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Abstract—We propose a new two-level iterative method for solu-
tion to a general problem of optimal allocation of a homogeneous
resource (bandwidth) in a wireless communication network,
which is divided into zones (clusters). In order to satisfy changing
network users requirements, the network manager can buy
additional volumes of this resource. We apply a dual Lagrangian
method where the upper level problem is single- dimensional
but calculation of the cost function value requires a solution
to a convex optimization problem. This optimization problem
is suggested to be solved with conditional gradient method with
linear search. We give some results of numerical experiments
on the proposed method which confirm its preference over the
previous ones.
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I. I NTRODUCTION

The necessity of efficient allocation of limited resources
in wireless communication networks arises from increasing
demand of services and its variability, which leads to serious
congestion effects, whereas significant network resources(say,
bandwidth and batteries capacity) may be utilized inefficiently.
This situation forces one to develop more flexible allocation
mechanisms; see, e.g., [1]–[4]. Moreover, experience of deal-
ing with these very complicated systems usually shows that a
proper decomposition/clustering approach, which can be based
on zonal, time, frequency and other attributes of nodes/units,
might be very efficient here [5][6]. In [7] and [8], several
optimal resource allocation problems in telecommunication
networks and proper decomposition based methods were sug-
gested. In this paper, we consider a further development of
these models, where a system manager can utilize additional
external resources for satisfying current users requirements.
This manager strategy is rather typical for contemporary
wireless communication networks, where WiFi or femtocell
communication services are utilized in addition to the usual
network resources; see, e.g., [9].

This approach leads to a two-level optimization problem.
In [10], we considered embedded procedures within a unique
iterative scheme that correspond to a sequential application of
the dual decomposition method at each level of the problem. In
this paper, we consider some other approach for solving this
optimization problem. We apply a dual Lagrangian method

where the upper level problem is single- dimensional but the
calculation of its cost function value requires a solution of
a convex optimization problem. This optimization problem is
suggested to be solved with conditional gradient method with
linear search.

We present some results of computational experiments on
test problems. The results of the new method are essentially
better than those of the method described in [10] and confirm
its usefulness.

II. PROBLEM DESCRIPTION

Let us consider a network with nodes (attributed to users),
which is divided inton zones (clusters) within some fixed time
period. For thek-th zone (k = 1, . . . , n), Ik denotes the index
set of nodes (currently) located in this zone,bk is the maximal
fixed resource value. A manager of the network can allocate
both the inner network resourcexk and external resourcezk,
which brings maintenance expensesfk(xk) and side payments
hk(zk), respectively, for eachk = 1, . . . , n. We suppose that
there exists the upper boundck for the additional amount of
the external resource in thek-th zone, and the upper boundB
for the total inner amount of the resource. Next, if thei-th user
receives the resource amountyi with the upper boundai, then
he/she pays the chargeϕi(yi). The problem of the network
manager is to find an optimal allocation of the resource among
the zones for maximization of the network profit subject to the
above constraints. It is written as follows:

max

(x,y,z)∈W,

n
∑

k=1

xk≤B

→ µ(x, y, z) (1)

where

µ(x, y, z) =
n
∑

k=1

[

∑

i∈Ik

ϕi(yi)− fk(xk)− hk(zk)

]

(2)

and

W =











(x, y, z)

∑

i∈Ik
yi = xk + zk,

0 ≤ yi ≤ ai, i ∈ Ik,
0 ≤ xk ≤ bk, 0 ≤ zk ≤ ck,
k = 1, . . . , n











. (3)
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III. SOLUTION METHOD

In what follows, we suppose that all the functions−ϕi(yi),
fk(xk), andhk(zk) are convex and differentiable.

Let us define the Lagrange function of problem (1)–(3) as
follows:

L(x, u, z, λ) = µ(x, y, z)− λ

(

n
∑

k=1

xk −B

)

.

That is, we utilize the Lagrangian multiplierλ only for the total
resource bound. We can now replace problem (1)–(3) with its
one-dimensional dual:

min
λ≥0

→ ψ(λ), (4)

where

ψ(λ) = max
(x,y,z) ∈ W

L(x, y, z, λ) = λB

+ max
(x,y,z) ∈ W

n
∑

k=1

[

∑

i∈Ik

ϕi(yi)− fk(xk)− λxk − hk(zk)

]

Its solution can be found by one of well-known single-
dimensional optimization problem.

In order to calculate the value ofψ(λ) in (4) we have to
solve the inner problem:

max →

n
∑

k=1

[

∑

i∈Ik

ϕi(yi)− fk(xk)− λxk − hk(zk)

]

subject to
∑

i∈Ik

yi = xk + zk, 0 ≤ yi ≤ ai, i ∈ Ik,

0 ≤ xk ≤ bk, 0 ≤ zk ≤ ck, k = 1, . . . , n.

