
Efficient Interpolation Architecture for Soft-Decision List Decoding of Reed-

Solomon Codes

Sungman Lee

The MTH

426-5, Gasan-dong, Kumcheon-gu

Seoul, Korea

e-mail: orozi318@naver.com

Taegeun Park

The Catholic University of Korea

San43-1, Yokok2-dong, Bucheon-shi,

Kyungki-do, Korea

e-mail: parktg@catholic.ac.kr

Abstract— Recently, algebraic soft-decision decoding algorithm

for RS codes that can correct the errors beyond the error

correcting bound has been proposed. The main task in the

algorithm is the weighted interpolation of a bivariate

polynomial that requires intensive computations. In this paper,

we propose an efficient architecture with low hardware

complexity for interpolation in soft-decision list decoding of

Reed-Solomon codes. The proposed architecture processes the

candidate polynomial in such a way that the terms of X degrees

are processed in serial and the terms of Y degrees are

processed in parallel. The processing order of candidate

polynomials adaptively changes to increase the efficiency of

memory access for coefficients. The proposed interpolation

architecture for the (255, 239) RS list decoder is designed and

synthesized using the DonbuAnam 0.18um standard cell

library. The maximum operating clock frequency is 200MHz

and the synthesized gate count is about 25.1K gates in two-

input equivalent NAND gates.

Keywords—VLSI architecture; Polynomial interpolation;

Reed-Solomon codes; Soft-decision list decoding.

I. INTRODUCTION

Among the various kinds of error correcting codes in
digital communication systems, Reed-Solomon (RS) codes
are widely used block codes due to their excellent burst
error-correcting capabilities. It is well known that an
RS codes have message symbols and coded symbols,
where each symbol belongs to . An RS
codes can correct symbols and erasures with
 . Classical RS decoding scheme can be
thought of as the bounded minimum distance (BMD)
algorithm that decodes the received codewords through the
channel by hard-decision. Efficient algebraic hard-decision
decoding algorithms, such as Berlekamp-Massey algorithm
and Euclid algorithm [1] have been widely used to decode
the Reed-Solomon codes.

Recently, Guruswami-Sudan (GS) [2] proposed a
polynomial-time list decoding algorithm that can correct the
errors beyond the error correcting bound. The proposed list

This work was partially supported by the Korea Research Foundation

Grant funded by the Korean Government (MOEHRD, Basic Research

Promotion Fund) (KRF-2008-313-D00743)

This work was partially supported by the Research Fund, 2011 of The
Catholic University of Korea.

decoding algorithm has a decoding radius

and corrects up to errors for all code rates [2].
With reliable soft-decision data, such as probabilistic channel
information, RS decoding can achieve better performance in
correcting errors. Koetter and Vardy (KV) [3] generalized
the list decoding algorithm that can decode, as long as a
certain weighted condition is satisfied. The soft-decision list
decoding algorithm consists of two major processes:
interpolation process with KV front end and factorization
process. The interpolation process is quite computationally
intensive with large latency, so it may suffer low
performance. The re-encoding scheme can be applied to
reduce the number of iterations for interpolation [4].

Many researchers have proposed a number of the
interpolation architectures for the soft-decision RS decoder
[5][6][7][13][14]. Most of the architectures proposed so far
try to increase the decoding performance by parallelizing the
processes for the candidate polynomials. This requires
considerable hardware with memory modules that may be
hard to apply in some applications. Ahmed, Koetter, and
Shanbhag proposed the point-serial algorithm that calculates
all the discrepancy coefficients corresponding to a particular
interpolation point in parallel [5]. Wang and Ma represent
the finite field numbers in both regular and power formats,
i.e., hybrid-format, that can reduce the hardware complexity
for the DCC block and parallelize the decoder architecture
[6]. The parallel architecture [7] proposed by Gross,
Kschischang, and Gulak embeds both a binary tree and a
linear array in a 2–D array processor, enabling fast
polynomial evaluation operations. Zhu et. al. have proposed
backward interpolation, which eliminates interpolation points
or reduces interpolation multiplicities [13]. The proposed
architectures share computational units with forward
interpolation architectures to reduce the hardware complexity.
In [14], new techniques are employed to achieve high-speed
interpolation for the iterative bit-level generalized minimum
distance (BGMD) algebraic soft-decision decoding. They
also proposed architectures to efficiently integrate the
combined and backward interpolation techniques.

