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Abstract—Meeting traffic demand and enforcing fairness are
often times necessary but conflicting objectives for resource
allocation in wireless networks. Due to the resource sharing
nature of wireless networks, without a mechanism for enforcing
fairness, simply assigning resources to meet traffic demand of
some network flows can lead to resource starvation of other
network flows. Balancing these two objectives is more complex
multi-hop wireless networks, as the resource contention could be
indirect. In this paper, an algorithm is introduced to allocate time
slots in TDMA-based multi-hop wireless networks to achieve a
designated a balance between meeting traffic demand and enforc-
ing fairness. Numerical results show that the algorithm performs
significantly better than other resource allocation algorithms. The
introduced algorithm is well suited for distributed TDMA-based
wireless networks, such as ECMA-368 based UWB networks.

Index Terms—Congestion control, fairness, multi-hop wireless
network, optimization, quality of service, resource allocation,
TDMA.

I. INTRODUCTION

Quality of Service (QoS) and fairness are both important
yet often times mutually conflicting objectives for resource
allocation and scheduling in wireless networks. Due to the
resource sharing nature of a wireless environment, meeting
the QoS of some flows without addressing the fairness issue
may lead to resource starvation of other flows. The problem
of balancing QoS and fairness becomes more complex when
the network spans more than a single hop. This is evident in
Fig. 1.

In Fig. 1, a flow contention graph is composed of three
one hop flows {A,B,C}. Due to some underlying network
topology, flow B contends with both flows A and C, while
flows A and C do not contend with each other directly. Hence,
a transmission of either flow A or flow C would block flow
B. Two time slots are assumed available for the three flows to
use. Each flow is assumed to require one time slot to meet its
traffic demand. As we can see, the resource allocation strategy
at the top leaves flow B no time resource to use, while the
resource allocation strategy at the bottom can serve all traffic
demands.

The problem of maximizing the time slot allocation effi-
ciency in TDMA wireless networks by exploiting the spatial
reuse is NP-complete [8]. Several algorithms [8], [10] have
been introduced to probabilistically achieve the maximum
resource allocation efficiency without considering QoS and
fairness.

QoS and fairness of resource allocation in wireless networks
have been studied in separate contexts extensively. Various

Fig. 1. Resource Allocation Problem in Multi-hop Wireless Networks

fairness measures have been introduced. Some solutions are
designed to achieve specific objectives, such as proportional
fairness [1] and max-min fairness [2]. Algorithms to achieve
those objectives are usually complex. Other resource allocation
algorithms, such as DRAND [4], provide a level of fairness
and spatial reuse in multi-hop ad hoc networks without spe-
cific objective functions but involve much less computational
complexity. These algorithms enforce fairness in the absence
of QoS requirement, hence can be applied when every flow
impose infinite traffic demand. On the other end, various
resource allocation algorithms are introduced to solely meet
the QoS requirements. Schemes, such as [5], allocate time
slots on a flow by flow basis to meet their traffic demands and
can easily lead to unfair congestion situations.

Several algorithms [9], [11] have been introduced to address
the tradeoff between QoS and fairness by dynamically allo-
cating time slots based on traffic loading and flow contention.
In [3], a gradient method based resource allocation scheme
is introduced to gradually regulate the data rate of end-to-
end flows so that a utility function can be maximized across
the network under the underlying flow contention constraint.
Such schemes require adjusting allocated resources in a highly
dynamic manner. However, demand assigned TDMA-based
wireless networks, such as WiMedia networks [6], [7], expect
such resource assignment to be static over a period of time.
Hence, the aforementioned schemes are not suitable for such
a deployment.

In this paper, a Demand Aware Fair resource allocation algo-
rithm (DAF) is proposed to allocate time slots in TDMA-based
multi-hop wireless networks. The DAF algorithm considers
the requirement of QoS and fairness jointly, where QoS is

178Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications



measured by the amount of traffic demand that is being served.
The number of assigned time slots remains static during flow
holding (active) times. To meet the traffic demand and to
preserve fairness among multiple flows, DAF is designed to
achieve the following objectives in TDMA-based multi-hop
wireless networks:

• A flow is guaranteed a minimal number of time slots,
called fair share when it has infinite traffic demand. This
imposes a basic standard of fairness.

• The traffic demand of a flow is met when it is lower than
the fair share of the flow.

• Achieve a prescribed balance between serving the traffic
demand and reducing congestion.

We show that the proposed DAF algorithm meets the
traffic demand and enforces the predefined fairness. DAF is
well suited for distributed TDMA-based wireless networks,
such as a WiMedia network, in which nodes advertise their
available time slots to their 2-hop neighbors and then exchange
messages to reserve time slots for new flows.

We introduce several important concepts in Section II. In
Section III, the DAF algorithm and its objective is described.
Numerical results are given in Section IV. Section V concludes
this paper.