Obviously, this problem decomposes inton independent zonal
convex optimization problems

max →

[

∑

i∈Ik

ϕi(yi)− fk(xk)− λxk − hk(zk)

]

, (5)

subject to
∑

i∈Ik

yi = xk + zk, 0 ≤ yi ≤ ai, i ∈ Ik, (6)

0 ≤ xk ≤ bk, 0 ≤ zk ≤ ck, (7)

for eachk = 1, . . . , n. Note that the cost function in (5) is
differentiable. The constraints in (6)–(7) give a polyhedral set,
which is independent ofλ. In what follows we also suppose
each this set is nonempty and bounded. Then, we can apply
the well known conditional gradient method [11], [12], with
an inexact linear search procedure.

Let us describe this method to a convex optimization
problem of form

min
v∈V

→ η(v), (8)

where V is a convex polyhedron andη is a convex and
differentiable function.

Conditional Gradient Method (CGM): Take an arbitrary
initial point v0 ∈ V and numbersα ∈ (0, 1) and γ ∈ (0, 1).

At the k-th iteration,k = 0, 1, . . ., we have a pointvk ∈ V
and calculateuk ∈ V as a solution of the linear programming
problem

min
u∈V

→ 〈η′(vk), u〉.

Then we setpk = uk − vk. If ‖pk‖ ≤ δ, stop, we have an
approximate solution. Otherwise we findm as the minimal
non-negative integer such that

η(vk + γmpk) ≤ η(vk) + αγm〈η′(vk), pk〉,

setσk = γm, vk+1 = vk + σkp
k and go to the next iteration.

It is known that the conditional gradient method generates
a sequence{vk} which converges to a solution of problem
(5) under the assumptions above. Therefore, the two-level
method based on the solution of the dual problem (4) and the
sequential solution of problems (5)–(7) with the conditional
gradient method is well-defined.

IV. N UMERICAL EXPERIMENTS

In order to evaluate the performance of the new method
denoted as CGDM (Conditional Gradient Dual Method) and
to compare it with that from [10] denoted as DML (Dual
Multi Level method) we made a number of computational
experiments.

For all the one-dimensional optimization problems we used
the golden section method. The program was implemented in
C++ with a PC with the following facilities: Intel(R) Core(TM)
i7-4500, CPU 1.80 GHz, RAM 6 Gb.

The initial intervals for findingλ (and the additional dual
variables in DML) were taken as[0, 1000]. The initial intervals
for choosing the zonal allocation sharesuk in DML were taken
as [0, R] with R = B +

∑n

k=1 ck, B was chosen to be 1000.
The coefficientsbk and ck were generated by trigono-

metric functions with values in[1, 11], ai were generated
by trigonometric functions with values in[1, 3]. We took the
trikonometric functions (sin, cos) in order to verify different
methods on the same sets of data.

Values γ and α in CGDM was chosen to be 0.33. The
number of zones was varied from 5 to 105, the number of users
was varied from 210 to 1010. Users were distributed in zones
either uniformly or according to the normal distribution. The
processor time and number of iterations, which were necessary
to find an approximate solution of problem (4) within the same
accuracy, were not significantly different for these two cases
of distributions.

Further we report the results of tests, which include the
time and number of iterations needed to find a solution of
problem (4) within some accuracies. Letε and δ denote the
desired accuracy of finding a solution to problem (4) and
solutions of auxiliary inner problems in DML. LetJ denote the
total number of users,Nε the number of upper iterations inλ,
Tε the total processor time in seconds. For the same accuracy,
both methods gave the same numbers of upper iterations, so
that the main difference was in the processor time. The results
of computations are given in Tables I–VI. We inserted also the
results for DML with adaptive strategy of choosing the inner
accuracies. We named DMLA (Dual Multi Level Adaptive
method) this version of the method. We named CGDM0 the
version of CGDM where the zero initial point was taken in
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TABLE I. RESULTS OF TESTING WITHJ = 510, n = 70, δ = 10
−2

ελ Nε Tε DML Tε CGDM0 Tε CGDMB
10−1 20 11.3023 0.0260 0.1563
10−2 24 12.8280 0.0311 0.2083
10−3 29 15.9376 0.0470 0.2500
10−4 34 17.7663 0.0630 0.3076

TABLE II. R ESULTS OF TESTING WITHn = 70, ε = 10
−2 , δ = 10

−2

J Nǫ Tε DML Tε DMLA Tε CGDM0 Tε CGDMB
210 24 5.4117 3.9327 0.0103 0.0727
310 24 7.9010 5.7400 0.0157 0.1193
410 24 10.3387 7.5053 0.0317 0.1610
510 24 12.8280 9.2973 0.0311 0.2083
610 24 15.2397 11.0733 0.0363 0.2447
710 24 17.6827 12.8903 0.0467 0.2813
810 24 20.1670 14.6303 0.0470 0.3230
910 24 22.5993 16.3910 0.0627 0.3700
1010 24 25.0993 18.1983 0.0677 0.4170

each conditional gradient method and CGDMB the version
of CGDM where a boundary initial point was taken in each
conditional gradient method. In Tables I and IV, we vary the
accuracyε, in Tables II and V we vary the total number of
users, and in Tables III and VI, we vary the number of zones.

