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Abstract  —  We propose a new method for scalable routing 

in large wireless mesh network: the democratic routing scheme. 

In this new schema, the nodes are divided into components 

according to their connectivity classes. As oppose to 

hierarchical routing, here, all nodes in the component are 

equal. The routing decisions are performed according to nodes 

connectivity structure together with a proper routing 

performance metric. Every node holds a view including its 

neighbor set and a dynamic connectivity model of the network. 

The node uses the view to understand which of its topology 

changes should be announced and to identify the set of nodes 

that should get this specific update.  In this way, the routing 

overhead is significantly reduced, and, yet, the necessary 

routing information is available. 

Index Terms — Wireless mesh network; scalable routing 

algorithms; connectivity models. 

I. INTRODUCTION 

Various wireless networks have evolved into the next 
generation to provide better services. A key technology, 
Wireless Mesh Networks (WMN), has emerged recently [1]. 
A WMN is dynamically self-organized and self-configured, 
with the (possibly mobile) nodes in the network 
automatically establishing and maintaining mesh 
connectivity among themselves. In such systems, the implied 
routing protocol directly affects scalability, efficiency, and 
reliability. 

When the network is large, hierarchical routing protocols 
tend to achieve better performance [2-10]. Hierarchical 
routing protocols build a hierarchy of nodes, typically 
through clustering techniques. These protocols divide the 
nodes in the network into backbone nodes and regular nodes 
arranged in clusters. Every cluster uses a cluster head node 
that is a part of the backbone. The cluster head node acts as 
a local coordinator of transmissions within the cluster and is 
responsible for keeping and updating routing information 
beyond the cluster. However, explicit clustering schemes 
have several drawbacks [3]:  

 Clustering usually requires that the cluster heads 
will be more powerful (battery life, transmission 
range and capacity) than the regular nodes in the 
clusters. Unless being intentionally designed so, the 
cluster head may become a bottleneck.  

 The complexity of maintaining the hierarchy 
compromises the performance of the routing 
protocol. There is a significant overhead in the 
maintenance of the cluster (e.g., electing the cluster 
head and maintaining the cluster‟s members); 

 The centralization and load of the cluster-heads 
routes; 

 The routing path may be longer than a direct path;  

 Clustered protocols are sensitive to failures of the 
cluster heads;  

 The fragmentation of the network nodes into 
clusters may result in a large number of clusters.  

 Change of cluster heads results in routing changes 
and hence generates routing overhead. 

In this research, we propose a completely different 
method for scalable routing in large WMN, the democratic 
routing scheme. In this new schema every node holds a 
view. The view includes the node neighbor set and a 
dynamic connectivity model of the network. Using its view, 
the node can keep updated information on the network and 
can perform educated routing decisions. The dynamic 
connectivity model represents the network topology in a 
compact structure (O(n), where n is the number of nodes in 
the network) and can be updated in an efficient manner to 
capture the dynamic changes in the network topology, as 
nodes move from one place to another while establishing 
and releasing links.  On one hand, this model should be 
small to avoid unnecessary updates (meaning, high 
overhead); on the other hand it should be detailed enough to 
allow good routing decisions. The dynamic connectivity 
model is updated whenever an essential change in the 
network accrues. The node uses the view to understand 
which of its topology changes (for example, link 
establishment or link release) should be announced and what 
is the exact set of nodes that should get the specific update.  
In this way the routing algorithm overhead is significantly 
reduced and, yet, the necessary routing information is 
available.  

We choose to describe our new concept using an 
extension of the cactus-tree model of Dinitz et al. [11] and 
the two-level cactus-tree model [12] to enjoy their elegancy 
and simplicity. However, these models support incremental 
maintenance only and they do not support node-deletion and 
edge-deletion (link release). Thus, we extend the models to 
support node-deletion and edge-deletion for low 
connectivity levels. 