II. SYSTEM MODEL

In this section, we present and develop several concepts for
modeling the resource allocation problem in a TDMA-based
multi-hop wireless network.

A. Maximal Common Slot Set

In this paper, a one-hop flow is simply referred to as a
flow. A flow is always considered bidirectional so to take into
account both data and acknowledgement transmissions.

In a TDMA-based wireless network, a flow f can only have
transmissions in a time slot s during which its sender and
receiver are not participating in transmissions for other flows.
The time slot s is then said to be available to flow f .

Definition 1: A set of time slots S is said to be commonly
available to a group of flows F , if ∀s ∈ S and ∀f ∈ F , s is
available to f . S is said be a common slot set of F . F is said
to be a common flow group of S.

A time slots set S, a flows group F , and their relations can
be modeled as a bipartite graph G = (S + F,E). An edge
exists between s ∈ S and f ∈ F if and only if s is available
to f . A common slot set S and its common flow group F
forms a complete bipartite graph.

Definition 2: A group of flows F is said to be the maximal
common flow group of its common slot set S, if and only if S
does not have another common flow group F̃ so that F ⊂ F̃ .

Definition 3: A set of time slots S that has a maximal
common flow group F is said to be a maximal common slot
set (MCSS), if and only if 1) No other time slot set S̃ has F
as its maximal common flow group, and 2) No other time slot
set S̃, S̃ ⊂ S has a maximal common flow group F̃ such that
F̃ ⊃ F .

The first requirement means that the complete bipartite
graph formed by S and F includes all time slots that are
available to F . The second requirement means that a maximal
common slot set does not contain any common slot set that
serves more flows than it does.

The significance of the maximal common slot set is that
a TDMA frame can be partitioned into disjoint maximal
common slot sets, where each MCSS set has a designated
maximal flow group it can serve.

A simple way to obtain MCSSs is to start with individual
time slots and their maximal common flow groups, and then
group those time slots that have identical maximal common
flow groups. The process stops when no two time slot sets have
identical maximal flow groups. The maximum computational
complexity is of O(n2), where n is the number of time slots. In
this paper, we do not study the algorithm of obtaining maximal
common slot sets.

B. Maximal Common Slot Set based Flow Contention Graph

In wireless networks, two transmissions may cause strong
interference between each other if they overlap in time,
frequency and space. In this paper, only single carrier TDMA-
based multi-hop wireless networks are treated. Hence, only
time and space domains can be explored, which manifests as
TDMA operations and spatial reuse, respectively. To precisely
capture the exploration of time and space, we introduce the
concept of Maximal Common Slot Set based Flow Contention
Graph (MCSS-FCG).

Definition 4: Two flows are said to be contending flows for
each other if their simultaneous transmissions cause strong
interference to each other and subsequently result in transmis-
sion failures. Under a protocol model, two flows are said to be
contending for each other if the source or the destination of
one flow is within the nominal communication range of that
of the other flow.

A Flow Contention Graph (FCG) captures all flow con-
tention information. The mapping from a nodal graph to a
flow contention graph is well known [12] and illustrated in
Fig. 2. In Fig. 2, all five flows are considered bidirectional.
Each flow in the nodal graph is converted into a vertex in the
flow contention graph. An edge exists between two vertices in
a flow contention graph if and only if the corresponding two
flows contend with each other.

Definition 5: A maximal clique is a set of vertices that
induces a complete graph, and is not a sub-graph of any other
complete graph. A degree of a maximal clique is defined as
the number of vertices in that clique.

A flow contention graph can be decomposed into a set
of maximal cliques as shown in Fig. 3. In Fig.3, the flow
contention graph is composed of three maximal cliques,
{A,B,C}, {B,C,D} and {D,E}. Each clique is a complete
graph and is not a sub-graph of any other complete graph in
the flow contention graph.

Definition 6: A Maximal Common Slot Set based Flow
Contention Graph (MCSS-FCG) is just a flow contention
graph with respect to a maximal common slot set. All time
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Fig. 2. Nodal Graph and its Flow Contention Graph

Fig. 3. Maximal Clique Decomposition of a Flow Contention Graph

slots in a maximal common slot set are available to all flows
in the MCSS-FCG.

A MCSS-FCG is only meaningful with respect to its max-
imal common slot set. MCSS-FCGs associated with different
maximal common slot sets are distinct. Flows that are assigned
time slots in different maximal common slot sets do not
contend with each other. We note that, when all time slots
are available to all flows in the network, there exists a
unique MCSS-FCG in the network, which is the overall flow
contention graph itself.

An example of maximal common slot sets of their MCSS-
FCG is illustrated in Fig. 4. There are 7 flows, {A,B, ..., G},
in the overall flow contention graph. Each flow has some
particular time slots available in the frame for its use. Three
maximal common slots are assumed to be identified. Each
maximal common slot has a flow contention graph that is
formed by its common flow group. A flow may reside in mul-
tiple MCSS-FCGs. For example, all three maximal common
slot sets are available for flow A. Hence, flow A resides in all
three MCSS-FCGs.

