

Scalable Democratic Routing in Wireless Mesh Networks

Ronit Nossenson

Faculty of Computer Science

Jerusalem College of Technology (JCT)

Jerusalem, Israel

nossenso@jct.ac.il

Abstract — We propose a new method for scalable routing

in large wireless mesh network: the democratic routing scheme.

In this new schema, the nodes are divided into components

according to their connectivity classes. As oppose to

hierarchical routing, here, all nodes in the component are

equal. The routing decisions are performed according to nodes

connectivity structure together with a proper routing

performance metric. Every node holds a view including its

neighbor set and a dynamic connectivity model of the network.

The node uses the view to understand which of its topology

changes should be announced and to identify the set of nodes

that should get this specific update. In this way, the routing

overhead is significantly reduced, and, yet, the necessary

routing information is available.

Index Terms — Wireless mesh network; scalable routing

algorithms; connectivity models.

I. INTRODUCTION

Various wireless networks have evolved into the next
generation to provide better services. A key technology,
Wireless Mesh Networks (WMN), has emerged recently [1].
A WMN is dynamically self-organized and self-configured,
with the (possibly mobile) nodes in the network
automatically establishing and maintaining mesh
connectivity among themselves. In such systems, the implied
routing protocol directly affects scalability, efficiency, and
reliability.

When the network is large, hierarchical routing protocols
tend to achieve better performance [2-10]. Hierarchical
routing protocols build a hierarchy of nodes, typically
through clustering techniques. These protocols divide the
nodes in the network into backbone nodes and regular nodes
arranged in clusters. Every cluster uses a cluster head node
that is a part of the backbone. The cluster head node acts as
a local coordinator of transmissions within the cluster and is
responsible for keeping and updating routing information
beyond the cluster. However, explicit clustering schemes
have several drawbacks [3]:

 Clustering usually requires that the cluster heads
will be more powerful (battery life, transmission
range and capacity) than the regular nodes in the
clusters. Unless being intentionally designed so, the
cluster head may become a bottleneck.

 The complexity of maintaining the hierarchy
compromises the performance of the routing
protocol. There is a significant overhead in the
maintenance of the cluster (e.g., electing the cluster
head and maintaining the cluster‟s members);

 The centralization and load of the cluster-heads
routes;

 The routing path may be longer than a direct path;

 Clustered protocols are sensitive to failures of the
cluster heads;

 The fragmentation of the network nodes into
clusters may result in a large number of clusters.

 Change of cluster heads results in routing changes
and hence generates routing overhead.

In this research, we propose a completely different
method for scalable routing in large WMN, the democratic
routing scheme. In this new schema every node holds a
view. The view includes the node neighbor set and a
dynamic connectivity model of the network. Using its view,
the node can keep updated information on the network and
can perform educated routing decisions. The dynamic
connectivity model represents the network topology in a
compact structure (O(n), where n is the number of nodes in
the network) and can be updated in an efficient manner to
capture the dynamic changes in the network topology, as
nodes move from one place to another while establishing
and releasing links. On one hand, this model should be
small to avoid unnecessary updates (meaning, high
overhead); on the other hand it should be detailed enough to
allow good routing decisions. The dynamic connectivity
model is updated whenever an essential change in the
network accrues. The node uses the view to understand
which of its topology changes (for example, link
establishment or link release) should be announced and what
is the exact set of nodes that should get the specific update.
In this way the routing algorithm overhead is significantly
reduced and, yet, the necessary routing information is
available.

We choose to describe our new concept using an
extension of the cactus-tree model of Dinitz et al. [11] and
the two-level cactus-tree model [12] to enjoy their elegancy
and simplicity. However, these models support incremental
maintenance only and they do not support node-deletion and
edge-deletion (link release). Thus, we extend the models to
support node-deletion and edge-deletion for low
connectivity levels.

This paper is organized as follows. In the next section,
related works are listed. In section III, basic definitions are
described. Section IV presents the connectivity model
dynamics. Section V describes the new democratic routing
scheme. Finally, conclusions and further research topics are
given in Section VI.

173Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

II. RELATED WORK

Typically, when wireless network size increase flat
routing schemes become infeasible because of link and
processing overhead. One way to solve this problem and to
produce scalable solutions is hierarchical routing. The
common way of building hierarchy is to group nodes
geographically close to each other into explicit clusters. In
explicit clustering schemes, each cluster has a leading node
(cluster head) to communicate to other nodes on behalf of
the cluster. An alternate way is to have implicit hierarchy. In
this way, each node has a local scope. Different routing
strategies are used inside and outside the scope.

