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Abstract—The weak performances of GPS within buildings
is the reason for a lot of different approaches for indoor
positioning, e.g., by using WiFi or odometry. The current
position of a person is crucial, for example, for location based
services that increase not only outside of buildings. Navigation
systems in subway stations is just one obvious example, where
GPS fails to deliver the necessary information. Especially in
the field of visual odometry, there are many approaches. But
all of them are either based on normal 2d camera systems or
on expensive 3d camera systems. In the presented approach,
we use a Microsoft Kinect, as these systems are inexpensive
and widespread. We evaluate how different state of the art
techniques like RANSAC or ICP can be used in combination
with the Kinect and how they perform in different indoor
scenarios. Our evaluation shows that those techniques can be
used for the Kinect but have their shortcomings in different
scenarios. For that reason, a hybrid technique was developed
which combines those methods using a Kinect specialized ICP
weight function. In addition, we use a loop detection algorithm
to further optimize the accuracy. Finally, we present our results
obtained during tests in three different test environments.
This paper presents the result of different SLAM approaches
implemented on the Microsoft Kinect in order to calculate
trajectories.
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I. INTRODUCTION

Many indoor positioning methods have been researched
and some solutions found their way into consumer products.
But there are still not many (public) buildings equipped with
indoor positioning systems, even though it would add value
to many public institutions (e.g., libraries, schools, universi-
ties) or other areas without satellite coverage (e.g., subway
stations, tunnels). Mostly, indoor positioning solutions have
been deployed into companies with sufficient funds to invest
in expensive high precision technologies like Ultra Wide
Band, since their businesses can directly benefit through use
of indoor asset tracking [1].

A different approach to installing expensive indoor posi-
tioning solutions, which also often need a lot of calibration
and maintenance, is to make use of a method known from
the field of robotics called SLAM (simultaneous logging
and mapping). The main idea there is to place a mobile
robot at an unknown location in an unknown environment
and let the robot incrementally build a consistent map of its
environment while simultaneously determining its location
within this map [2]. There exists a lot of different algorithms

and solutions to solve this problem. We were interested in
the question whether those approaches can also be applied
to humans and everyday devices instead of robots equipped
with high-end sensors.

This paper deals with the comparison of two different
SLAM methods and a hybrid approach, which are applied
to the Microsoft Kinect carried by a human being. We
developed an evaluation platform which allows to compare
different SLAM algorithms and their performance in differ-
ent scenarios (test environments).

The reminder of this paper is structured as followed:
Section II will introduce SLAM principals and list some ref-
erence work in this field. Section III describes the Microsoft
Kinect, the concept and the three different test environments.
Section V evaluates the implemented algorithms in respect
of the test environments and Section VI concludes the paper.

II. FUNDAMENTALS OF SLAM

SLAM is a method usually applied by robots to create a
map of the surrounding while at the same time estimate their
location. Among the vast number of different SLAM meth-
ods the main principal remains the same: At the start there is
no map of the environment, hence the position of the robot is
the origin of the coordinate system and the measurement at
this position is the initial measurement. From then on each
subsequent measurement contains already known data and
new unknown data. By comparing the current measurement
with the data set the robot can find am overlapping, and
therefore, calculates its new position. By including the new
measured data into the map, the whole environment can be
surveyed incrementally. Since the position shift between two
measured data sets is not perfect, the map quality decreases
over time. Tim Bailey and Hugh Durrant-Whyte offer two
tutorials about SLAM, which deal with the SLAM problem
and algorithms solving the problem [2][3]. As mentioned
before, there exists a vast number of SLAM methods, e.g.,
algorithms using particle filters , the Extended Kalman Filter
or graph based techniques.In this paper we will focus on two
different approaches: the first is based on visual key points
and the second one is based on point clouds. Further details
will follow in Section III. In practice, there is a variety of
systems based on SLAM that use different sensor equipment.
A SLAM system using INS (inertial navigation systems) was
developed by Robertson et al. INS sensors were installed to
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pedestrians’ feet to obtain 2D maps of large areas based
on iterative processing of pedestrian odometry data [4]. A
system using an Extended Kalman Filter and laser scanners
was developed by Garulli et al. [5]. Multiple robots using
landmarks to create independent maps, which have to be
combined subsequently were used by Zhou [6]. A systems
using cameras and SURF detectors was implemented by
Engelhard et al. [7].