C. Fair Share in a MCSS-FCG

Definition 7: A fair share is defined as a number of time
slots that shall be assigned to a flow when every flow in the
network imposes infinite traffic demand that can saturate the
network.

Assigning fair shares to flows when flows contend among
one another in a traffic overloaded network enforces a standard
of fairness. Since flows that are assigned with time slots in

Fig. 4. Maximal Common Slot Set and its MCSS-FCG

Fig. 5. Max-min Fair Share Assignment

different maximal common slot sets do not contend with each
other, the fair share is only meaningful with respect to a
specific MCSS-FCG. When a flow resides in multiple MCSS-
FCGs, this flow has a fair share value in each MCSS-FCG.

Fair shares can be assigned based on a specific objective
or assigned arbitrarily based on service agreement. To give an
intuitive idea of fairness, the normalized max-min fair share
assignment in a perfect graph studied in [2] is shown in Fig.
5. It is feasible to allocate and schedule 1

3 time slots to Flows
A, B, C, and D and allocate 1

3 time slots to Flow E. The
fairness nature of this allocation is that no flow can increase
the assigned amount of time slots without reducing the time
slots of other flows that are already assigned with less or equal
amount of time slots.

In our resource allocation algorithm study, a simple rule of
assigning fair shares is used. The fair share for a flow in a
MCSS-FCG that has L time slots in the associated maximal
common slot set is set to L

d , where d is the highest degree of
all maximal cliques the flow resides in.

III. RESOURCE ALLOCATION ALGORITHM

At any point in time, a TDMA-based multi-hop wireless
network may be serving existing flows while a new set of flows
may be initiated in the network. The traffic demand of these
new flows can be expressed in bits per frame. To negotiate the
traffic demand to be served, a signaling process can compute
and then reserve time slots for these flows on selected routes.
Our DAF resource allocation algorithm used by the signaling
process strives to achieve the following objectives:

• The portion of traffic demand within the fair share of a
flow should be fully met.

• Minimize the cost associated with inadequate serving of
traffic demand and the cost associated with allocating
time slots above fair shares.

DAF is executed over a set of MCSS-FCGs. DAF com-
prises two processes, namely the inter-graph process and the
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intra-graph process. The inter-graph process selects, in each
iteration step, a maximal common slot set and its associated
MCSS-FCG to execute the intra-graph process. Its selection
of the maximal common slot set is critical to meet the traffic
demand. The intra-graph process assigns time slots in the
selected MCSS-FCG with an objective to balance between
QoS and fairness.

We note that, for a real implementation in a distributed
manner, the computational complexity of obtaining a complete
MCSS-FCG can be large. To reduce the control overhead
and computational complexity, a MCSS-FCG used for com-
putation may cover only the maximal cliques where the
underlying flow resides. Once the computation is finished,
the source/destination of the underlying flow can advertise its
assignment results to the source/destination of a contending
flow. To ensure a feasible time slot assignment, the final
time slot assignment of a flow can be set to the mini-
mum among all assignments of this flow suggested by the
sources/destinations of this flow and contending flows. Such
an assignment computed in a distributed manner could be sub-
optimal. Nevertheless, we proceed in the following to describe
the algorithm in its centralized form.

A. Inter-Graph Process

The following notations are used:
• Denote by {Gn}, n = 1, 2, ..., N , the set of MCSS-FCGs.

Denote by {clkn}, k = 1, 2, ...,K, the set of maximal
cliques in Gn. Denote by dkn the degree of clkn.

• Denote by {sl}, l = 1, 2, ..., L, the set of flows in {Gn}.
Denote by ql the outstanding traffic demand of sl.

Algorithm 1: Inter-Graph Process

1 For each Gn, set the maximal degree d̂n of Gn to be
d̂n = maxKk=1 d

k
n;

2 Sort {Gn} in an ascending order of {d̂n};
3 Denote by ni the original index of the ith MCSS-FCG in the

sorted set;
4 for i = 1, 2, ..., N do
5 Execute the intra-graph process based on Gni . Denote by q

ni
l

the traffic demand served in Gni for sl after the intra-graph
process;

6 for l = 1, 2, ..., L do
7 ql := ql − q

ni
l ;

8 Remove sl from {Gn} if ql == 0;
9 end

10 Update {d̂n}. Sort {Gn} in an ascending order of {d̂n};
11 end

The inter-graph process is specified by Algorithm 1. The
process utilizes the time slots of a MCSS-FCG ahead of other
MCSS-FCGs, if its flow contention level is the lowest (i.e.,
the highest degree of all of its maximal cliques is the lowest
compared to other MCSS-FCGs). By doing this, the traffic
demand of a flow can be served as much as possible before
this flow enters the competition for the precious time slot
resources with other contending flows in those high contention
level MCSS-FCGs. Once time slots are assigned to a flow in
an intra-graph process, the demand of this flow is reduced

accordingly. If the demand of a flow is fully met, the flow
is removed from the set of MCSS-FCGs. Hence, the inter-
graph process aggressively reduces the flow contention levels
of MCSS-FCGs in each iteration.