In this paper, we propose an efficient architecture with
low hardware complexity for interpolation in a soft-decision
list decoding of Reed-Solomon codes. To reduce hardware
cost, the proposed architecture processes the terms of
degrees in the candidate polynomial serially, whereas it
processes the terms of degrees in the candidate

25Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

polynomial in parallel. During the polynomial update in the
interpolation process, the appropriate polynomial coefficients
should be read efficiently from memory. The processing
order of candidate polynomials adaptively changes to
increase the efficiency of memory access for coefficients.
This scheduling minimizes the usage of internal registers and
the number of memory accesses and simplifies the memory
structure by combining and storing data in memory. Also,
the proposed architecture shows high hardware efficiency,
since each module is balanced in terms of latency and the
modules are maximally overlapped in the schedule.

II. SOFT-DECISION LIST DECODING OF RS CODES

An RS codes defined in the Galois field
have codewords of length , where is a
positive integer and is the number of information symbols
in the codeword. RS codes can be obtained by evaluating
certain subspaces of in a set of points

 . Therefore, RS codes

 of length and dimension is defined as

 (1)

Guruswami and Sudan verified that the generalized
Reed-Solomon decoding problem reduces to the polynomial
reconstruction problem [2]. Now, we define the essential
elements of the soft decision list decoding algorithm. The
bivariate polynomial over is defined as in [3].

 ,

 . (2)
We define the weighted degree of a polynomial, as

follows.

Definition 1: Let

 be a

bivariate polynomial over , and let , be real

numbers. Then, the -weighted degree of ,

denoted
 , is the maximum over all

numbers such that .

Definition 2: A bivariate polynomial is said to

pass through a point with multiplicity
, if the

shifted polynomial contains a monomial

of degree
 and does not contain a monomial of degree

less than
. Equivalently, the point is said to

be a zero of multiplicity
 of the polynomial .

When is the shifted version of the polynomial

 by , the equation below holds.

 .

 ,

 . (3)
The soft-decision RS list decoding can be considered as a

“curve-fitting” problem. In the first phase, the algorithm
finds a polynomial of low degree that fits the points

 . Next, it finds all small degree roots of ; and
each factor of forms possible candidates of the
message polynomial.

We now briefly describe the list decoding algorithm.
Figure 1 shows the block diagram of the soft-decision RS list
decoder. The block diagram consists of three steps:
multiplicity computation, interpolation, and factorization.
The multiplicity computation step calculates the multiplicity
matrix that has reliability information from the channel.

Let us suppose that we have the set of interpolation

points with corresponding

multiplicities . The interpolation step forms the

nontrivial polynomial of minimal -
weighted degree that passes each interpolation point
 with multiplicity at least . This bivariate

polynomial may contain the message polynomial as
a root. After the bivariate polynomial is found, the
factorization step determines all the factors of in
the form of , where the degree of is at most
k. Each root polynomial is the candidate of the
message polynomial. Finally, the polynomial with the
highest probability among the candidates is selected as a
message polynomial.

III. PROPOSED ARCHITECTURE

Now, we will explain the interpolation algorithm in more
detail. The interpolation step finds the bivariate polynomial
that fits the set of points with the corresponding
multiplicities. Two main interpolation algorithms have been
proposed so far: a constrained-serial interpolation algorithm
[6][7][8] and a point-serial interpolation algorithm [5]. The
point-serial interpolation algorithm is usually less efficient
and less flexible in architecture than the constraint-serial
interpolation algorithm [6]. Figure 2 shows the interpolation

Figure 2. Interpolation algorithm.

Figure 1. Block diagram of soft-decision RS list decoder.

26Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

algorithm based on the Fundamental Iterative Algorithm
(FIA) [10].

The algorithm consists of two major operations, namely
the Discrepancy Coefficient Computation (DCC) and the
Polynomial Update (PU). As we explained earlier, the
interpolation process finds a bivariate polynomial

that passes a point with a multiplicity . In the

algorithm, the DCC operation computes the discrepancy
coefficients corresponding to a particular constraint for each
candidate polynomial and the PU operation updates the
polynomial by reducing the corresponding discrepancy
coefficients to zero.