Cluster head-Gateway Switch Routing (CGSR) [7] is
typical of explicit cluster-based hierarchical routing. A
stable clustering algorithm, Least Cluster head Change
(LCC), is used to partition the whole network into clusters,
and a cluster head is elected in each cluster. A mobile node
that belongs to two or more clusters is a gateway connecting
the clusters. Packets are routed through paths having a
format of “Cluster head–Gateway Cluster head–Gateway…”
between any source and destination pairs.

Additional well known explicit clustering routing
protocol is the Hierarchical State Routing (HSR) [5]. It is a
multilevel clustering-based Link State routing protocol. It
maintains a logical hierarchical topology by using the
clustering scheme recursively. Nodes at the same logical
level are grouped into clusters. The elected cluster heads at
the lower level become members of the next higher level.
These new members in turn organize themselves in clusters,
and so on. The cluster head summarizes link state
information within its cluster and propagates it to the
neighbor cluster heads (via the gateways).

The basic idea in the Zone Routing Protocol (ZRP) [6] is
that each node has a predefined zone centered at itself in
terms of number of hops (implicit cluster). For nodes within
the zone, it uses proactive routing protocols to maintain
routing information. For those nodes outside of its zone, it
does not maintain routing information in a permanent base.
Instead, on-demand routing strategy is adopted when inter-
zone connections are required.

A recent study [3] considers a routing technique which
can implicitly cause nodes that are in the “center” of dense
areas to act as cluster heads (“natural clustering”). Using the
Metrical Routing Algorithm (MRA) [4], it maintains a
dynamic set of coordinates to every node. Thus, if the
coordinates of the destination are known, the MRA sends a
message to this destination through the shortest path based
on the estimated metrical distances.

We propose a new democratic routing scheme which can
be classified as an implicit clustering. In this scheme, the
nodes are logically divided into their connectivity classes
(components). The components do not have component
heads and the traffic is handled in a complete democratic
manner. That is, in our scheme all nodes are equal. The
routing decisions are performed according to nodes
connectivity structure together with a proper routing
performance metric (for example, minimum hops metric).

Unlike other implicit clustering schemes, in our solution,
nodes do not have geographic location information on the
other nodes (coordination). In addition, we use the same
routing protocols for routing inside and outside the
connectivity components.

III. DEFINITIONS

Let G=(V,E) be a weighted undirected connected multi-
graph without loops induced from a specific network
topology, where every vertex represents a node in the
network and every edge between two vertices represents a
wireless link between a pair of corresponding nodes that are
in communication range.

A minimal edge-cut C of G is an edge set whose removal
disconnects G and removal of any proper part of C does not
disconnect G. If |C|= k then C is called a k-cut. If C={e}
(that is |C|=1) then the edge e is called a bridge. Two
vertices {u,v} are called k-edge-connected if no k'-cut, k' <
k, separates u from v. It is well known that the property
``there exist k edge-disjoint paths between u and v in G''
defines the same relation as k-edge-connectivity. The
equivalence classes of this relation are called the k-edge-
connected classes (k-classes for short). The partition of V
into the (k+1)-classes is a refinement of the partition of V
into k-classes. Thus, the connectivity classes have a
hierarchical structure.

For a k-connected graph, its connectivity model
represents both its (k+1)-classes and its k-cuts. For example,
the well known bridge-tree model of a 1-connected graph
represents its 1-cuts (the so-called bridges) and its 2-classes
[16]. Similar, the cycle-tree connectivity model of a 2-
connected graph represents its 2-cuts and its 3-classes [13]
[14]. These connectivity models are, in fact, special cases of
a more general connectivity model called the cactus-tree
model [11]. The cactus-tree model [11] of a k-connected
graph represents both its (k+1)-classes and its k-cuts.

For the simplicity of this short presentation, we assume
that the network is not highly connected and use the bridge-
tree model of [16] together with the cycle-tree model of [14]
[15] for each 2-class in the graph. This joined two-level
connectivity model is, in fact, a special case of the two-level
cactus-tree model of [12]. Using the general model of [12],
our result can be easily adjusted to highly connected
networks.

By definition, the size of this connectivity model is O(n),
where n is the number of nodes in the network. If n is very
large, it is possible to divide the network according to
geographic location and to define proper gateways nodes to
connect the networks parts.

