
A Fast and Efficient Key Agreement Scheme for Wireless Sensor Networks

Mee Loong Yang∗, Adnan al-Anbuky†, and William Liu‡
∗School of Computing & Mathematical Sciences

Email: bobby.yang@aut.ac.nz
†School of Engineering

Email: aalanbuk@aut.ac.nz
‡School of Computing & Mathematical Sciences

Email: william.liu@aut.ac.nz
Auckland University of Technology, New Zealand

Abstract—The Blom’s scheme for key agreement between
pairs of nodes requires exchange of a small amount of bits, uses
simple computations, and also authenticates each other. This
makes it attractive for use in Wireless Sensor Networks but, in
its original form, it has limitations because of the contending
requirements for large pairwise keys and limited memory in
the nodes. Our implementation of the Blom’s scheme uses
multiple keys, enabling it to derive large pairwise keys using
the limited memory resources, while retaining all the desirable
features of speed, compactness, and low energy usage. We
implemented our scheme in a MICAz mote and present some
experimental results on the memory, computation time, and
energy requirements. We compared the performance with other
public key cryptographic methods used in WSN. Our scheme,
using 382 bytes of RAM, was able to compute 128-bits pairwise
keys in times ranging from 34 ms to 1.9 s for networks with
capture thresholds of 32 and about 2,000 nodes respectively.

Keywords- Blom’s scheme; ad hoc networks; security; wireless
sensor networks; key pre-distribution.

I. INTRODUCTION

A wireless sensor network deployed in open environments
can be easily attacked. The radio communications can be
eavesdropped, and an adversary can even inject malicious
packets into the network. One important part in the chain of
defence is to protect the communication channel between the
nodes. This means encrypting the messages to protect con-
fidentiality. In addition, the receiving node must be able to
verify that the received messages are intact, fresh, and really
originates from the claimed sender. Proven cryptographic
techniques can be used to achieve these requirements. These
techniques rely on the use of secret keys known only to the
communicating parties. These keys must be distributed to
the nodes in a secure manner.

One approach to key distribution requires the base station
to generate all the keys which the nodes will use. Many early
works take this approach using a global master key, such as
in SPINS [1], and LEAP [2]. Obviously, if the master key
is compromised, so is the whole network.

A more secure approach would use unique pairwise keys
between nodes to limit the impact of any key compromise.
However, in ad hoc networks, the pairwise relationships

cannot be predetermined. In a network with N nodes, each
node has (N − 1) pairwise keys with all its neighbours and
a large amount of memory would be required to store them
all. Even if this is possible, a single node compromised
also affects the whole network. When deployed, nodes only
need to have common keys with their immediate neighbours.
Therefore, a probabilistic approach can be used. This was
done in [3] where nodes are given subsets of keys from
the global key pool. After deployment, pairs of nodes
discover shared keys to establish secure links. Even without
shared keys, pairs of nodes can attempt to use secured
mutual intermediary nodes to establish a secure link. If one
node becomes compromised, it only impacts on part of the
network.

A different approach requires pairs of nodes to contact
a trusted centre to provide their pairwise keys. Each node
needs only to be provided with a pre-shared key with the
trusted centre. This is the Key Distribution Centre (KDC)
scheme used widely in protocols such as Kerberos [4]. In
ad hoc mobile networks, this scheme is of limited use due
to the requirement for the trusted centre to be reachable at
all times.

Key pre-distribution schemes, on the other hand, pre-
deploy nodes with keying material which they will use to
derive pairwise keys with their neighbours. Such schemes
commonly use public key cryptography (PKC). An example
is the Diffie-Hellman (DH) protocol used widely in wired
networks. For WSN, the Elliptic Curve DH (ECDH) is
promising due to its less demand on resources compared
to other PKC methods. Several implementations have been
studied as in [5], [6], [7], [8]. These methods enable nodes
to derive a common secret key by exchanging some infor-
mation over the insecure channel. There is also the need for
nodes to authenticate each other, usually using a certificate
such as in the ECDH-ECDSA protocol implemented in
[9], or using the Menezes-Qu-Vanstone (ECMQV) protocol
[10], and that based on the ElGamal scheme [11]. We shall
refer to these ECC methods later when comparing their
performances with our scheme.