A. Proposed interpolation architecture and its scheduling

Figure 3 shows the block diagram of the proposed
interpolation architecture. The proposed architecture consists
of the Discrepancy Coefficient Computation Unit (DCCU)
that calculates the discrepancy coefficients (DC) using the
Hasse Derivative (HD), the Polynomial Update Unit (PUU)
that updates the candidate polynomials, the Polynomial
Order Sorting Unit (POSU) that decides the processing order
of data by storing and aligning the weighted degrees of the
candidate polynomials, and a few memory blocks and
control logic. The DCCU also consists of the HD
computation block and the -generator that calculates the
power of for the HD computation. The DCCU takes the
stream of interpolation points and multiplicities as inputs.

The proposed architecture parallelizes the computation

for the terms in and computes each candidate polynomial
and the monomials in sequentially and thus the required

hardware is reduced. When the polynomials are updated
sequentially, the “pivot” polynomial , which has

the smallest weighted degree and a non-zero DC value, is
used to update the other polynomials and is updated itself
last.

Figure 4 shows the processing schedule of DCCU and
PUU when , where denotes a candidate

polynomial and
 denotes the coefficient of in

 . All the coefficients of , with the same degree in ,
(

), are processed simultaneously,

since the proposed architecture processes the terms in in
parallel. We can overlap the computation of the DCCU and
the PUU by sending the output coefficient of the PUU
directly to the DCCU, as depicted in Fig.4. The updated
coefficients in candidate polynomials are stored and sent to
the DCCU to calculate the next DC simultaneously. Fig.4
shows the timing diagram when . We assume that
the candidate polynomials initially have the constant terms
only at the first iteration (). The value

 at the

first iteration denotes the updated coefficient in
 .

B. Discrepancy Coefficient Computation Unit (DCCU)

The DCC defined in equation (4) calculates the

coefficient of the monomial in that
is the shifted version of by and in ,
direction respectively, where are non-negative integers
that satisfy . The following equation shows the
Hasse derivative [11] to find the DC.

 (7)

The hardware to solve equation (7) may suffer from
latency, because it consists of a double loop of addition. The
architecture proposed by Wang and Ma utilized the finite
field additions, instead of multiplications, by representing the
symbol by its exponent [6]. The proposed architecture
calculates the DCs with respect to in parallel, whereas it
calculates the DCs with respect to and the candidate
polynomials in serial. Equation (7) can be expanded as
follows.

 (8)

The values are meaningful
when . Fig.5 shows the block diagram of the
proposed DCCU to compute equation (8). The multiplication
at the input computes and the DCC is performed
monomially and in increasing order of . Once the multiple
of , is calculated, it is stored for the next
computation and distributed to compute the other DCs in
candidate polynomial simultaneously. In Fig.5,

 denotes the output of the generator,
to be explained later, and

 , which is the output of the

PUU, is the coefficient of monomial in the -th

candidate polynomial . The value

 can be

easily implemented by Lucas’s theorem [11].

 is the

Figure 4. Timing diagram showing overlap between the DCCU and the

PUU when .

Figure 3. Proposed interpolation architecture.

27Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

common term like that will be distributed and

can be further simplified according to . The registers on the
right in Figure 5 store the intermediate DC values for each
candidate polynomial.

Y generator that is basically the same as that in [9]

computes the multiple of . When ,
 . At the first iteration, the
value when will be used immediately. As
increases, the values stored in the registers are shifted down

and we can compute for the DCCU without any
additional hardware. finite multipliers are required
for the Y generator and the number of latency to get the first
output is .

C. Polynomial Update Unit (PUU)

The PU stage updates each candidate polynomial
 using the selected “pivot” polynomial ,

where is the index of the minimum weighted degree
polynomial among all polynomials with non-zero DCs. As
explained in Fig.2, the “non-pivot” polynomials are usually
updated first and the “pivot” polynomial is updated last.

Here,

 and

 denotes the DCs of

and respectively. The candidate polynomials for
 , are updated by adding two polynomials:

multiplied by

 and multiplied by

.