III. SLAM WITH KINECT

This section offers hardware data of the Kinect, the SLAM
algorithms and the information about the test settings.

A. The Kinect and quality of sensors

The technical components for the Kinect were developed
by PrimeSense [8], which also published the open source
API OpenNI together with WillowGarage [9] and Side-
Kick [10]. PrimeSense patented Light Coding generates
depth information based on a infrared laser projector and
a monochrome CMOS sensor camera. The resolution of
Kinect’s depth image is 320 x 240 pixel, which is internally
interpolated to the double size of 640 x 480. Objects can be
recognized to a distance within the range of 0.8 meter to 6
meter. The horizontal field of view is 57 and the vertical 43
[11]. An additional RGB camera provides 640 x 480 pixel
color images. Together with an audio channel, the micro
processor offers a synchronized data stream of color, depths
and audio information to a rate of 30 Hz [12].

Since SLAM algorithms are based on accurate sensor data
we examined the error rate of Kinect’s depths information.
The test comprised a set of Kinect pictures of a simple
wooden board placed parallel to the view of the Kinect.
Measurements were taken from different distances. Figure 1
shows the result that with bigger distance the error of raw
data grows significantly. A picture taken from four meters
distance results in a maximum of 14.2 centimeters devia-
tion, whereas with 80 centimeters distance the maximum
deviation is only one centimeter. To reduce the errors which
mainly result from signal noise we applied and examined
different filters. Exemplary the results of a median filter
[13] and a bilateral filter [14] with different parameters are
depicted in Figures 1 and 2. The figures show that using
filters can help minimizing the deviation.

B. SLAM Algorithms

Figure 3 gives an overview of the algorithms that are
implemented and examined: Visual Keypoints (upper part of
Figure 3), Hybrid (middle part of Figure 3) and ICP (lower
part of Figure 3).

The SLAM method based on visual key points (see Figure
3 upper part) works as follows: In the first step striking
key points have to be detected and categorized (e.g., SURF
and Shi Tomasi). The SURF(Speeded Up Robust Feature)
method [15] is an enhancement of the SIFT(Scale-invariant
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Figure 1. Medianfilter
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Figure 2. Bilateral filter

feature transform) method [16]. The goals of both is to
robustly identify key points among disordered data with
a descriptor invariant to uniform scaling, orientation, and
partially invariant to distortion and illumination changes.
The advantage of the SURF is the higher speed which is
achieved for example by replacing the Gaussian filter with
a Box filter. Shi and Tomasi detectors are based on Harris
and Moravec detectors. The goal of those approaches is to
detect corners, whereas a corner is defined as a point with
low self similarity. Afterwards, in a second step, homologous
key points in two subsequent picture frames must be found.
Key points between two pictures found with SIFT/SURF
detectors and descriptors can be matched with the minimal
Euclidean distance. For key points found with the approach
of Shi and Tomasi, the optical flow is applied. In a final, step
homologous key point pairs are used to calculate the position
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Figure 3. Overview of application flow of visual key point, hybrid and ICP approaches