An interesting key pre-distribution scheme, which has

231Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

implicit authentication, was proposed by Rolf Blom [12].
This scheme enables pairs of nodes to compute a common
secret pairwise key after exchanging a small number of
bits. The computation uses simple arithmetic operations and
requires only a few steps. This makes it attractive for use in
WSN. However, as shown later, in its basic form, it has
limitations due to the contending requirements for small
storage, large pairwise key sizes, and large number of nodes
in the network. This paper describes our modifications to
the scheme enabling it to derive large pairwise keys after
exchanging a small number of bits. We also report the results
of our implementation in a MICAz mote.

This paper is structured as follows. Section II presents the
background and some related works. Section III describes
our modifications to the Blom’s scheme using multiple-keys.
Next, in Section IV, we present the experimental results of
our implementation in a MICAz mote. We discussed some
of the security features and applications of our scheme in
Section V. Then, we made some comparisons with other
PKC methods in Section VI, and finally we gave our
conclusion in Section VI.

II. RELATED WORK

A. Background: Blom’s scheme

In this scheme, the base station generates a secret (m×m)
symmetric matrix S. Each node is assigned a unique (m×1)
column vector e.g., VA, and VB , for nodes A and B,
respectively. These vectors are called the node’s public
identifiers (IDs) or public vectors. The base station then
computes and stores in each node their private keys which
are row vectors Kx = V′x ·S. . These public IDs and private
keys form the keying material for the node.

Any two nodes can derive a pairwise secret key between
them. For example, between nodes A and B, the nodes
exchange their public IDs and then compute a common key,
KAB .

Node A: KAB = (V′A · S) · VB

Node B: KBA = (V′B · S) · VA

K ′BA = (V′B · S · VA)
′ = V′A · S

′ · VB

Since S is symmetric, KAB = K ′BA. An important feature
is that success in deriving a common key authenticates the
nodes to each other since this requires valid private keys
provided by the base station.

In the key agreement process, the public IDs can be
transmitted in clear text. The private keys must be kept
secret. If an adversary captures the nodes, they may be able
to obtain their keying material. If sufficient number of nodes
are captured, these information can be used to derive the
secret matrix S and hence break the whole scheme. For this
to be possible, the number of nodes captured must be ≥ m,
and they must all have unique linearly independent public

vectors. The system is said to be (m − 1) secure, i.e., a
coalition of (m− 1) or less nodes cannot pool their keying
material to derive the pairwise key of any other pair of nodes
[13].

The column vectors of the Vandermonde matrix V given
below is a suitable choice for public IDs since all sk are
distinct. The base station assigns to each node, one of the
columns of V. In practice, every node only need to be
bootstrapped with the seed sk from which to generate the
public ID vector.

V =


1 · · · 1 · · · 1
s1 · · · sk · · · sN
s1

2 · · · sk
2 · · · sN

2

...
. . .

...
. . . · · ·

s1
m−1 · · · sk

m−1 · · · sN
m−1


Security parameters: If the network is (m−1)−secure,

i.e., the matrix size is (m×m), and the size of each element
of S is b -bits, then for a fully secure system,

Max network size QN = (m− 1) nodes
Public-ID seed size, Qv = b -bits

Private-Key size, Qku = m× b -bits
Pairwise key size, Qkpair = b -bits

The pairwise key should be large, 64 -bits or larger,
leading to large b. While the MICAz motes are able to
work with 8, 16, 32 and 64 -bit data sizes, larger sizes
for the vector elements would make the computations more
complicated.

B. Related Works

The number of nodes in a fully secure network can be
increased by using multiple key spaces. In [14], ω key
spaces are generated and each node is given a sub-set of
τ randomly chosen keys from ω. After deployment, nodes
discover their common keys and use the Blom’s scheme to
form pairwise keys. The scheme uses a similar idea to the
probabilistic scheme of Eschenaeur-Gligor [3] where nodes
are given a random set of keys from a global key space. In
these schemes the aim is to achieve full connectivity, but not
necessarily complete connectivity like a full mesh. Another
approach also uses Blom’s scheme with multiple key spaces
to improve resistance to the Sybil attack [15].