Let S be a sub-set of V. The induced graph G(S) consists
of the vertices S and all edges in E connecting vertices in S.
For a 3-class S, the associated 3-componnet graph is the
induced graph G(S) together with virtual edges. The virtual
edges represents cycles in the cycle-tree model that are
attached to distinct vertices of S. The 3-commponent mimics
the connectivity structure of S in a localized fashion [13].

174Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

IV. CONNECTIVITY MODEL DYNAMICS

Each node in the network holds a view. The view of node
v includes:

 The global connectivity model of the network (the
bridge-tree and the cycle-tree of each 2-class),

 Its local connectivity model: the cactus-tree model
of v‟s 3-componnent graph.

 The set of v‟s neighbors

In this section, we describe the dynamics of the
connectivity model. The vertex insert and edge insert
procedures are given in [12]. Here, we provide an intuitive
explanation, and present two examples for the model
completeness. For formal description of these procedures,
see [12] [14]. We add new procedures to support vertex
delete and edge delete. Note that the new transformations
described here are designed for the simple case of low
connectivity only.

Regarding a new vertex insertion, the vertex is inserted
as a singleton. Meaning, until edge insertion it act as an
isolated node. The corresponding connectivity models are
trivial.

Regarding a new edge e=(u,v) insertion (new link
establishment), there are four cases according to the relation
between the vertices u and v. The four cases are: u and v
belong to distinct 1-classes, u and v belong to the same 1-
class but to distinct 2-classes, u and v belong to the same 2-
class but to distinct 3-classes, u and v belong to the same 3-
class.

The change in the connectivity models due to new link
establishment between two nodes belonging to separated
networks (1-classes) is a simple connection of the two
representing models by adding a new bridge associated with
the new link e. To connect nodes with higher connectivity a
simple squeeze operation is performed on the path-of-edges-
and-cycles, in which the set of all nodes along the path are
replaced by a single node [12] [14].

The following new procedure defines the vertex deletion
operation.

Void VertexDelete(v)

Begin

1: for every edge e attached to v do {

2: remove edge (e); }

3: release vertex v;

End

This procedure functionality includes releasing of all the
edges attached to this vertex and then releasing the vertex
resources (memory etc.).

Theorem 1

The procedure VertexDelete(v) correctly updates the

connectivity models.

Regarding an edge deletion operation (see EdgeDelete
procedure below), we have three cases. Assume that the
edge e=(u,v) needs to be deleted. First, the vertices u and v
can belong to the same 1-class but to distinct 2-classes.
Second, the vertices u and v can belong to the same 2-class

but to distinct 3-classes. In the third case, u and v belong to
the same 3-class.

Consider the first case (u and v belong to the same 1-
class but to distinct 2-classes).

Lemma 2

Assume that e=(u,v), u and v belong to the same 1-class but

to distinct 2-classes. Then, e is a bride in the graph and has

direct representation in the bridge-tree model.

Proof

By bridge definition.

In this case (steps 1-3 in the EdgeDelete procedure
below), the global connectivity model is changed by
removing the edge which represents e in the model. The
local connectivity models of u and v are not affected since u
and v do not belong to the same 3-class (component).

Consider the second case (u and v belong to the same 2-
class, but to distinct 3-classes).

Lemma 3

Assume that e=(u,v), u and v belong to the same 2-class but

to distinct 3-classes. Then, e has direct representation in the

cycle-tree model of the 2-class.

Proof

Since u and v belong to the same 2-class but to distinct 3-

class there are exactly two edge-paths between u and v. One

path consists of {e} and let us denotes the second one by P.

Removing e together with any edge from P result in a

minimal cut that separates u and v and must be represented

in the cycle-tree. That is, the cycle L= {e}U{P} is in the

cycle-tree.

In this case (steps 4-6 in the EdgeDelete procedure
below), the global connectivity model is changed by
transforming the cycle which include the edge which
represents e into a path of bridges by removing this edge.
The local connectivity models of u and v are not affected
since u and v do not belong to the same 3-class and to the
same 3-componnent. In addition, by definition, the cycle L is
not represented by a virtual edge in the 3-componnets of u
and v.

