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Abstract—We propose a new two-level iterative method for solu-
tion to a general problem of optimal allocation of a homogeneous

where the upper level problem is single- dimensional but the
calculation of its cost function value requires a solutidn o

resource (bandwidth) in a wireless communication network,
which is divided into zones (clusters). In order to satisfy changing
network users requirements, the network manager can buy
additional volumes of this resource. We apply a dual Lagrangian
method where the upper level problem is single- dimensional
but calculation of the cost function value requires a solution
to a convex optimization problem. This optimization problem
is suggested to be solved with conditional gradient method with

a convex optimization problem. This optimization problesn i
suggested to be solved with conditional gradient methotl wit
linear search.

We present some results of computational experiments on
test problems. The results of the new method are essentially
better than those of the method described in [10] and confirm
its usefulness.

linear search. We give some results of numerical experiments
on the proposed method which confirm its preference over the
previous ones. II. PROBLEM DESCRIPTION
Keywords-Resource allocation; wireless networks; bandwidth; Let us consider a network with nodes (attributed to users),
zonal network partition; dual Lagrange method; linear search;  which is divided inton zones (clusters) within some fixed time
conditional gradient method. period. For thek-th zone ¢ = 1, ..., n), I, denotes the index
set of nodes (currently) located in this zohg,is the maximal
. INTRODUCTION fixed resource value. A manager of the network can allocate
The necessity of efficient allocation of limited resourcesPoth the inner network resoures. and external resource,
in wireless communication networks arises from increasin%’h'Ch brings maintenance expensg¢x,) and side payments
demand of services and its variability, which leads to sevio /k(zk), respectively, for eaclk = 1,...,n. We suppose that
congestion effects, whereas significant network resoysagg  there exists the upper boung for the additional amount of
bandwidth and batteries capacity) may be utilized ineffitje ~ the external resource in theth zone, and the upper bourki
This situation forces one to develop more flexible allogatio for the total inner amount of the resource. Next, if tkté user
mechanisms; see, e.g., [1]-[4]. Moreover, experience af-de eceives the resource amouptwith the upper bound;, then
ing with these very complicated systems usually shows that Be/she pays the charge;(y;). The problem of the network
proper decomposition/clustering approach, which can lseda Mmanager is to flnd_an op_tlmal allocation of the resource among
on zonal, time, frequency and other attributes of nodetguni the zones for maX|m|;at|on of the network profit subject ® th
might be very efficient here [5][6]. In [7] and [8], several above constraints. It is written as follows:
optimal resource allocation problems in telecommunicatio

networks and proper decomposition based methods were sug- max = p(z,y, 2) (1)
gested. In this paper, we consider a further development of (2,y,2) €W, 3 2k <B
these models, where a system manager can utilize additional k=t
external resources for satisfying current users requingsne \here
This manager strategy is rather typical for contemporary
wireless communication networks, where WiFi or femtocell -
communication services are utilized in addition to the lisua Yy, 2) = Z Z wilyi) = fuler) = he(zr) | ()
network resources; see, e.g., [9]. k=1 Liely
This approach leads to a two-level optimization problem.and

In [10], we considered embedded procedures within a unique
iterative scheme that correspond to a sequential apiicati Dier, Yi = Tk 1 Zks
the dual decomposition method at each level of the probleam. 1 17 — (2,9, 2) 0<y <a 1€l 3)
thi : 0 thi ¥ 0<ap<bp 0<z<c

is paper, we consider some other approach for solving this > Tk > 0% U 2k > Cks
optimization problem. We apply a dual Lagrangian method k=1,...,n
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Ill. SOLUTION METHOD At the k-th iteration,k = 0,1,..., we have a point* € V
In what follows, we suppose that all the functions; (y;), ~ and calculate* € V as a solution of the linear programming
fr(zr), andhy(z) are convex and differentiable. problem
: . min — (' (v"), u).
Let us define the Lagrange function of problem (1)—(3) as weV ’
follows:

Then we sep® = u* — v*. If |p*|| < 4, stop, we have an

_ " approximate solution. Otherwise we find as the minimal
L(w,u, 2,A) = pla,y,2) = A (Z Tk — B> : non-negative integer such that
k=1
k m, k k m /. 1/ k k
That is, we utilize the Lagrangian multipligronly for the total (0" +9"p%) < n(%) +ay™ (' (v%), p"),

resource bound. We can now replace problem (1)—(3) with itgets;, = 4™, v**1 = v¥ + o,,p*F and go to the next iteration.
one-dimensional dual:

min — ¥(\), (4) It is known that the conditional gradient method generates

A=0 a sequencgv*} which converges to a solution of problem
where (5) under the assumptions above. Therefore, the two-level
method based on the solution of the dual problem (4) and the