The computational complexity of the inter-graph process
is identified to be O

(
NW +N2L+N3

)
, where W denotes

the complexity of intra-graph process, N denotes the number
of MCSS-FCGs, and L denotes the number of flows in the
network. The result comes with the worst case assumption
for the sorting complexity known as O

(
k2
)
, where k is

the number of elements for sorting. The derivation of the
complexity is straightforward and hence omitted in this paper
due to the page limit.

B. Intra-Graph Process

The intra-graph process iterates over maximal cliques in a
MCSS-FCG. For each maximal clique, an intra-graph resource
allocation algorithm calculates the number of slots to be
assigned to each flow within the maximal clique. If a flow
resides in multiple maximal cliques, the number of time slots
assigned to the flow in this MCSS-FCG is set to the minimum
of all values assigned to the flow.

The trade-off between meeting the traffic demand and
preserving fairness takes the center stage of the resource
allocation algorithm. The intra-graph resource allocation al-
gorithm executed over a maximal clique strives to achieve all
objectives listed at the beginning of Section III. The algorithm
minimizes the total cost incurred from inadequate serving of
traffic demand and allocating time slots beyond a fair share.

The cost functions associated with inadequate serving of
traffic demand and allocating time slots beyond a fair share can
be quite general as long as they have the following properties.

Denote by u(z) the cost function induced by allocating z
time slots above the fair share of a flow. With respect to a
maximal clique, denote by xi and fi the actual number of
time slots allocated to flow i and the fair share of flow i,
respectively. We need

• u(zi) = u(xi − fi) and u(xi − fi) = 0,∀xi ≤ fi.
• u(z) is a strictly convex and strictly increasing function

w.r.t. z.

Hence, the total cost induced by allocating time slots above
fair shares is

∑
i u(xi − fi)Ixi≥fi , where I is an indicator

function. Ixi≥fi = 1 if xi ≥ fi, otherwise Ixi≥fi = 0.
Denote by v(z) the cost function induced by inadequate

serving of traffic demand of a flow, where z denotes the traffic
demand that is not served after the allocation. Denote by Ri

the data rate (in bits per slot) that can be achieved for the
transmission of flow i. Denote by qi the traffic demand (in
bits per frame) from flow i. We need

• v(zi) = v(qi −Rixi) and v(qi −Rixi) = 0,∀ qi
Ri

≤ xi.
• v(z) is a strictly convex and strictly increasing function

w.r.t. z.

Hence, the total cost induced by inadequate serving of traffic
demand is

∑
i v(qi −Rixi)I qi

Ri
≥xi

.
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The optimization problem for achieving all objectives spec-
ified in Section III is described below:

min
x1,x2,...,xL

wu

L∑
i=1

u(xi − fi)Ixi≥fi + wv

L∑
i=1

v(qi −Rixi)I qi
Ri

≥xi
.

(1)
The problem is subject to the following constraints:

• The portion of traffic demand within the fair share of a
flow should be fully met.

Rixi = qi,∀
qi
Ri

≤ fi. (2)

• The actual assigned resource is no greater than qi.

Rifi ≤ Rixi ≤ qi,∀
qi
Ri

≥ fi. (3)

• The total number of slots assigned in a maximal clique
is no larger than sn, where sn is the total number time
slots in MCSS-FCG Gn.

L∑
i

xi ≤ sn. (4)

The cost functions are weighted by wu and wv , which can be
used as preferences given to QoS and fairness, respectively.

To help solving the optimization problem 1, the following
derived functions are introduced.

• Denote by Ui(x) the rate of cost increase induced by al-
locating time slots beyond fair share for flow i. Precisely,
we define

Ui(x) = wu
∂u(x− fi)

∂x
. (5)

Note that, Ui increases with respect to x, since ∂Ui(x)
∂x =

wu
∂2u(x−fi)

∂x2 > 0.
• Denote by Vi(x) the rate of cost decrease induced by

inadequately serving traffic demand for flow i. Precisely,
we define

Vi(x) = −wv
∂v(qi −Rix)

∂x
. (6)

Note that, Vi decreases with respect to x, since ∂Vi(x)
∂x =

−wv
∂2v(qi−Rix)

∂x2 < 0.
Hence, Vi(x)−Ui(x) is a non-increasing function with respect
to x. We call Vi(x)−Ui(x) the characteristic function of flow
i.