 Consider the third case (u and v belong to the same 3-
class, denoted by S). Removing an edge in this case might
result a fragmentation of the 3-class S. Formally, now we
have two cases: u and v can belong to the same 4-class or
they can belong to distinct 4-classes. If u and v belong to the
same 4-class (steps 18-23 in the EdgeDelete procedure
below) then the global connectivity model will not change
(the class S is still a 3-class) as a result of removing e. Only
the local cactus-tree might change as follows. The node that
represents S is replaced with a cactus-tree (implanting the
model instead of the node). This is done via 3-componnent
discovery operation in addition to virtual edges that result
from the cycle-tree.

In the second case (steps 7-17 in the EdgeDelete
procedure below), the node that represents S in the global

175Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

connectivity model, should be replaced with a cycle-tree that
will represent S as a 2-class (implant the model instead of
the node). That is, if u and v belong to distinct 4-classes then
the removal of e will change the 3-class S and turn it to a 2-
class. The cycle-tree that represents S is generated from the
cactus-tree model of the 3-componnent associated with S in
the following manner. Let T be a path in the cactus-tree
between the node that represent the 4-class of u and the node
that represents the 4-class of v. Every 3-cut that is
represented by an edge on this path is now a 2-cut. Thus, the
cycle-tree of S is a sequence of cycles (each of size 2). All
nodes in the cactus-tree before the path T stay in one 3-class,
and all nodes after this path stay in one 3-class. Each node in
the path T is now a 3-class. In addition, each node in these
new 3-classes should construct a new local connectivity
model: the cactus-tree of its new 3-class. This is done via 3-
componnent discovery operation in addition to virtual edges
that result from the cycle-tree.

Void EdgeDelete(u,v)

Begin

1: if (u and v belong to the same 1-class

 but to distinct 2-classes) do {

2: Remove e from the bridge-tree;

3: Update u and v global models;}

4: else if (u and v belong to the same

 2-class but to distinct 3-classes) do

{

5: Remove e from the cycle-tree;

6: Update u and v global models; }

 7: else if (u and v belong to the same

 3-class but to distinct 4-classes) do

{

8: find the path between u’s 4-class and

 v’s 4-class in the cactus-tree;

9: create the proper cycle-tree from the

 cactus-tree;

10: implant the new cycle-tree in the

 global model;

11: Update the global models of all nodes

 in the 3-class;

12: for every new 3-class created do{

13: discover the 3-componnet;

14: add virtual edges according to the

 cycle-tree;

15: calculate the cactus-tree;

16: for every node in this 3-class do{

17: Update the local model; } } }

18: else if (u and v belong to the same

 4-class) do {

19: discover the 3-componnet;

20: add virtual edges according to the

 cycle-tree;

21: calculate the cactus-tree;

22: for every node in this class do {

23: Update the local model; } }

End

The example plotted in Figure 1 describes a delete edge
operation, where e=(u,v) and the vertices u and v belong to
the same 3-class (denoted by N2 in the figure). The induced
graph is presented in (a); the global connectivity-model of

this network is presented in (b), it consists of all 1 and 2 –
minimal cuts of the graph. In (c), the 3-componnent
corresponding to the 3-class N2 is presented together with
the local model of the vertices in the 3-class N2. In addition,
we can see the transformation of this 3-class due to the
removal of the edge e, with the proper transformation of its
cactus-tree model (representing the minimal 3-cuts of 3-
class N2) into a cycle-tree (representing the minimal 2-cuts
of 3-class N2). Finally, (d) shows the updated global
connectivity model.

Theorem 4

The procedure EdgeDelete(v) correctly updates the

connectivity models.

V. THE DEMOCRATIC ROUTING SCHEME

In this section, we describe the democratic routing
scheme. As mentioned before, each node has its view. The
node uses the view to decide which of its topology changes
should be announced and the exact set of nodes that should
get the specific update.

Figure 1. Deleting an edge between vertices belonging to the same 3-

class but to distinct 4-classes

176Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

When a new node joins the network it performs an Insert
vertex operation. As a result, its view is initiated. Next, the
node discovers its neighbors. For each link establishment
between the node and an adjusted node, the node received
the neighbor‟s global and local connectivity model. Once an
update is required on the global connectivity model, an
„update global model‟ message is broadcast to all nodes.
This message includes the origin node identity, a sequence
number generated in the origin node, and the update
description. An important observation is that a node which
receives two distinct „update global model‟ messages can
join these messages into one message including both updates
and by that to reduce the routing overhead.