This deletes the monomial in in equation (3)
that is the shifted version of the polynomial by
 . Last, the polynomial will be updated by

multiplying .
The proposed architecture processes the polynomials in

serial but with an efficient schedule. The update for the
“non-pivot” polynomials in case of requires the
information of both and before update.

The monomials with the same degree in the polynomial
are computed simultaneously and the update is preceded
from the constant terms to higher order of monomials, since
the proposed architecture processes the degrees in
parallel.

We can serialize and rewrite the update procedure, as in
equation (11).

 (11)
Figure 6 depicts the structure of one PUU element that

can update both and . When the

corresponding coefficient

 in the polynomial

comes in as an input, the multiplexer select signal ‘sel’ is set

to ‘0’ and the computation of

 is

implemented. In the register, the coefficient

 will be

stored to update the other polynomials . Then, this
structure is used to update the polynomials by
setting the multiplexer select signal ‘sel’ to ‘1’, so the

computation

 will be implemented.

Figure 7 shows the PUU structure that updates the

polynomials in in parallel. PUU consists of
PUU elements and each PUU element computes for the
polynomial in equation (2). The updated coefficients
will be stored in the registers at the output and will be sent to
the DCCU simultaneously to overlap the operations of the
PUU and the DCCU. After finishing update in the registers,
the data in the registers will be stored in the memory
immediately, so the memory access occurs once every
 clock cycles. The number of memory accesses is
reduced and the memory structure is simplified by applying
the proposed scheduling.

D. Polynomial Order Sorting Unit (POSU)

In each iteration of the interpolation algorithm, the
polynomial needs to be selected by the weighted

degree and the DC computed in the DCCU. Fig.8 shows the
structure of the proposed POSU. Instead of computing the
weighted degrees of the candidate polynomials to select
 each iteration, we save the candidate polynomials

with their weighted degrees once in the internal memory and

Figure 7. PUU overall structure.

Figure 6. Structure of one PUU element.

Figure 5. DCCU structure.

28Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

update the weighted degrees every iteration. The proposed
POSU has registers that store the weight degree
and its index in one word. As shown in equation (10), the
degree of the polynomial will be increased by one

due to the multiplication by , whereas the degrees of
the other polynomials remain the same.

Figure 8 shows the POSU structure that reorders the
polynomials by their weighted degrees. The registers consist
of the shift registers and each register is partitioned
to the part for the weighted degrees () and the part for the
index of the polynomials (), where is initialized to
 (is message symbol,
is the number of the candidate polynomials) and is
initialized to . The weighted degree is
increased by one in case that and a bubble sort is
performed to reorder the weighted degrees using comparator
and shift registers.

IV. DESIGN AND PERFORMANCE ANALYSIS

In this section, we apply the proposed architecture to the
 defined on . We
analyze the proposed architecture in terms of hardware cost,
latency, and performance and compare it to existing
architectures. The primitive polynomial used in this paper is
 . For fair comparison, we use
the same experimental condition as that used in [6]. In the
KV front-end, the maximum multiplicity, , equals 5,
using the low complexity method in the case of . The
simulation shows the soft-decision decoder with an
interpolation cost, C = 3,800, can provide more than 0.5dB
of coding gain at a codeword error rate of compared
to the hard-decision decoder [11]. The following equation
can be applied to estimate the number of bivariate
polynomials [6].

 ,

where Z denotes the set of all integers and C is the cost of
the interpolation. By applying these parameters to this
equation, r equals to 5. The re-encoding technique to reduce
the number of iterations is used to achieve higher throughput.
The number of iterations when the re-encoding is applied can

be computed to
 . When is applied to the interpolation algorithm, the
number of degrees of in the polynomials can be
computed to . The total number

of latencies is

 , where is the number of

clocks to select and control the “pivot” polynomial,
 in Figure 4.

Table I shows the hardware cost and latency of the

DCCU and the PUU. The architecture in [5] uses the
relatively complex dual-port memory. Also, the architectures
in [5] and [6] divide the memory into of small
memory modules that require a bigger area and more
controls. We expect that the benefit of getting rid of complex
access control is more than the degradation of power
consumption and memory access speed. All the required
coefficients can be read out and stored simultaneously and
they are fed to the DCC and the PU in an efficient way. Also,
by utilizing one large memory module with one-port, instead
of multiple memory banks with dual-ports, the memory
structure is simplified and efficient.