Y(A) = max L(z,y,z,\) =AB sequential solution of problems (5)—(7) with the condiéibn

(z,y,2) € W R i .
" gradient method is well-defined.
+ ot WZ [Z ¢i(yi) = fulzn) = Azy — hk(zk)] IV. NUMERICAL EXPERIMENTS
e k=1 Licly

_ _ In order to evaluate the performance of the new method
Its solution can be found by one of well-known single- denoted as CGDM (Conditional Gradient Dual Method) and

dimensional optimization problem. to compare it with that from [10] denoted as DML (Dual
In order to calculate the value af()\) in (4) we have to Multi Level method) we made a number of computational
solve the inner problem: experiments.
n For all the one-dimensional optimization problems we usec_j
max — ©0i(yi) — fe(zr) — Ao — hi (25 the golden section method. The program was implemented in
; Lesz (W) = fule) (=) C++ with a PC with the following facilities: Intel(R) Corel)

i7-4500, CPU 1.80 GHz, RAM 6 Gb.

subject to The initial intervals for finding\ (and the additional dual
Z yi = xk 4 25, 0<y; <ay, i € I, variables in DML) were taken g8, 1000]. The initial intervals
e, for choosing the zonal allocation shargsin DML were taken
0<ap<bp, 0<zx<cp, k=1,....n. as (0, R] with R = B+ )", _, c¢x, B was chosen to be 1000.

The coefficientsb, and ¢, were generated by trigono-
metric functions with values if1,11], a; were generated
by trigonometric functions with values ifi, 3]. We took the
trikonometric functionsdin, cos) in order to verify different
max — Z vi(yi) — fe(zk) — Axp — hi(zx)|, (B)  methods on the same sets of data.

Obviously, this problem decomposes intoandependent zonal
convex optimization problems

i€}, Valuesy and o in CGDM was chosen to be 0.33. The
subject to number of zones was varied from 5 to 105, the number of users
was varied from 210 to 1010. Users were distributed in zones
Z v =xp + 2k, 0<y; <a;, i € I, (6) either uniformly or according to the normal distributiorhel
icl, processor time and number of iterations, which were necgssa
0<xzp <bg, 0<z <cp, (7)  tofind an approximate solution of problem (4) within the same
o _accuracy, were not significantly different for these twoesas
for eachk = 1,...,n. Note that the cost function in (5) is of distributions.

differentiable. The constraints in (6)—(7) give a polyradet,

which is independent ok. In what follows we also suppose Further we report the results of tests, which include the

}'me and number of iterations needed to find a solution of
the well known conditional gradient method [11], [12], with drol_alem (4) within Some accuracies. Letand § denote the
an inexact linear search procedure. eswgd accuracy of. finding a solu.t|on to problem (4) and
) ) __ solutions of auxiliary inner problems in DML. Letdenote the
problem of form . T. the total processor time in seconds. For the same accuracy
min — 7(v), (8)  both methods gave the same numbers of upper iterations, s
) ) that the main difference was in the processor time. The tesul
where V' is a convex polyhedron ang is a convex and of computations are given in Tables I-VI. We inserted algo th
differentiable function. results for DML with adaptive strategy of choosing the inner
accuracies. We named DMLA (Dual Multi Level Adaptive
Conditional Gradient Method (CGM): Take an arbitrary method) this version of the method. We named CGDMO the
initial point v° € V and numbersy € (0,1) and~ € (0,1).  version of CGDM where the zero initial point was taken in
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TABLE |I. RESULTS OF TESTING WITHJ = 510, n = 70, 6 = 10~ 2 TABLE IV. RESULTS OF TESTING WITHJ = 510, n = 70, § = 10~2
ex N. | T. DML | 7. CGDMO | 7. CGDMB ex N. | T. DML | 7. CGDMO | 7. CGDMB
10-T | 20 | 11.3023 | 0.0260 0.1563 10-T [ 20 | 5.3753 0.0523 0.2083
1072 | 24 | 12.8280 | 0.0311 0.2083 1072 | 24 | 6.3180 0.0883 0.2657
1072 | 29 | 15.9376 | 0.0470 0.2500 107=% [ 29 | 7.6197 0.1303 0.3700
10~% | 34 | 17.7663 | 0.0630 0.3076 10~% | 34 | 8.7447 0.1820 0.5263
TABLE II. RESULTS OF TESTING WITHn = 70, = 1072, = 102 TABLE V. RESULTS OF TESTING WITHn = 70, = 1072, 8§ = 10~2
J N. [ T. DML [ T. DMLA [ T. CGDMO | T. CGDMB J N. | 7- DML | 7. DMLA | 7. CGDMO | 7. CGDMB
210 | 24 | 54117 3.9327 0.0103 0.0727 210 | 24 | 2.7500 2.0160 0.0153 0.0990
310 | 24 | 7.9010 5.7400 0.0157 0.1193 310 | 24 | 3.9950 3.0517 0.0260 0.1560
410 | 24 | 10.3387 | 7.5053 0.0317 0.1610 410 | 24 | 5.2030 3.8437 0.0577 0.2083
510 | 24 | 12.8280 | 9.2973 0.0311 0.2083 510 | 24 | 6.3180 4.6353 0.0883 0.2657
610 | 24 | 15.2397 | 11.0733 0.0363 0.2447 610 | 24 | 7.4950 5.4633 0.1043 0.3387
710 | 24 | 17.6827 | 12.8903 0.0467 0.2813 710 | 24 | 8.6410 6.3073 0.1407 0.3593
810 | 24 | 20.1670 | 14.6303 0.0470 0.3230 810 | 24 | 9.8647 7.1773 0.1930 0.4323
910 | 24 | 22,5993 | 16.3910 0.0627 0.3700 910 | 24 | 11.0107 | 8.0203 0.2033 0.5573
1010 | 24 | 25.0993 | 18.1983 0.0677 0.4170 1010 | 24 | 12.1823 | 8.8807 0.2500 0.6200
each conditional gradient method and CGDMB the version V. CONCLUSION