Once an update is required on the local connectivity
model, an „update local model‟ message is send to the nodes
in the 3-componnent only. If there are no updates to the
connectivity models, no updates messages are sent. In
component discovery message, each node which belong to
the specific 3-class responses with its neighbors set.

As a node move from one place to another its links
changes. Some new links are added, some old links are been
released. The node continues to update the necessary routing
information and the truly important network topology
changes are continually monitored.

Since the connectivity models can be decomposed

according to the network topology, it is possible to divide

the network to sub-networks and to define the models for

each part. Using special nodes as gateways can solve the

problem of connecting the sub-networks.

VI. CONCLUSION AND FUTURE WORK

In this on-going research, we proposed a new democratic
routing scheme. In this scheme all nodes are equals and
routing decisions are based on the nodes view of the
network. To limit the routing algorithm overhead, the nodes
use connectivity model to decide which node should be
informed of a topology change if any.

Future work includes implementation of this scheme and
evaluation of the algorithm performance comparing to others
scheme for scalable routing in large wireless mesh networks.

REFERENCES

[1] Akyildiz, I., F., Wang, X., and Wang W., "Wireless mesh
networks: a survey", Computer Networks 47 (2005) pp. 445–
487, Jan 2005.

[2] Belding-Royer, E., M., “Multi-level hierarchies for scalable
ad hoc routing”, ACM/Kluwer Wireless Networks vol. 9 issue
5 pp. 461–478, 2003.

[3] Ben-Asher, Y., Feldman, S., Feldman M., and Gurfil, P.,
"Scalability Issues in Ad-Hoc Networks: Metrical Routing
Versus Table-Driven Routing", Wireless Pers Commun
(2010) 52:423–447.

[4] Ben-Asher, Y., Feldman, S., and Feldman, M. "Ad-hoc
routing using virtual coordinates based on rooted trees", In
IEEE SUTC, Taiwan, 2006.

[5] Chiang, C., and Gerla, M., “Routing and Multicast in
Multihop, Mobile Wireless Networks,” Proc. IEEE ICUPC
‟97, San Diego, CA, Oct. 1997.

[6] Haas, Z. J. and Pearlman, M. R., “The Performance of Query
Control Schemes for the Zone Routing Protocol,” ACM/IEEE
Trans. Net., vol. 9, no. 4, Aug. 2001, pp. 427–38.

[7] Pei, G. et al., “A Wireless Hierarchical Routing Protocol with
Group Mobility,” Proc. IEEE WCNC ‟99, New Orleans, LA,
Sept. 1999.

[8] Hagouel, J., “Issues in Routing for Large and Dynamic
Networks”, PhD thesis, Columbia Univ., May 1983

[9] Saha, A., K., Johnson, D., B., ”Self-organizing hierarchical
routing for scalable ad hoc networking”, Technical Report,
TR04-433, Department of Computer Science, Rice University

[10] Tsuchiya, P., F., “The landmark hierarchy: A new hierarchy
for routing in very large networks”, ACM SIGCOMM
Comput. Commun. Review 18, 4, pp. 35–42, August 1988.

[11] Dinic, E., A., Karzanov A., V., and Lomonosov, M. V., “On
the structure of the system of minimum edge cuts in a graph”,
Studies in Discrete Optimization, A. A. Fridman (Ed.),
Nauka, Moscow, 1976, pp. 290-306 (in Russian).

[12] Dinitz, Ye., and Nutov, Z., “A 2-level cactus tree model for
the minimum and minimum+1 edge cuts in a graph and its
incremental maintenance'', Proc. the 27th Symposium on
Theory of Computing, 1995, pp. 509-518.

[13] Dinitz, Ye., “The 3-edge components and the structural
description of all 3-edge cuts in a graph'', Proc. 18th
International Workshop on Graph-Theoretic Concepts in
Computer Science (WG92), Lecture Notes in Computer
Science, v.657, Springer-Verlag, 1993, pp. 145-157.

[14] Dinitz Ye., and Westbrook, J., “Maintaining the Classes of 4-
Edge-Connectivity in a Graph On-Line'', Algorithmica,
Volume 20, Number 3, 1998, pp. 242-276.

[15] Galil, Z., and Italiano, G., F., “Maintaining the 3-edge-
connected components of a graph on line”, SIAM J.
Computing 22(1), 1993, pp. 11-28.

[16] Westbrook, J., and Tarjan, R., E., “Maintaining bridge-
connected and biconnected components on line”,
Algorithmica, 7, 1992, pp. 433-464.

177Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