In [16], the scheme for a clustered topology is proposed.
Here, the cluster-heads implement the Blom’s scheme to
derive pairwise keys among themselves. Non cluster-head
nodes do not implement the Blom’s scheme. Instead, they
store a pre-computed secret key Ki for use with a clus-
ter head. Prior to deployment, the base station computes
the pairwise keys of this node with a certain number of
associated cluster-heads. These are then combined into a
secret key Ki and stored in the node, together with the
identities (IDs) of the associated cluster-heads. When a node
needs to establish a secure link with a physical cluster-head,

232Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

it sends its own ID and the IDs of its associated cluster-
heads. The physical cluster-head forwards the node’s ID to
the associated cluster-heads to compute the pairwise keys
using Blom’s scheme and thereby derives the secret key Ki.
In this way, non-cluster head nodes store minimum keying
material and do not need to perform any key computation
computation. Instead, these are delegated to the cluster heads
which carry the additional load of communicating with other
cluster heads to derive the key with a non cluster-head node.
The network size would still be limited to the (m−1) nodes
for a fully secure network. Since cluster-heads establish
pairwise keys among themselves using the basic Blom’s
scheme, the key size and memory requirements, and network
size would still be limited to the original scheme.

C. Our Main Contributions

We modified the Blom’s scheme using multiple keys such
that it is able to derive large pairwise keys of up to hundreds
of bits using 16-bit data sizes. It requires very little RAM
for the computation while retaining all the benefits of the
basic scheme i.e., mutual authentication, few exchanged bits,
simple computations, fast, and consumes little energy. This
makes it especially suitable for dynamic B sensor networks
where the nodes are highly mobile and key computation and
authentication must be achieved quickly and cheaply. It is
also scalable for fixed cluster based topologies.

III. BLOM’S SCHEME WITH MULTIPLE-KEYS

In our modification to the scheme, the base station gener-
ates N secret symmetric (m×m) matrices S1, S2, · · · , SN ,
and one Vandermonde matrix V, over the prime field GF (p),
where p is the largest prime < b -bits. The number of bits,
b is thus the data size used in the system.

Public IDs

Each node is given one unique set of vectors comprising
N vectors of V, called its public ID vectors. Since the
elements of each vector is given by ski for i = 0, · · · ,m−1,
an ID vector can be generated by anyone given sk. Each
node’s public ID vectors can be simplified to the set of seeds
{sk1, sk2, · · · , skN}. We call this set the node’s public ID-
tag.

Private keys

For each node, the base station computes the set of private
vectors or private keys, using all permutations of the secret
matrices Si and its public ID vectors. For node x, its private
key set consist of N2 separate (1 ×m) row vectors given
by,

Kuxij = V′xi · Sj for i, j = 1, · · · , N

Pairwise Key Derivation

Consider two nodes A and B attempting to form pairwise
key. Each has in their possessions, their public Id-tags and
private keys:

Node A: {sAi
}, {KuAj}

Node B: {sBi
}, {KuBj}

for i = 1, · · · , N and j = 1, · · · , N2

To derive their pairwise key they exchange their public
ID-tags.

A→ B : {sA}
A← B : {sB}

Each node after receiving the other node’s public ID-tag
would generate that node’s ID vectors, e.g., node B would
be able to generate A’s public vectors VA1

, VA2
, · · · , VAN

Using all permutations of the public ID vectors and
its own private keys, each node computes a set of secret
numbers:

Node A: KuAj · VBi

Node B: KuBj · VAi

for i = 1, · · · , N and j = 1, · · · , N2

Both parties would obtain a set of identical N3 secret
numbers, not necessarily arranged in the same order. Each
number is of size b -bits. Using an agreed rule, sufficient
numbers are chosen and concatenated together to form the
pairwise key KABpair of the desired size. For example, a
simple rule would be for each node to sort the numbers in
descending order and concatenate the first 8 numbers to form
a pairwise key of size 8× b -bits.

The key computation code is very simple and compact as
shown in the pseudo code in Listing 1.

Listing 1. Pseudo code for pairwise key computation
g e n e r a t e K e y P a i r () {

f o r (each pub l i c ID−t a g v a l u e) {
g e n e r a t e p u b l i c v e c t o r ;
f o r (each p r i v a t e k e y) {

m u l t i p l y wi th p u b l i c v e c t o r ;
s ave r e s u l t i n Secre tNumbers ;

}
}
s o r t Sec re tNumbers ;
s e l e c t numbers from Secre tNumbers ;
c o n c a t e n a t e t o form p a i r w i s e key ;

}

233Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

Some parameters

Pairwise key size: The maximum pairwise key size, if
all the secret numbers are used, is bN3 -bits. With N = 2
and using 16 -bit data sizes, we have 128 -bits key sizes
which is more than enough if it is used in a secure algorithm
such AES.