In all the computational experiments, we took the quadratic
functionsfk(xk) andhk(zk):

fk(xk) = α′′
kx

2
k + α′

kxk + αk, α
′′
k > 0, α′

k ≥ 0, αk ≥ 0,

k = 1, . . . , n;

hk(zk) = β′′
kz

2
k + β′

kzk + βk, β
′′
k > 0, β′

k ≥ 0, βk ≥ 0,

k = 1, . . . , n.

The charge functionsϕi(yi) were chosen different. In Tables
I–III, we give the results of computations with the logarithmic
functions, i.e.,

ϕi(yu) = log(γ′kxk + γk), γ
′
k > 0, γk ≥ 1, i ∈ Ik,

k = 1, . . . , n

In Tables IV–VI, we give the results of computations with the
concave quadratic functions, i.e.,

ϕi(yu) = γ′′i y
2
i + γ′iyi + γi, γ

′′
k < 0, γ′k ≥ 0, γk ≥ 0,

i ∈ Ik, k = 1, . . . , n.

From the results, we can conclude that the new method
CGDM has the significant preference over those in [10].
Moreover, they clearly enable us to apply CGDM for online
solution of such resource allocation problems.

TABLE III. R ESULTS OF TESTING WITHJ = 510, ε = 10
−2 ,

δ = 10
−2

n Nǫ Tε DML Tε DMLA Tε CGDM0 Tε CGDMB
5 24 12.5940 9.1250 0.0157 0.1873
15 24 12.5053 9.1407 0.0677 0.2343
25 24 12.6150 9.1667 0.0517 0.1977
35 24 12.6927 9.1873 0.0520 0.2033
45 24 12.6617 9.2243 0.0310 0.1873
55 24 12.8543 9.2603 0.0310 0.2033
65 24 12.8340 9.2917 0.0310 0.1873
75 24 12.8957 9.3440 0.0210 0.1930
85 24 12.9483 9.3803 0.0257 0.1663
95 24 12.9427 9.3960 0.0263 0.1873
105 24 12.9743 9.4327 0.0313 0.1923

TABLE IV. R ESULTS OF TESTING WITHJ = 510, n = 70, δ = 10
−2

ελ Nε Tε DML Tε CGDM0 Tε CGDMB
10−1 20 5.3753 0.0523 0.2083
10−2 24 6.3180 0.0883 0.2657
10−3 29 7.6197 0.1303 0.3700
10−4 34 8.7447 0.1820 0.5263

TABLE V. RESULTS OF TESTING WITHn = 70, ε = 10
−2 , δ = 10

−2

J Nǫ Tε DML Tε DMLA Tε CGDM0 Tε CGDMB
210 24 2.7500 2.0160 0.0153 0.0990
310 24 3.9950 3.0517 0.0260 0.1560
410 24 5.2030 3.8437 0.0577 0.2083
510 24 6.3180 4.6353 0.0883 0.2657
610 24 7.4950 5.4633 0.1043 0.3387
710 24 8.6410 6.3073 0.1407 0.3593
810 24 9.8647 7.1773 0.1930 0.4323
910 24 11.0107 8.0203 0.2033 0.5573
1010 24 12.1823 8.8807 0.2500 0.6200

V. CONCLUSION

We considered a general resource allocation problem in
telecommunication networks, where a system manager can
buy additional external resources for satisfying current users
requirements, which is rather typical for contemporary wireless
communication networks. We suggested a new approach for
solving this problem, which consists in solving the single-
dimensional dual Lagrangian such that the calculation of its
cost function decomposes into a set of independent convex
optimization problems. They are solved with a conditional
gradient method. The results of computational experimentson
test problems showed rather rapid convergence of the method
and its essential preference over the previous iterative schemes.
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TABLE VI. R ESULTS OF TESTING WITHJ = 510, ε = 10
−2 ,

δ = 10
−2

n Nǫ Tε DML Tε DMLA Tε CGDM0 Tε CGDMB
5 24 6.0110 4.3647 0.0570 0.1563
15 24 5.9740 4.3857 0.2760 0.4530
25 24 6.0837 4.4323 0.1300 0.3597
35 24 6.1150 4.4740 0.1407 0.2813
45 24 6.1563 4.5207 0.1093 0.2707
55 24 6.2550 4.5573 0.0310 0.2550
65 24 6.3333 4.5937 0.0417 0.3020
75 24 6.3440 4.6613 0.0260 0.2657
85 24 6.4167 4.7863 0.0260 0.2553
95 24 6.5363 4.8490 0.0470 0.2550
105 24 6.4737 4.9690 0.0417 0.2713
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