transformation (RANSAC [17]). The goal of the RANSAC
algorithm is to find a suitable model that describes the
position transformation best. The algorithm can be described
in 4 steps: 1. Select randomly sufficient homologous key
point pairs. 2. Define a possible characteristic of the model.
3. Apply this model to all key points of the first picture.
The key point pairs fitting this model are defined as inliers.
4. Calculate the quality of the model and decide whether
the new model with the number of inliers is better than
the current model. If so, the new model is now the best
model. This procedure is repeated a prior defined fixed
number of times, each time producing either a model which
is rejected because too few inlier points were found or a
better model with lower error measurement. The RANSAC
is very robust to noise and measurement errors and outliers,
but the number of iteration has to be limited since it is a non-
deterministic approach, which may result in an imprecise
or even incorrect model. Finally, the TORO (Tree-based
network optimizer) optimization is performed [18]. The
resulting graph of RANSAC underlies the general problem
of all SLAM methods. The errors in sensor measurement
cumulates over time and results in a deviation that also
increases over time. In case a position is passed twice,
pictures and key points can be recognized and a loop is
detected. The goal of TORO is now to minimize errors of
the calculated positions, which might have occurred since
the time when the position was passed the first time.

The second method (see Figure 3 lower part), the ICP
(Iterative Closest Point) Application Flow, uses point clouds
as input to calculate position transformations. The General-
ized ICP [19] takes two partly overlapping or completely
identical point clouds and aligns them until they match.
The algorithm works in two steps: Find correspondences
between both sets of point clouds and iteratively revises
the translation and rotation needed to minimize the distance
between the two sets. The correspondences can be weighted
either with a Point-to-Point Minimization [20] or a Point-
to-Plane Minimization [21].

We also examined a hybrid application flow (see Figure
3 middle part), which works in the beginning like the visual
key point application flow, but performs a refinement with
the ICP in the Alignment Pose Estimation Phase. In the
case not enough homologous key point pairs could be found,

the algorithm immediately switches to the ICP calculation,
which ensures that even in situations where visual SLAM
fails a position can be calculated and gaps in the output
graph prevented.

C. Evaluation platform and test environments

The evaluation platform offers several features to ensure
consistent and comparable results: All algorithms must
have the same input data (Kinect data stream). Hence,
the platform offers a record function, where each walking
path is stored into an ONI file. Each algorithm can be
applied separately on that ONI file. Therefore consistent
input data can be guaranteed and the performance of the
SLAM approaches can be compared for one particular
scenario. When algorithms are applied, duration and load
are measured. Together with the results, the platform offers
the functionality of exporting this data. Finally a modular
comparison can be performed. Additionally, the position
transformation are visualized in 2D and 3D.

To calculate the accuracy of the algorithms in different
test environments, the paths are marked with tape and when
passing one of those marks, the picture frame number is
logged. Later the calculated position by the algorithms
and the real position can be compared. To enable similar
conditions between the test environments, the test person
carrying the Kinect tries to hold the Kinect in the same
manner for all walked paths in all scenarios.

IV. EVALUATION RESULTS

We chose three different test environments to evaluate
the performance of the algorithms in different scenarios
and situations. The first test environment was a 7 room
apartment, the second environment was an office building
with connected rooms and the third environment was a
subway station in Munich.

A. Test environments

In the apartment scenario, the visual key points approach
was evaluated first. By comparing the SURF with the optical
flow/KLT approach, the SURF approach outperforms the
KLT (compare Figure 4). The effect of changes in the
maximum distance of inliers to the model of the RANSAC
algorithm were examined next. Comparing SURF and KLT,
both approaches show similar effects. The best results are
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Figure 4. Resulting graphs of SURF and KLT

achieved with a distance of 65 mm, higher or lower maxi-
mum values result in less accurate graphs. Applying the loop
detection algorithm and TORO (where every 40th tracknode
is compared to the new added) results in an enhancement
of the graph. The enhancement for the KLT approach is
higher than for the SURF approach. If more tracknodes are
considered no significant enhancement could be measured.

Within the ICP method we compare the Point-to-Point
method and the Point-to-Plane method. In Figure 5 the Point-
to-Point method underlies a strong drift from the beginning
on, whereas the Point-to-Plane method performs very well
until the fifth waypoint. Afterwards, we examined the effect
of different sizes of point clouds. Smaller variations of the
size do not influence the Point-to-Plane method, whereas the
Point-to-Plane method is sensitive to changes of the size. In
comparison, the Point-to-Plane method is more robust and
calculates good results with smaller point clouds.