Memory requirement: The private key requires the
largest amount of memory. This is static data and can be
assigned to program memory in the MICAz mote. The
amount of RAM required include those for some counters,
the pairwise key, some temporary data, and the N3 secret
numbers. In total, the RAM requirement is very small indeed
as shown later.

Computation time: The main part of the computation
involves modulo multiplication and addition of the m ele-
ments of the N public ID vectors and N2 private key vectors.
In total, there are mN3 such operations.

IV. EXPERIMENTAL RESULTS

We implemented the scheme in a MICAz [17] mote using
TinyOS [18] for the case using 16 -bits data size. We also
estimated the energy consumed for the key computation
process. In our experiment, the code was kept to the bare
minimum for key computation and turning on the LEDs
at the start and end of process. Even though the modulo
operations took a significant amount of time, no attempt was
made to optimise it, and only the standard libraries were used
for all operations.

The private keys were installed in the program code.
The public ID-tag exchange was not implemented and
was merely simulated by storing the public ID-tag of the
simulated neighbour as a variable in the node.

When the program runs, it lights up an LED, computes
the pairwise key, and lights up another LED on completion.
The time taken for key computation was estimated by timing
the 100 iterations of the computation. The power supply to
the node was regulated at 3.1 V and the average current
during computation was measured to be 8.7 mA.

Performance and analysis

The results for memory requirements, key computation
time, and estimated energy consumed are shown in Table I.

Memory requirements: The MICAz mote has 4 kB
RAM and 128 kB flash memory for program. In our imple-
mentation, we stored the private keys in program memory
leaving more RAM for the variables. The ROM and RAM
requirements were outputs from the TinyOS-2.1.1 compiler.

The private key vectors has mN2 elements, each of 16
-bits. From the results, the ROM storage requirements in
bytes was, as expected, a linear relationship as given below.

QO = 2.012 mN2 + 7010 (1)

The number of variables in RAM was fixed except for
the N3 secret numbers. From the experimental results, the

following relationship was obtained for the RAM storage
requirements, in bytes:

QR = 8 N3 + 318 (2)

The key computation process involves multiplying the m
elements of N public ID vectors with the m elements of N2

private key vectors, plus one sorting and selection operation.
It was a linear relationship between the computation time
and mN3. From the results we obtained the following
relationship for key computation time in ms,

t = 0.0514 mN3 + 24.60 (3)

Computation energy: The average current drawn during
the computation from the 3.1 V regulated power supply was
measured to be about 8.7 mA. Using this, the estimated
energy in mJ , used for computation was estimated as 3.1×
0.0087× t , also shown in Table I.

Design example: The above results can be used for
design purposes. For example, we have a network of 500
nodes and we wish to select the parameters and estimate
the computation time and memory requirements. For a fully
secure network, the number of nodes is < m

N . Trying with
N = 2, a suitable choice is m ≥ 2 × 500 = 1000. Using
a slightly larger value, m = 1, 024, and N = 2 from (3)
the key computation time would be 446 ms. The storage
requirements, from (1) would be 15,252 bytes ROM, and
from (2) gives 382 bytes RAM.

The results of an actual implementation in a MICAz
mote was 15,282 bytes ROM, 384 bytes RAM, and the
computation time was 479 ms.

V. SECURITY FEATURES AND APPLICATIONS

Brute force attacks: To attempt to guess the pairwise
key or the private keys would be infeasible as these are large,
at least 64 -bits, and hundreds of bits respectively.

Node capture

Nodes can be physically captured and sensitive informa-
tion extracted unless tamper proof hardware mechanisms can
be incorporated. This would increase the cost and probably
not be viable except for critical situations. If such mecha-
nisms are available, the scheme would be very attractive for
highly mobile, ad hoc networks. For example, using a small
m = 24 and N = 2 in (3), pairs of nodes can derive keys
in 34.5 ms requiring about 0.93 mJ of energy.

Currently, motes do not have adequate tamper protection
and an attacker with the appropriate skills and resources
can easily obtain the memory contents from motes like the
MICA2 [19], and TelosB [20].