Table II compares the hardware complexity and the

performance with the existing architectures. Ahmed, Koetter,
and Shanbhag use a point-serial algorithm for the
interpolation and apply a parallelism on polynomials and
degrees [5]. The point-serial algorithm usually improves the
performance when the interpolation points have high
multiplicities. However, the hardware cost of the DCCU also

increases due to (), which is normally
greater than . The architecture proposed by Wang and Ma
[6] also applies to a parallelism on polynomials and
degrees and uses a hybrid data format for conversion
between normal and power representations, so the
computation complexity between symbols on finite field is
dramatically reduced. However they need hardware for pre-
and post-processing for the format conversion, such as a
look-up table (LUT).

TABLE II.

HARDWARE COMPLEXITY AND PERFORMANCE COMPARISON

Design

Area

(# of XOR

gates

Critical Path

(# of gates)
Latency

Throughput

(normalized)

Efficiency

(normalized)

[5] 8535 12 1437 1 1

[6] 11726 4 1775 2.43 1.77

[13] 7872 10 916 1.88 2.04

[14] 10718 12 454 3.17 2.52

Proposed 1321 4 10650 0.4 2.62

TABLE I.
HARDWARE COMPLEXITY AND LATENCY OF DCCU AND PUU

Module HW complexity Latency

DCCU

 multipliers

 adders

registers

PUU

 multipliers

 adders

Registers

Total

Figure 8. POSU structure.

29Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

A finite field multiplier can be implemented by 64 XOR
gates and 48 AND gates by employing composite field
arithmetic, whereas a finite field adder simply requires 8 XOR
gates. As analyzed in [6], the hardware complexity of the
interpolation architecture grows linearly with .
For fair comparison, the proposed architecture including the
architectures [5], [6] are scaled down with since
 is equal to 2 in the BGMD architectures [13], [14].
All possible optimizations have been applied to the
architectures in [5], [6]. Also, we can apply the pipelining to
the proposed architecture for further speedup like the
architecture in [6]. Based on that, the critical path can be
reduced to the delay of 4 XOR gates. The hardware cost is
analyzed based on the following assumption. Each AND gate
or OR gate requires 3/4 of the area of an XOR, each MUX or
memory cell has the same area as an XOR, and each register
occupies about 3 times of the area of an XOR. According to
Table I, the hardware complexity of the proposed
architecture when is 5284 in equivalent XOR
gates including memory. In case of , the area
requirement of the proposed architecture is equivalent to that
of 1321 XOR gates. Since the terms of X degrees are
processed in serial, the latency of the proposed architecture
will be increased to the order of , compared to the
architecture in [6]. The analysis results for the existing
architectures in Table II can be found in the paper [14]. Even
though the throughput is relatively low, the efficiency is
highest among the architectures in Table II.

The proposed interpolation architecture for the (255, 239)

RS list decoder is designed with VerilogHDL and

synthesized using a DongbuAnam 0.18 ㎛ standard cell

library. Table III shows the synthesized gate count for the
functional blocks in the proposed interpolation architecture.
We use and as the
design parameters. The maximum operating clock frequency
is 200MHz and the synthesized gate count is about 25.1K
gates in two-input equivalent NAND gates.

V. CONCLUSIONS

In this paper, we proposed an efficient architecture with
low hardware complexity for interpolation in soft-decision
list decoding of Reed-Solomon codes. The proposed
architecture has several advantages over the existing
architectures in the following view points: 1) it employs
parallel processing only for degrees in bivariate
polynomial and shares hardware modules, thus
reducing the hardware complexity; 2) the schedule is
adaptively adjusted according to the “pivot” polynomial
computed at each iteration, so the irregular memory access

problem is resolved; 3) the number of internal registers is
reduced by processing the polynomial monomially; 4)
scheduling minimizes the number of memory accesses and
simplifies the memory structure by combining and storing
data in memory, and the proposed architecture consists of
one-port memory and one bank of memory and is efficient in
area; 5) the DCCU and the PUU in the proposed architecture
are overlapped in schedule, so the total latency is reduced.
The proposed interpolation architecture for the (255, 239) RS
list decoder is designed with VerilogHDL in a ModelSim
environment. After logic synthesis, using the DonbuAnam
0.18um standard cell library, the maximum operating clock
frequency is 200MHz and the synthesized gate count is about
25.1K gates in two-input equivalent NAND gates.

