816 responses.

VI. REMOTE APDU CALL SECURE RACS

RACS is an open protocol based on an IETF draft [9].
The goal of RACS is the remote use of secure elements
hosted in dedicated servers. RACS works over TLS, which is
the de facto standard for secure data exchange over the
Internet.

RACS is based on a TLS/TCP/IP stack (see [14] for more
details) and provides two main services:

- The inventory of the Secure Elements hosted by the
RACS server

- The transport of ISO7816 requests and responses. Each
secure element is identified by a SEID (Secure Element
Identifier).

A SEID is a name deduced from a secure element pseudo
unique identifier, a reader serial number or a physical slot
number (see [14]).

Therefore, a secure element in a RACS ecosystem is
associated to a Uniform Resource Identifier (URI) such as

Server:Port/SEID

composed of three parts, the RACS server name, the TCP
port and the SEID.

Both client and server are equipped with X509
certificates and their associated private keys; a strong mutual
authentication is performed between these two entities over a
TLS session.

Since RACS clients are authenticated by their
certificates, the server handles a security policy in order to

48

enforce access control to secure elements and their
embedded applications identified by AIDs. Figure 8
summarizes the list of RACS available commands.

Command Purpose

GET-VERSION Get the current RACS
protocol version

SET-VERSION Set the working RACS
protocol version

LIST Get the list of available and
authorized secure elements

POWERON SEID Power on a secure element

RESET SEID Reset a secure element

SHUTDOWN SEID Power off a secure element

APDU SEID Send an ISO7816 request
and return the ISO7816
response

Fig. 8. The RACS commands

VII. THE SIM MODULE PERSONNALIZATION

For security reasons, the OpenMobileAPI framework
manages [4] a security policy based on the hash (SHA1) of a
certificate identifying an authority that is granted access, for
example a CA certificate used to sign an Android
application.

The SIM Master File (MF), the equivalent of a secure
element root directory stores the EF-DIR file which contains
a reference to PKCS#15 environment comprising either a
PKCS#15 SIM application, a PKCS#15 repertory (DF-
PKCS#15) name or both. In Figure 9 the name of the DF-
PKCS#15 repertory is 7F50.

The DF-PKCS#15 repertory contains at least the
mandatory file ODF (Object Directory File), whose default
name is 5031. This file holds a reference to the Data Object
Directory File (DODF), whose value is 5207 in Figure 9.

DODF stores the name of Access Control Main File (EF-
ACMain, 4200 in Figure 9), which contents is the reference
of the Access Control Rules File (EF-ACRules, 4300 in
Figure 9).

EF-ACRules (see figure 10) contains a list of Application
identifiers (AID) and their associated Access Control
Conditions File (EF-ACCondition).

Each EF-ACCondition stores access control conditions
expressed as a list of entries, each entry containing a SHA-1
of a certificate identifying an authority that is granted access.

- If this file is empty, it means that rules pointing to this
file are denying access to any terminal application.

- If this file contains a condition without a certificate
hash, then rules pointing to this file are granting access to
any terminal application.

VII

e
c
T
t
t
A
o
t
e
o

m

N
O
e

H
S

F
r
a

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-433-6

ICWMC 2015 : The Eleventh International Conference on Wireless and Mobile Communications
MF (3F00)
|-EF-DIR (2F00) --> reference to DF-PKCS#15
|
|-DF-PKCS Access Control Main File #15 (7F50)

|-ODF (5031) --> reference to DODF
|-DODF (5207) --> reference to EF-ACMain
|-EF-ACMain (4200) --> reference to EF-ACRules
|-EF-ACRules (4300) --> reference to EF-ACConditions
|-EF-ACConditions1 (4310)
|-EF-ACConditions2 (4311)
|-EF-ACConditions3 (4312)
Fig. 9. SIM files required by the OpenMobileAPI
30 10
A0 08 // aid

04 06
A0 00 00 01 51 01 // Application Identifier (AID)
30 04
04 02

43 10 // EF-ACCondition File
30 10 A0 08 04 06 A0 00 00 01 51 02 30 04 04 02 43 11
30 10 A0 08 04 06 A0 00 00 01 51 03 30 04 04 02 43 11
30 08

82 00 // other
30 04
04 02

43 12 // file
FF FF FF 90 00
Fig. 10. The Access Control Rules File (EF-ACRules)

I.NEW GENERATION OF SECURE NFC MOBILE APPLICATION

Legacy NFC applications work with SIM modules
quipped with SWP (Single Wire Protocol) pad, and
ommunicating through this link with the NFC controller.
he SIM provides services such as payment or access control

hat are loaded and executed in this secure chip. One issue is
he non volatile memory size, typically around 100KB.
nother issue is the complexity of the remote administration
f the SIM content according to the OTA (Over The Air)
echnology. We are currently developing (see [15] for
xample) a new model for NFC applications, which is based
n the following components:

- A mobile supporting the Host Card Emulation (HCE)
ode.