This paper is organized as follows. In the next section, 
related works are listed. In section III, basic definitions are 
described. Section IV presents the connectivity model 
dynamics.  Section V describes the new democratic routing 
scheme. Finally, conclusions and further research topics are 
given in Section VI.  
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II. RELATED WORK  

Typically, when wireless network size increase flat 
routing schemes become infeasible because of link and 
processing overhead. One way to solve this problem and to 
produce scalable solutions is hierarchical routing. The 
common way of building hierarchy is to group nodes 
geographically close to each other into explicit clusters. In 
explicit clustering schemes, each cluster has a leading node 
(cluster head) to communicate to other nodes on behalf of 
the cluster. An alternate way is to have implicit hierarchy. In 
this way, each node has a local scope. Different routing 
strategies are used inside and outside the scope.  

Cluster head-Gateway Switch Routing (CGSR) [7] is 
typical of explicit cluster-based hierarchical routing. A 
stable clustering algorithm, Least Cluster head Change 
(LCC), is used to partition the whole network into clusters, 
and a cluster head is elected in each cluster. A mobile node 
that belongs to two or more clusters is a gateway connecting 
the clusters. Packets are routed through paths having a 
format of “Cluster head–Gateway Cluster head–Gateway…” 
between any source and destination pairs. 

Additional well known explicit clustering routing 
protocol is the Hierarchical State Routing (HSR) [5]. It is a 
multilevel clustering-based Link State routing protocol. It 
maintains a logical hierarchical topology by using the 
clustering scheme recursively. Nodes at the same logical 
level are grouped into clusters. The elected cluster heads at 
the lower level become members of the next higher level. 
These new members in turn organize themselves in clusters, 
and so on. The cluster head summarizes link state 
information within its cluster and propagates it to the 
neighbor cluster heads (via the gateways). 

The basic idea in the Zone Routing Protocol (ZRP) [6] is 
that each node has a predefined zone centered at itself in 
terms of number of hops (implicit cluster). For nodes within 
the zone, it uses proactive routing protocols to maintain 
routing information. For those nodes outside of its zone, it 
does not maintain routing information in a permanent base. 
Instead, on-demand routing strategy is adopted when inter-
zone connections are required. 

A recent study [3] considers a routing technique which 
can implicitly cause nodes that are in the “center” of dense 
areas to act as cluster heads (“natural clustering”). Using the 
Metrical Routing Algorithm (MRA) [4], it maintains a 
dynamic set of coordinates to every node. Thus, if the 
coordinates of the destination are known, the MRA sends a 
message to this destination through the shortest path based 
on the estimated metrical distances.   

We propose a new democratic routing scheme which can 
be classified as an implicit clustering.  In this scheme, the 
nodes are logically divided into their connectivity classes 
(components). The components do not have component 
heads and the traffic is handled in a complete democratic 
manner. That is, in our scheme all nodes are equal. The 
routing decisions are performed according to nodes 
connectivity structure together with a proper routing 
performance metric (for example, minimum hops metric). 

Unlike other implicit clustering schemes, in our solution, 
nodes do not have geographic location information on the 
other nodes (coordination). In addition, we use the same 
routing protocols for routing inside and outside the 
connectivity components.  

III. DEFINITIONS  

Let G=(V,E) be a weighted undirected connected multi-
graph without loops induced from a specific network 
topology, where every vertex represents a node in the 
network and every edge between two vertices represents a 
wireless link between a pair of corresponding nodes that are 
in communication range.  

A minimal edge-cut C of G is an edge set whose removal 
disconnects G and removal of any proper part of C does not 
disconnect G. If |C|= k then C is called a k-cut. If C={e} 
(that is |C|=1) then the edge e is called a bridge.  Two 
vertices {u,v} are called k-edge-connected if no k'-cut, k' < 
k, separates u from v. It is well known that the property 
``there exist k edge-disjoint paths between u and v in G'' 
defines the same relation as k-edge-connectivity. The 
equivalence classes of this relation are called the k-edge-
connected classes (k-classes for short). The partition of V 
into the (k+1)-classes is a refinement of the partition of V 
into k-classes. Thus, the connectivity classes have a 
hierarchical structure.  