In the office scenario the rooms were connected and the
path walked outlines a closed rectangle. By varying the dis-
tance of the Inlier to the model for the RANSAC algorithm,
similar results to the apartment scenario are calculated. The
best two values for the maximum distance are depicted in
Figure 6. Applying the loop detection algorithm and TORO
results also in a enhancement of the graph. Interesting in this
case is that the reduction of the track node distance from 40
to 20 in combination with the KLT and TORO, do not result
in significant changes of graph accuracy. The evaluation of
ICP algorithms (compare Figure 7) shows similar results to
the apartment scenario.

The subway station scenario depicts a special scenario
which differs in various aspects from the two previous sce-
narios. Subway stations consist of large areas and big halls.
Since the range of the Kinect is limited, the test scenario was
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adjusted and the way the camera was positioned changed. To
allow the Kinect to at least gather some depths information
the Kinect was tilted towards the floor. Furthermore, bright
illumination causes a lot of reflexions, which disturb the
algorithms. After testing both visual methods and the ICP
methods, the only approach which could calculate positions
at all was the SURF approach. Both KLT and ICP method
failed in the environment of the subway station.

B. Conclusions

Concluding the visual approaches, the SURF approach
performed better than the KLT in all scenarios and test envi-
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Figure 7. ICP approaches

ronments. In the test environment of the subway station, the
KLT approach failed entirely because of variations of light-
ing, homogenous surfaces and missing depth information.
TORO enhances both approaches in the apartment scenario,
whereas in the office scenario SURF could be enhanced
more with TORO than KLT. Varying the maximal distance
between inliers and the model for the RANSAC algorithm
enhanced both approaches. A standard configuration that
performs equally well for all scenarios could not be found.
For the SURF method, a maximal distance between 30 and
65 mm is feasible and for the KLT method between 30 and
50 mm.

Concluding the ICP approach, the Point-to-Plane Mini-
mization method outperforms the Point-to-Plane method in
the apartment scenario. An interesting aspect is the size
of the point cloud. It was not the biggest point cloud
that obtained more favorable results. In the Point-to-Plane
alternative 3000 points achieved the best results.

Visual approaches could be further enhanced by inserting
a refinement via ICP. The KLT approach reaches in each
scenario the best performance in combination with the
ICP, whereas for the SURF approach the data set and the
test environment are crucial whether ICP can enhance the
approach further more or not.

C. Overview of error rate

For the overview of the deviation in Figure 8, the best
results from the apartment and the office test scenarios were
accumulated and an average calculated. The scenario of the
subway station was left out, since not all methods could
provide feasible results.

An overview of accuracy, calculation time and robustness
is given in Table I. The results of the subway scenario
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were included in this overview. The subway scenario shows
the weakness of the visual approaches. Since in subway
stations the conditions are harsh (lighting changes extremely,
homogenous surfaces and reflexions) key points could not
always be found. The vast areas and big halls furthermore
hamper SLAM methods using the Kinect.

V. CONCLUSION

In this work, we have shown that the Microsoft Kinect
can be used for visual odometry and therefore is suitable
for indoor positioning solutions in public buildings. For this
purpose we tested the aptitude of state of the art techniques
like SURF, RANSAC and ICP in combination with the
Kinect in different scenarios. The results showed that every
approach has some flaws, depending on the scenario.

For that reason, we developed a hybrid approach which
makes use of visual methods as well as ICP. In order to do
this, we use a customized RANSAC and then enhanced the
results by additionally applying the ICP. For this purpose,
we used a weight function customized for the Microsoft
Kinect. All approaches were tested with an evaluation soft-
ware which enabled us to test the approaches in real life
environments and allowed us to record those environments
for evaluations.

The results show that each the ICP and the hybrid
approach usually outperform the pure visual methods inside
of buildings. The scenario of the subway stations depicted a
very harsh environment, where the sensors of the Kinect
delivered weak data and only the SURF approach could
estimate positions at all.
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