The intra-graph resource allocation process is specified by
Algorithm 2. The algorithm essentially does the following: 1)
when the rate of cost decrease in inadequately serving traffic
demand is less than the rate of cost increase in allocating extra
time slots beyond fair share, the assignment moves towards the
fair share; 2) when the rate of cost decrease in inadequately
serving traffic demand is more than the rate of cost increase
in allocating extra time slots beyond fair share, the assignment
moves towards meeting the traffic demand of the flow; 3) the
number of time slots assigned to a flow is set to a value
between the fair share and the traffic demand such that the
assignment balances these two conflicting costs.

Algorithm 2: Intra-Graph Algorithm

1 for any flow i that has qi ≤ Rifi do
2 Set x̂i =

qi
Ri

as the number of time slots to be assigned;
3 end
4 for any flow i that has qi > Rifi do
5 Calculate the max value and the min value of Vi(x)− Ui(x).

In fact, we have
Vi(fi)− Ui(fi) ≥ Vi(x)− Ui(x) ≥ Vi(

qi
Ri

)− Ui(
qi
Ri

);
6 end
7 Put all max and min values of Vi(x)− Ui(x) into one set Φ. Sort

the elements of Φ in an increasing order. Denote the sequence by
φj , j = 1, 2, ..., J ;

8 for j = 1, 2, ..., J do
9 for all flow i = 1, 2, ...L̃ that do not have final slot

assignments do
10 Calculate xi as follows:

xi =


fi φj ≥ Vi(fi)− Ui(fi)
qi
Ri

φj ≤ Vi(
qi
Ri

)− Ui(
qi
Ri

)

x|Vi(x)− Ui(x) = φj o.w.

11 end

12 if
L∑
i
xi ≤ sn then

13 Set φH = φj and φL = φj−1;
14 Break;
15 end
16 end
17 for all flow Ω = {i} that have φL ≤ Vi(xi)− Ui(xi) ≤ φH do
18 Solve the equation array

Vi(xi)− Ui(xi) = Vj(xj)− Uj(xj), i ∈ Ω and
L∑

l=1
xl = sn, L is the total number of flows;

19 end
20 Set x̂i = xi;

Fig. 6. DAF algorithm
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Solving the equation array at Step 15 in Algorithm 2
gives the precise optimal solution, but can be computationally
expensive, as V (.) and U(.) can be nonlinear polynomials as
defined earlier. Hence, the bisection method can be used to find
a solution arbitrarily close to the optimal solution with much
less complexity. At Step 15 in Algorithm 2, the following
bisectional iteration should be executed. In each iteration step,
set φ̂ = φL+φH

2 and set xi = {x|Vi(x) − Ui(x) = φ̂}. If
L∑

l=1

xl < sn, set φH = φ̂. If
L∑

l=1

xl > sn, set φL = φ̂. And then

go to the next iteration. The iteration ends when the difference

between
L∑

l=1

xl and sn is less than a negligible error margin.

A graphic representation of the resource allocation results
of the intra-graph algorithm is shown in Fig. 6. The intra-
graph algorithm is shown as one step in the inter-graph
process. The characteristic function of each flow is evaluated
against a common water filling level, which is fundamentally
determined by the network scenario. A flow should be served
exactly an amount so that its associated characteristic function
level is closet to the common water filling level.

In the following, we prove that Algorithm 2 solves the
optimization problem in Eq.1.

Theorem 1: For any functions u(z) and v(z) that possess
the general properties described above, the optimization prob-
lem 1 has the following optimal solution:

x̂i =


qi
Ri

if qi ≤ Rifi

fi if qi > Rifi and γ > Vi(fi)− Ui(fi)

∈
(
fi,

qi
Ri

)
if qi > Rifi and γ = Vi(x̂i)− Ui(x̂i)

qi
Ri

if qi > Rifi and γ < Vi(
qi
Ri

)− Ui(
qi
Ri

)

(7)

where γ > 0 is selected so that
L∑
i

xi ≤ sn.

Proof: From Eq. 2, we have x̂i =
qi
Ri

, ∀qi ≤ Rifi. This
indicates that we only need to solve the problem for qi > Rifi,
so that qi

Ri
> xi and xi > fi. Hence, identity functions in Eqn.

1 can be subsequently removed and the problem is reduced to
the following:

min
x1,x2,...,xL̃

wu

L̃∑
i=1

u(xi − fi) + wv

L̃∑
i=1

v(qi −Rixi) (8)

s.t.


fi ≤ xi ≤ qi

Ri

L̃∑
i=1

xi ≤ sn −
∑
j

qj
Rj

, qj ≤ Rjfj
(9)

Let Qt =
∑
j

qj
Rj

, qj ≤ Rjfj . We have Qt to represent the

total number of time slots assigned to those flows whose traffic
demands are less than their fair shares.