For a k-connected graph, its connectivity model 
represents both its (k+1)-classes and its k-cuts. For example, 
the well known bridge-tree model of a 1-connected graph 
represents its 1-cuts (the so-called bridges) and its 2-classes 
[16]. Similar, the cycle-tree connectivity model of a 2-
connected graph represents its 2-cuts and its 3-classes [13] 
[14]. These connectivity models are, in fact, special cases of 
a more general connectivity model called the cactus-tree 
model [11]. The cactus-tree model [11] of a k-connected 
graph represents both its (k+1)-classes and its k-cuts.  

For the simplicity of this short presentation, we assume 
that the network is not highly connected and use the bridge-
tree model of [16] together with the cycle-tree model of [14] 
[15] for each 2-class in the graph. This joined two-level 
connectivity model is, in fact, a special case of the two-level 
cactus-tree model of [12]. Using the general model of [12], 
our result can be easily adjusted to highly connected 
networks.  

By definition, the size of this connectivity model is O(n), 
where n is the number of nodes in the network. If n is very 
large, it is possible to divide the network according to 
geographic location and to define proper gateways nodes to 
connect the networks parts.    

Let S be a sub-set of V. The induced graph G(S) consists 
of the vertices S and all edges in E connecting vertices in S. 
For a 3-class S, the associated 3-componnet graph is the 
induced graph G(S) together with virtual edges. The virtual 
edges represents cycles in the cycle-tree model that are 
attached to distinct vertices of S. The 3-commponent mimics 
the connectivity structure of S in a localized fashion [13].  
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IV. CONNECTIVITY MODEL DYNAMICS 

Each node in the network holds a view. The view of node 
v includes: 

 The global connectivity model of the network (the 
bridge-tree and the cycle-tree of each 2-class), 

 Its local connectivity model: the cactus-tree model 
of v‟s 3-componnent graph.   

 The set of v‟s neighbors  

In this section, we describe the dynamics of the 
connectivity model. The vertex insert and edge insert 
procedures are given in [12]. Here, we provide an intuitive 
explanation, and present two examples for the model 
completeness. For formal description of these procedures, 
see [12] [14]. We add new procedures to support vertex 
delete and edge delete. Note that the new transformations 
described here are designed for the simple case of low 
connectivity only.  

Regarding a new vertex insertion, the vertex is inserted 
as a singleton. Meaning, until edge insertion it act as an 
isolated node. The corresponding connectivity models are 
trivial. 

Regarding a new edge e=(u,v) insertion (new link 
establishment), there are four cases according to the relation 
between the vertices u and v.  The four cases are: u and v 
belong to distinct 1-classes, u and v belong to the same 1-
class but to distinct 2-classes, u and v belong to the same 2-
class but to distinct 3-classes, u and v belong to the same 3-
class.  

The change in the connectivity models due to new link 
establishment between two nodes belonging to separated 
networks (1-classes) is a simple connection of the two 
representing models by adding a new bridge associated with 
the new link e. To connect nodes with higher connectivity a 
simple squeeze operation is performed on the path-of-edges-
and-cycles, in which the set of all nodes along the path are 
replaced by a single node [12] [14].  

The following new procedure defines the vertex deletion 
operation.  

Void VertexDelete(v) 

Begin  

1: for every edge e attached to v do {  

2:  remove edge (e); } 

3: release vertex v; 

End 

This procedure functionality includes releasing of all the 
edges attached to this vertex and then releasing the vertex 
resources (memory etc.). 

Theorem 1 

The procedure VertexDelete(v) correctly updates the 

connectivity models.  