of CGDM where a boundary initial point was taken in each

conditional gradient method. In Tables | and IV, we vary the L
telecommunication networks, where a system manager car

accuracye, in Tables Il and V we vary the total number of b dditional ext | : tstyi oo
users, and in Tables lll and VI, we vary the number of zones, uy additional external resources for satisfying curresers

. . _requirements, which is rather typical for contemporaryelgiss
In all the computational experiments, we took the quadratiG.ommunication networks. We suggested a new approach for
functions fy (zx) and hg(zx):

solving this problem, which consists in solving the single-

We considered a general resource allocation problem in

Fr(zr) = oaad + oy + o, o > 0,04 > 0,0 >0, dimensional dual Lagrangian such that the calculation of it
E—1 . n cost function decomposes into a set of independent convex
w0 9 , optimization problems. They are solved with a conditional
hi(21) = Bz + Przk + B, B > 0, 8 2 0,8k 2 0, gradient method. The results of computational experiments
k=1,...,n. test problems showed rather rapid convergence of the methoc

The charge functions»;(y;) were chosen different. In Tables and its essential preference over the previous iterativerses.

I-I1l, we give the results of computations with the loganitic
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concave quadratic functions, i.e.,

0ilya) = Y'YZ + Yy + v < 0,79 > 0,795 >0,

1€l k=1,...,n.

From the results, we can conclude that the new method
CGDM has the significant preference over those in [10].
Moreover, they clearly enable us to apply CGDM for online
solution of such resource allocation problems.

TABLE IIl. RESULTS OF TESTING WITHJ = 510, ¢ = 1072, TABLE VI. RESULTS OF TESTING WITHJ = 510, e = 102,
§=10"2 § =102
n N. | T-DML | T. DMLA | T. CGDMO | 7. CGDMB n N. | T-DML | T. DMLA | T. CGDMO | 7. CGDMB
5 24 | 12,5940 | 9.1250 0.0157 0.1873 5 24 | 6.0110 4.3647 0.0570 0.1563
15 24 | 125053 | 9.1407 0.0677 0.2343 15 24 | 59740 4.3857 0.2760 0.4530
25 24 | 12.6150 | 9.1667 0.0517 0.1977 25 24 | 6.0837 4.4323 0.1300 0.3597
35 24 | 12.6927 | 9.1873 0.0520 0.2033 35 24 | 6.1150 4.4740 0.1407 0.2813
45 24 12.6617 9.2243 0.0310 0.1873 45 24 6.1563 4.5207 0.1093 0.2707
55 24 12.8543 9.2603 0.0310 0.2033 55 24 6.2550 45573 0.0310 0.2550
65 24 12.8340 9.2917 0.0310 0.1873 65 24 6.3333 45937 0.0417 0.3020
75 24 | 12.8957 | 9.3440 0.0210 0.1930 75 24 | 6.3440 4.6613 0.0260 0.2657
85 24 | 12.9483 | 9.3803 0.0257 0.1663 85 24 | 6.4167 4.7863 0.0260 0.2553
95 24 | 12.9427 | 9.3960 0.0263 0.1873 95 24 | 6.5363 4.8490 0.0470 0.2550
105 | 24 | 12.9743 | 9.4327 0.0313 0.1923 105 | 24 | 6.4737 4.9690 0.0417 0.2713
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