Based on the Karush-Kuhn-Tucker conditions, we have

∂

(
wu

L̃∑
i=1

u(x̂i−fi)+wv

L̃∑
i=1

v(qi−Rix̂i)

)
∂x̂i

+∂βi(Rix̂i−qi)
∂x̂i

+ ∂σi(fi−x̂i)
∂x̂i

+
∂γ

(
L̃∑

i=1

x̂i−(sn−Qt)

)
∂x̂i

= 0

βi(Rix̂i − qi) = 0

σi(fi − x̂i) = 0

γ

(
L̃∑

i=1

x̂i − (sn −Qt)

)
= 0

βi ≥ 0, σi ≥ 0, γ ≥ 0

⇔



Ui(x̂i)− Vi(x̂i) +Riβi − σi + γ = 0

βi(Rix̂i − qi) = 0

σi(fi − x̂i) = 0

γ

(
L̃∑

i=1

x̂i − (sn −Qt)

)
= 0

βi ≥ 0, σi ≥ 0, γ ≥ 0

For the case σi > 0, we have x̂i = fi. Consider the following
sub-cases.

1) For βi = 0, x̂i <
qi
Ri

, we have Ui(fi) − Vi(fi) + γ =
σi > 0. Hence, γ > Vi(fi)− Ui(fi).

2) For βi > 0, we have x̂i =
qi
Ri

. Since we have qi > Rifi,
and x̂i = fi is contradictory to x̂i = qi

Ri
, this case is

abandoned.
For the case σi = 0, x̂i > fi, consider the following sub-cases.

1) For βi > 0, we have x̂i =
qi
Ri

and Ui(
qi
Ri

)−Vi(
qi
Ri

)+γ =
−Riβi < 0. Hence, we have γ < Vi(

qi
Ri

)− Ui(
qi
Ri

).
2) For βi = 0, x̂i <

qi
Ri

, we have Ui(x̂i)−Vi(x̂i)+ γ = 0.
Hence, γ = Vi(x̂i)− Ui(x̂i) and fi ≤ x̂i ≤ qi

Ri
.

Theorem 2: Algorithm 2 achieves the optimal solution for
the optimization problem in Eq.1.

Proof: Assume
L∑

l=1

ql
Rl

> sn. Otherwise, the optimal

solution is x̂l =
ql
Rl

.
At the end of step 13 in Algorithm 2, we have identified

two bounds φL and φH . Due to the execution of Step 10 and
11, setting γ = φL and setting x̂l according to Eq. 7, we will

have
L∑

l=1

xl > sn. Setting γ = φH and setting x̂l according to

Eq. 7, we will have
L∑

l=1

xl ≤ sn. Hence, the optimal solution

exists for γ ∈ [φL, φH ].
Consider those flows {i} where Vi(fi)−Ui(fi) < φL. Since

φL ≤ γ, we have Vi(fi) − Ui(fi) < γ. At the end of Step
13, we already set x̂i = fi, which is the optimal solution
of these flows according to Theorem 1. Consider those flows
where Vj(

qj
Rj

) − Uj(
qj
Rj

) > φH . Since φH ≥ γ, we have
Vj(

qj
Rj

) − Uj(
qj
Rj

) > γ. At the end of Step 13, we already
set x̂j =

qj
Rj

, which is the optimal solution of these flows
according to Theorem 1. The remaining flows have Vk(xk)−
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Uk(xk) = γ, which is the optimal solution for them according
to Theorem 1.

Assume the bisection method to be used at Step 15.
The computational complexity of the intra-graph process is
O
(
L2 + L log2

φH−φL

∆

)
, where L denotes the number of

flows in the MCSS-FCG, and ∆ denotes the negligible error
margin. The derivation of the complexity is straightforward
and hence omitted in this paper due to the page limit.

IV. NUMERICAL RESULTS

In this section, the performance of DAF is demonstrated
through numerical experiments. The benefit of the inter-graph
process is demonstrated by Scenario 1, where MCSS-FCGs
are simple so that the algorithm execution order over the list
of MCSS-FCGs has a more significant impact on the time slot
assignment than resolving the flow contention in each MCSS-
FCG. The benefit of the intra-graph process is demonstrated
by Scenario 2, where MCSS-FCGs are complex so that it
is critical to address the trade-off between meeting traffic
demands and preserving fairness within each MCSS-FCG.

We compare the time slot allocation results obtained by
DAF to those obtained by DRAND [4]. Furthermore, we
extend DRAND to an enhanced version that employs our inter-
graph process. We refer to the enhanced version of DRAND
as E-DRAND. E-DRAND selects, in each iteration step, a
maximal common slot set and its associated MCSS-FCG to
execute the generic DRAND algorithm. E-DRAND helps iden-
tify the benefit of the inter-graph process. Numerical results
show that DAF performs significantly better than DRAND and
E-DRAND.

A. Simulation Model

The inputs of our program include flows, their traffic
demands, and MCSS-FCGs, so that the program does not
implement control protocols or graph computation algorithms
to prepare these input parameters. We did not conduct our
simulation using a full fledged network simulator, such as
NS-2, since a generic program can provide us rich scenarios
with flexible input parameters, without the involvement of
inessential network events in a full fledged network simulator.