Regarding an edge deletion operation (see EdgeDelete 
procedure below), we have three cases. Assume that the 
edge e=(u,v) needs to be deleted. First, the vertices u and v 
can belong to the same 1-class but to distinct 2-classes.  
Second, the vertices u and v can belong to the same 2-class 

but to distinct 3-classes. In the third case, u and v belong to 
the same 3-class.  

Consider the first case (u and v belong to the same 1-
class but to distinct 2-classes).  

Lemma 2 

Assume that e=(u,v), u and v belong to the same 1-class but 

to distinct 2-classes. Then, e is a bride in the graph and has 

direct representation in the bridge-tree model. 

Proof 

By bridge definition. 

In this case (steps 1-3 in the EdgeDelete procedure 
below), the global connectivity model is changed by 
removing the edge which represents e in the model. The 
local connectivity models of u and v are not affected since u 
and v do not belong to the same 3-class (component).   

Consider the second case (u and v belong to the same 2-
class, but to distinct 3-classes).  

Lemma 3 

Assume that e=(u,v), u and v belong to the same 2-class but 

to distinct 3-classes. Then, e has direct representation in the 

cycle-tree model of the 2-class. 

Proof 

Since u and v belong to the same 2-class but to distinct 3-

class there are exactly two edge-paths between u and v. One 

path consists of {e} and let us denotes the second one by P. 

Removing e together with any edge from P result in a 

minimal cut that separates u and v and must be represented 

in the cycle-tree. That is, the cycle L= {e}U{P} is in the 

cycle-tree.  

In this case (steps 4-6 in the EdgeDelete procedure 
below), the global connectivity model is changed by 
transforming the cycle which include the edge which 
represents e into a path of bridges by removing this edge. 
The local connectivity models of u and v are not affected 
since u and v do not belong to the same 3-class and to the 
same 3-componnent. In addition, by definition, the cycle L is 
not represented by a virtual edge in the 3-componnets of u 
and v.  

  Consider the third case (u and v belong to the same 3-
class, denoted by S). Removing an edge in this case might 
result a fragmentation of the 3-class S.  Formally, now we 
have two cases: u and v can belong to the same 4-class or 
they can belong to distinct 4-classes. If u and v belong to the 
same 4-class (steps 18-23 in the EdgeDelete procedure 
below) then the global connectivity model will not change 
(the class S is still a 3-class) as a result of removing e. Only 
the local cactus-tree might change as follows. The node that 
represents S is replaced with a cactus-tree (implanting the 
model instead of the node). This is done via 3-componnent 
discovery operation in addition to virtual edges that result 
from the cycle-tree. 

In the second case (steps 7-17 in the EdgeDelete 
procedure below), the node that represents S in the global 
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connectivity model, should be replaced with a cycle-tree that 
will represent S as a 2-class (implant the model instead of 
the node). That is, if u and v belong to distinct 4-classes then 
the removal of e will change the 3-class S and turn it to a 2-
class. The cycle-tree that represents S is generated from the 
cactus-tree model of the 3-componnent associated with S in 
the following manner. Let T be a path in the cactus-tree 
between the node that represent the 4-class of u and the node 
that represents the 4-class of v. Every 3-cut that is 
represented by an edge on this path is now a 2-cut. Thus, the 
cycle-tree of S is a sequence of cycles (each of size 2). All 
nodes in the cactus-tree before the path T stay in one 3-class, 
and all nodes after this path stay in one 3-class. Each node in 
the path T is now a 3-class.  In addition, each node in these 
new 3-classes should construct a new local connectivity 
model: the cactus-tree of its new 3-class. This is done via 3-
componnent discovery operation in addition to virtual edges 
that result from the cycle-tree.  