ACKNOWLEDGMENT

We are grateful to the IC Design Education Center that

provided us with a design environment.

REFERENCES

[1] R. E. Blahut, Theory and practice of Error Control Codes, Addison-

Wesley, Reading MA, 1983.
[2] V. Guruswami and M. Sudan, "Improved decoding of Reed-Solomon

and algebraic-geometric codes," IEEE Trans. Inf. Theory, vol. 45, no.

6, pp. 1755-1764, Sep. 1999.
[3] R. Koetter and A. Vardy, "Algebraic soft-decision decoding of Reed-

Solomon codes," IEEE Trans. Inf. Theory, vol. 49, no. 11, pp. 2809-

2825, Nov. 2003.
[4] R. Koetter, J. Ma, A. Vardy and A. Ahmed, "Efficient interpolation

and factorization in algebraic soft decision decoding of Reed-

Solomon codes," in Proc. of IEEE Symp. On Info. Theory, 2003.
[5] A. Ahmed, R. Koetter, and N. Shanbhag, "VLSI architectures for

soft-decision decoding of Reed-Solomon codes," in Proc. ICC, pp.

2584-2590, 2004.
[6] Z. Wang and J. Ma, "High-speed interpolation architecture for soft-

decision decoding of Reed-Solomon codes," IEEE Trans. VLSI

systems, vol. 14, no. 9, pp. 937-950, Sep. 2006.
[7] W. J. Gross, F. R. Kschischang, and P. Gulak, "Architecture and

implementation of an interpolation processor for soft-decision Reed-

solomon decoding," IEEE Trans. VLSI systems, vol. 15, no. 3, pp.
309-318, Mar. 2007.

[8] W. J. Gross, F. R. Kschsichang, R. Koetter, and P. G. Gulak, "A

VLSI architecture for interpolation in soft decision list decoding of
Reed-Solomon codes," in Proc. of IEEE Workshop on Signal

Processing Systems, 2002.

[9] A. Ahmed, R. Koetter, and N. Shanbhag, "Systolic interpolation
architectures for soft-decoding Reed-Solomon codes," in Proc. IEEE

Workshop Signal Process. Syst., pp. 81-86, 2003.

[10] G. L. Feng and K. K. Tzeng, "A generalization of the Berlekamp-
Massey algorithm for multisequence shift-register synthesis with

applications to decoding cyclic codes," IEEE Trans. Inf. Theory, vol.

37, no. 5, pp. 1274-1287, Sep. 1991.
[11] H. Hasse, "Theorie der Hoheren differentiale in einem algebraischen

funktionenkorper mit vollkommenem konstantenkorper bei beliebiger

charakteristik," J. Reine. Ang. Math., vol. 175, pp. 50-54, 1936.

[12] V. C. da Rocha Jr., "Digital sequences and the Hasse derivative," in

Communications Coding and Signal Processing, B. Honary, M.

Darnell, and P. Farrell (Eds.), Communication Theory and
Applications, John Wiley and Sons Inc., vol. 4, pp. 256-268, 1997.

[13] J. Zhu, X. Zhang, and Z. Wang "Backward interpolation architecture

for algebraic soft-decision Reed–Solomon decoding," IEEE Trans.
VLSI systems, vol. 17, no. 11, pp. 1602-1615, Nov. 2009.

[14] X. Zhang and J. Zhu, "High-throughput interpolation architecture for

algebraic soft-decision Reed–Solomon decoding," IEEE Trans.
Circuits and systems, vol. 57, no. 3, pp. 581-591, Mar. 2010.

TABLE III. RESULTS OF DESIGN AND SYNTHESIS

parameters performance

C r total latency Max clock freq.

239 5 5 4 29636 200 Mhz

 DCCU PUU control total

gate count 7K 11K 7.1K 25.1K

30Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