The example function u(z) that represents the cost induced
by allocating extra time slots above the fair share is set to
u(z) = z, z ≥ 0, equivalent to u(x − f) = x − f, x ≥ f .
Hence, we have Ui(x) = wu. The example function v(z)
that represents the cost induced by inadequately serving traffic
demand is set to v(z) = 1

q−z − 1
q , 0 ≤ z ≤ q, equivalent

to v(q − Rx) = 1
Rx − 1

q , 0 ≤ x ≤ q
R . Hence, we

have V (x) = wv

Rx2 . Under this setting, the cost induced by
inadequately serving traffic demand increases drastically when
more traffic demand is not served.

We set the weights for these cost functions so that their
rate of changes are about the same. Assume a typical flow
requires 50 time slots among 256 available time slots. We set
wu

wv
= 1

2500R . For a concise presentation, we assume a common
data rate R = 1 bit per slot for all flows.

Fig. 7. Network Scenario 1

The criterion for fairness is defined with low computational
complexity. The fair share for a flow i, in a MCSS-FCG, Gn,
is set to be equal to sn

dn
i

, where dni is the maximum degree of
all maximal cliques flow i resides within Gn, sn is the number
of time slots available in Gn. An assignment is said to be fair
for flows in the MCSS-FCG, if every flow in the MCSS-FCG
is assigned an amount of slots that is larger than or equal to
its fair share.

To quantitatively evaluate the performance of the algo-
rithms, we compare the values of the objective function
specified in Eq. 1 calculated on the overall contention graph.
The objective function specified in Eq. 1 represents the total
cost incurred from inadequate serving of traffic demand and
allocating time slots beyond a fair share.

B. Network Scenario 1

A network scenario with a relatively low flow contention
level is studied to highlight the benefit of the inter-graph
process. In this setup, fairness is a lesser issue, since traffic
demand can be well served by using a particular order in which
the inter-graph process selects MCSS-FCGs. The scenario is
illustrated in Fig. 7.

There are 4 new flow arrivals. Each flow has an opportunity
to utilize some time slots. Three maximal common slot sets
and their corresponding MCSS-FCGs are identified. Flow 3
can utilize 136 time slots in total (36 from MCSS 1 and 100
from MCSS 2), however it has to contend with many other
flows in two maximal common slot sets. Flow 4 can utilize
120 time slots without facing any contention from other flows.
Two traffic demand patterns are simulated. They are specified
by their corresponding traffic demand vectors in Table I and
Table II. Traffic pattern 2 has slightly higher traffic demand
than traffic pattern 1. The results under traffic pattern 1 and
traffic pattern 2 are shown in Table I and Table II, respectively.

DAF is shown to meet the joint QoS and fairness require-
ment much better than DRAND and perform about the same
as E-DRAND does, as it achieves the lowest objective function
value. This result highlights the significant benefit of using our
inter-graph process.

184Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications



TABLE I
SLOT ASSIGNMENT COMPARISON UNDER TRAFFIC PATTERN 1

Flow ID Demand (slots) DAF DRAND E-DRAND
#1 35 35 28 35
#2 70 52 46 65
#3 35 35 35 35
#4 100 100 100 100

Objective Value -70.6374 -59.5093 -67.2527

TABLE II
SLOT ASSIGNMENT COMPARISON UNDER TRAFFIC PATTERN 2

Flow ID Demand (slots) DAF DRAND E-DRAND
#1 50 36 24 36
#2 50 50 42 50
#3 50 50 46 50
#4 100 100 100 100

Objective Value -49.5556 -24.9617 -49.5556

TABLE III
SLOT ASSIGNMENT DETAILS UNDER TRAFFIC PATTERN 1

Flow ID FCG #1 FCG #2 FCG #3
#1 35
#2 18 35
#3 18 17
#4 100

The time slot assignment in each MCSS-FCG under traffic
pattern 1 is shown in Table III. The following observations
can be drawn from traffic pattern 1’s results:

• The advantage of the inter-graph process can be clearly
seen. Flow 4 is assigned as many slots as possible in G3

due to the effect of the inter-graph process, so that its
high demand does not interfere with other flows.

• Traffic demands of flow 1 and 3 are completely served
due to their relatively low traffic demand levels. Flow 1’s
assignment in G2 is slightly above its fair share (33 slots)
since assignment for flow 2 and 3 in G1 has relieved the
contention in G2. Again, the advantage of the inter-graph
process is evident.

• Time slots of G2 are not all utilized, since a flow only
accepts the minimum of all assignments it receives from
all maximal cliques within a graph.

The time slot assignment in each MCSS-FCG under traffic
pattern 2 is shown in Table IV. The following observations
can be drawn from traffic pattern 2’s results:

• Traffic demand of flow 1 cannot be fully met due to its
high level of traffic demand in the only MCSS-FCG, G2,
it resides in. Note that its assignment is above its fair
share.