Void EdgeDelete(u,v) 

Begin  

1: if (u and v belong to the same 1-class  

       but to distinct 2-classes) do { 

2: Remove e from the bridge-tree; 

3: Update u and v global models;}  

4: else if (u and v belong to the same  

       2-class but to distinct 3-classes) do 

{ 

5: Remove e from the cycle-tree; 

6: Update u and v global models;       } 

  7: else if (u and v belong to the same  

       3-class but to distinct 4-classes) do 

{ 

8: find the path between u’s 4-class and 

       v’s 4-class in the cactus-tree; 

9: create the proper cycle-tree from the 

       cactus-tree; 

10:  implant the new cycle-tree in the    

       global model; 

11:  Update the global models of all nodes 

       in the 3-class; 

12:  for every new 3-class created do{ 

13:     discover the 3-componnet; 

14:    add virtual edges according to the  

            cycle-tree; 

15:    calculate the cactus-tree; 

16:     for every node in this 3-class do{ 

17:  Update the local model; } } } 

18: else if (u and v belong to the same  

       4-class) do { 

19:  discover the 3-componnet; 

20: add virtual edges according to the  

            cycle-tree; 

21: calculate the cactus-tree; 

22:  for every node in this class do { 

23: Update the local model; } } 

End 

The example plotted in Figure 1 describes a delete edge 
operation, where e=(u,v) and the vertices u and v belong to 
the same 3-class (denoted by N2 in the figure). The induced 
graph is presented in (a); the global connectivity-model of 

this network is presented in (b), it consists of all 1 and 2 – 
minimal cuts of the graph. In (c), the 3-componnent 
corresponding to the 3-class N2 is presented together with 
the local model of the vertices in the 3-class N2. In addition, 
we can see the transformation of this 3-class due to the 
removal of the edge e, with the proper transformation of its 
cactus-tree model (representing the minimal 3-cuts of 3-
class N2) into a cycle-tree (representing the minimal 2-cuts 
of 3-class N2). Finally, (d) shows the updated global 
connectivity model. 

Theorem 4 

The procedure EdgeDelete(v) correctly updates the 

connectivity models.  

V. THE DEMOCRATIC ROUTING SCHEME  

In this section, we describe the democratic routing 
scheme. As mentioned before, each node has its view. The 
node uses the view to decide which of its topology changes 
should be announced and the exact set of nodes that should 
get the specific update.   
 
 

 

 
Figure  1.  Deleting an edge between vertices belonging to the same 3-

class but to distinct 4-classes 

176Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications



 

When a new node joins the network it performs an Insert 
vertex operation. As a result, its view is initiated. Next, the 
node discovers its neighbors. For each link establishment 
between the node and an adjusted node, the node received 
the neighbor‟s global and local connectivity model. Once an 
update is required on the global connectivity model, an 
„update global model‟ message is broadcast to all nodes. 
This message includes the origin node identity, a sequence 
number generated in the origin node, and the update 
description. An important observation is that a node which 
receives two distinct „update global model‟ messages can 
join these messages into one message including both updates 
and by that to reduce the routing overhead.  

Once an update is required on the local connectivity 
model, an „update local model‟ message is send to the nodes 
in the 3-componnent only. If there are no updates to the 
connectivity models, no updates messages are sent.   In 
component discovery message, each node which belong to 
the specific 3-class responses with its neighbors set.  

As a node move from one place to another its links 
changes. Some new links are added, some old links are been 
released. The node continues to update the necessary routing 
information and the truly important network topology 
changes are continually monitored.    

Since the connectivity models can be decomposed 

according to the network topology, it is possible to divide 

the network to sub-networks and to define the models for 

each part. Using special nodes as gateways can solve the 

problem of connecting the sub-networks.  

VI. CONCLUSION AND FUTURE WORK   

In this on-going research, we proposed a new democratic 
routing scheme. In this scheme all nodes are equals and 
routing decisions are based on the nodes view of the 
network. To limit the routing algorithm overhead, the nodes 
use connectivity model to decide which node should be 
informed of a topology change if any.  

Future work includes implementation of this scheme and 
evaluation of the algorithm performance comparing to others 
scheme for scalable routing in large wireless mesh networks.  
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