- A secure element, either a SIM module or an external
FC card, which runs a TLS client stack. The
penMobileAPI or the NFC-API are in charge of the secure

lement logical access.

- An application that realizes the logical glue between
CE, the TLS stack running in the internal SE, and external
Es stored in a RACS server.

In a simple use case, such as payment operation (see
igure 11), the merchant terminal exchanges ISO7816
equests and responses with the mobile HCE. The mobile
pplication opens a TLS session with a RACS server hosting

49

payment chips. Thereafter, the application transparently
relays ISO7816 messages between the payment terminal and
the selected payment chip hosted in the RACS server. For
performances issues, the application may handle ISO7816
reading operations (in a cache), but cryptographic procedures
(such as CDA, DDA, ARQC...) must be executed by a SE
plugged in the RACS server.

Fig. 11. New generation of mobile secure NFC applications

We detailed in [15] the integration of TLS stack (and the
associated performances) in secure elements (see Figure 12),
such as SIM cards or NFC devices. Thanks to this
technology, the TLS session is booted from the secure
element that fully manages a strong mutual authentication
based on PKI asymmetric mechanisms. For mobile
operators, the SIM acts as an identity module (including an
X509 certificate), which gives access to secure elements
hosted in the Cloud. The resulting benefits are in
consequence the following:

- No limitations induced by SIM memory size for NFC
applications storage

- A simple management model for secure elements
hosted in the Cloud

- A highly trusted architecture, based on physical
isolation properties, because NFC applications are not
running in the SIM.

Fig. 12. TLS stack for Secure Elements

Nevertheless, a next generation of RACS servers could
be based on Hardware Secure Module (HSM) providing
secure elements emulation, but offering ISO7816 interfaces.

IX. CONCLUSION

In this paper, we presented the foundations for a new
generation of secure mobile NFC services. We are currently
working on the design of an open platform, dedicated to
payment, as illustrated in Figure 13.

Fig. 13. RACS open platform for payment applications according to [17].

REFERENCES

[1] http://www.idc.com/getdoc.jsp?containerId=prUS24645514, last
access June 2015

[2] http://www.gartner.com/newsroom/id/267421, last accesss June 2015

[3] D. Evans, "The Internet of Thing. How the Next Evolution of the
Internet Is Changing Everything", Cisco White Paper, 2011

[4] GSMA, "Mobile NF SIM Alliance, "Open Mobile API specification
V2.02", 2011

[5] Near Field Communication,
https://developer.android.com/guide/topics/connectivity/nfc/index.ht
ml, last access June 2015

[6] Host Card Emulation,
https://developer.android.com/guide/topics/connectivity/nfc/hce.html,
last access June 2015

[7] ISO 7816, "Cards Identification - Integrated Circuit Cards with
Contacts", The International Organization for Standardization (ISO)

[8] Klaus Vedder, "Smart Cards", ETSI Security Workshop 2006,
http://www.etsi.org/WebSite/document/Workshop/Security2006/Secu
rity2006S1_3_Klaus_Vedder.pdf, June 2015

[9] Remote APDU Call Secure (RACS), draft-urien-core-racs-03.txt,
IETF draft August 2014

[10] GSMA, Mobile NFC Technical Guidelines, Version 2.0, November
2007

[11] ETSI TS 102 613 V7.3.0 (2008-09), Technical Specification Smart
Cards; UICC - Contactless Front-end (CLF) Interface; 2008

[12] Urien,P., "An OPENID Identity Service for Android, Based on
USIM Secure Elements", in proceedings of MobiCASE 2012, Seattle,
Washington, USA, 11-12 October 2012

[13] Urien, P., Kiennert, C., "A New Key Delivering Platform Based on
NFC Enabled Android Phone and Dual Interfaces EAP-TLS
Contactless Smartcards", in proceedings of MobiCASE 2011, Los
Angeles, CA, USA, October 24-27, 2011.ISBN 978-3-642-32319-5

[14] Urien, P.; "RACS: Remote APDU Call Secure Creating Trust for the
Internet", The 2015 International Conference on Collaboration
Technologies and Systems, Atlanta, Georgia, USA, CTS 2015

[15] Urien, P.; "Cloud of Secure Elements: An Infrastructure For the Trust
of Mobiles NFC Services", The 10th IEEE WiMob 2014, October 8-
10 2014, Larnaca, Cyprus

[16] Urien, P., Betirac, M., "A Triple Interfaces Secure Token -TIST- for
Identity and Access Control in the Internet Of Things", SMART
2013, June 23 - 28, 2013 - Roma, Italy

[17] HCE-SIM, Payment with an open RACS platform
https://www.youtube.com/watch?v=DpTAyDNIVLc, last access June
2015

50Copyright (c) IARIA, 2015. ISBN: 978-1-61208-433-6

ICWMC 2015 : The Eleventh International Conference on Wireless and Mobile Communications