• Flow 2 and 3 are in a topologically similar position, as
the degrees of their maximal cliques are equal in G1 and
G2 and they contend with similar set of flows. When
traffic demand levels of flow 2 and 3 become more even
compared to theirs in traffic pattern 1, their traffic demand

TABLE IV
SLOT ASSIGNMENT DETAILS UNDER TRAFFIC PATTERN 2

Flow ID FCG #1 FCG #2 FCG #3
#1 36
#2 18 32
#3 18 32
#4 100

Fig. 8. Network Scenario 2

can be fully met.

C. Network Scenario 2

A network scenario with a higher flow contention level is
studied to highlight the benefit of the intra-graph process. In
this setup, more fairness problems would need to be addressed
by the intra-graph process and algorithm. The scenario is
illustrated in Fig. 8.

There are 6 new flow arrivals. Three maximal common slot
sets and their MCSS-FCGs are identified. Flow 2, 3, 5 and
6 are in a high contention level among each other in various
MCSS-FCGS {G1, G2, G3}. Two traffic demand patterns are
simulated. They are specified by their corresponding traffic
demand vectors in Table V and Table VI. Traffic pattern 4
has slightly higher traffic demand than traffic pattern 3. The
results under traffic pattern 3 and traffic pattern 4 are shown
in Table V and Table VI, respectively.

DAF is shown to meet the joint QoS and fairness require-
ment much better compared to DRAND and E-RAND, as
it achieves the lowest objective function value. This result
highlights the significant benefit of using our intra-graph
process.

The time slot assignment in each MCSS-FCG under traffic
pattern 3 is shown in Table VII. The following observations
can be drawn from traffic pattern 3’s results:

• All traffic demand requirements are satisfied. This is due
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TABLE V
SLOT ASSIGNMENT COMPARISON UNDER TRAFFIC PATTERN 3

Flow ID Demand (slots) DAF DRAND E-DRAND
#1 50 50 17 22
#2 50 50 50 50
#3 50 50 35 39
#4 50 50 16 21
#5 50 50 50 50
#6 50 50 50 50

Objective Value -39.0000 103.7374 39.7865

TABLE VI
SLOT ASSIGNMENT COMPARISON UNDER TRAFFIC PATTERN 4

Flow ID Demand (slots) DAF DRAND E-DRAND
#1 60 42 17 19
#2 60 60 60 60
#3 60 60 35 37
#4 60 50 16 20
#5 60 60 60 60
#6 60 60 60 60

Objective Value 19.1905 158.7374 116.146

TABLE VII
SLOT ASSIGNMENT DETAILS UNDER TRAFFIC PATTERN 3

Flow ID FCG #1 FCG #2 FCG #3
#1 50
#2 18 32
#3 18 32
#4 50
#5 10 40
#6 10 40

to the fact that G1 and then G3 are able to sequentially
provide large amount of time slots for flow 2, 5, and 6,
which leads to a significantly lowered traffic demand in a
highly contended MCSS-FCG G2. As an example, flow
2 does not need to be assigned any time slots in G2.

The time slot assignment in each MCSS-FCG under traffic
pattern 4 is shown in Table VIII. The following observations
can be drawn from traffic pattern 4’s results:

• Flow 1’s traffic demand cannot be fully accommodated
in G2, since its contending flow, flow 3 has an increased
its demand. Note that flow 1’s assignment in G2 is surely
still above its fair share.

• The tradeoff between meeting traffic demand and main-
taining fairness thereby reducing potential congestion is
addressed by DAF. The time slots of G2 are not all
utilized, although flow 1 still has traffic demand to meet.
This is because many flows have been allocated time slots
beyond their fair shares.

V. CONCLUSIONS

In this paper, a demand-aware fair resource allocation
algorithm is proposed to allocate time slots in TDMA-based
multi-hop wireless networks with the objective of meeting

TABLE VIII
SLOT ASSIGNMENT DETAILS UNDER TRAFFIC PATTERN 4

Flow ID FCG #1 FCG #2 FCG #3
#1 42
#2 18 2 40
#3 18 42
#4 50
#5 20 40
#6 20 40

both traffic demand as much as possible while enforcing
a predefined fairness level. The algorithm projects the new
network flow arrivals onto multiple Maximal Common Slot
Set based Flow Contention Graphs and then executes an intra-
graph resource allocation algorithm over contention graphs
in a carefully selected order. The execution order strives to
reduce the flow contention as much as possible before the
intra-graph algorithm starts allocating time slots over each par-
ticular graph. The proposed intra-graph algorithm is proven to
minimize, over a maximal clique, a generic cost function value
incurred when inadequately serving traffic demand and serving
beyond fair shares. Numerical experiments are conducted to
demonstrate the effectiveness of the proposed algorithm. The
proposed algorithm is shown to well meet the traffic demand
and achieve the predefined fairness.
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