The (m− 1) -secure property of the Blom’s scheme still
applies in our multiple-key case. If an attacker manages to
obtain m sets of linearly independent public IDs and the
associated private keys, it is possible to craft valid public

234Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

Number of keys, N
1 2 3 4

matrix size: 64 × 64
ROM (bytes) 6,888 7,678 8,312 9,206
RAM (bytes) 326 382 534 830
time (ms) 9 34 97 231
Energy (mJ) 0.24 0.92 2.62 16.23

matrix size: 128 × 128
ROM (bytes) 7,016 8,192 9,466 11,260
RAM (bytes) 326 382 534 830
time (ms) 15 63 176 399
Energy (mJ) 0.40 1.70 4.75 10.76

matrix size: 256 × 256
ROM (bytes) 7,274 9,210 11,772 15,358
RAM (bytes) 326 382 534 830
time (ms) 30 124 332 734
Energy (mJ) 0.81 3.34 8.95 19.8

matrix size: 1,024 × 1,024
ROM (bytes) 8,812 15,354 25,596 *
RAM (bytes) 326 382 534 *
time (ms) 121 480 1,275 *
Energy (mJ) 3.26 12.95 34.39

matrix size: 4,095 × 4,095
ROM (bytes) 14,954 39,922 * *
RAM (bytes) 326 382 * *
time (ms) 486 1,906 * *
Energy (mJ) 13.11 51.40 * *

Table I
MEMORY REQUIREMENTS, COMPUTATION TIMES, AND ESTIMATED

ENERGY FOR KEY COMPUTATION USING 16-BITS DATA SIZE. * THESE
EXCEEDS THE ARRAY LIMIT

IDs and private keys for any other nodes. It would also be
possible to derive the secret matrices and completely break
the system. In our scheme, the number of captured nodes
which can compromise the network, called the “capture
threshold”, is Qc =

m
N .

Depending on the application, we can implement the
scheme with suitable levels of security for the following
topologies,

• fully secure, ad hoc, mobile, full mesh topology
• fully secure, fixed, cluster topology,
• partially secure, ad hoc, mobile, full mesh topology

1. Fully secure, ad hoc, mobile, fully mesh topology:
The scheme can be directly applied in this situation. All
nodes are mobile and are able to form pairwise keys with
every neighbour within range. The number of exposed nodes
in the network is kept to below the capture threshold.
Further, to prevent the captured keying material from being
used to craft another node, the nodes have unique, non-
intersecting sets of public ID vectors. This means there can
be at most bm−1N c nodes in the network. This limits the
network size to about 2,000 nodes for the case of N = 2,
and m = 4, 095 with the key computation time of about 1.9
s.

Smaller networks with highly mobile nodes such as in
sports or combat situations would specially benefit from this

scheme. For example, with about 30 nodes, using m = 64
and N = 2, nodes can derive a pairwise key in 34 ms using
about 0.92 mJ of energy.

2. Fully secure, ad hoc, fixed cluster topology: If the
network is organised as clusters and the nodes are fixed in
position, we can implement the multiple-key Blom’s scheme
among the cluster head nodes, restricting their number to be
less than the capture threshold. The leaf nodes also uses
the scheme but with a difference in that after deployment,
their public ID-tags are deleted once they have established
a pairwise link with a cluster head, or within a certain time
window. Without the ID-tags, the private keys cannot be
used to compromise the system. Thereafter, the leaf node do
not implement the scheme. For example, using m = 4095,
N = 2, we can have up to about 2,000 cluster heads. If each
cluster head has 10 nodes attached to it, the network size
would be 2,500 nodes.

3. Partially secure, ad hoc, fully mesh topology: In
some situations it is required to protect the network against
casual or opportunistic attacks but not necessarily against
determined and fully resourced adversaries such as rival
organisations. In this case, since considerable resources in
effort and time is required to capture Qc nodes, extract
the keying material, and solve the matrices, it may be
permissible to exceed the capture threshold. Other security
features such as node capture detection if implemented,
would also help to support this approach. The network can
then be much larger than the capture threshold. For example,
if capturing 500 nodes and extracting the keying material
is considered to be infeasible, we can have a thousand or
more nodes in the network. The scheme can be directly
implemented and have all the benefits of the ad hoc, mobile,
fully meshed topology.

VI. DISCUSSIONS AND COMPARISONS

Comparision with PKC methods

The aim of our key agreement scheme is to derive large
pairwise keys with authentication. Similar schemes which
can achieve this are the PKC methods which have been
successfully used in wired networks. Their application in
WSN has been studied, such as TinyECC [21], EC-ElGamal
[7], ECMQV/ECDCH [8], [6], etc. We will make some brief
comparisons with our scheme in some performance metrics
important in sensor networks, i.e., energy, key computation
time, and memory requirements.

Exchange of keying material: Key agreement schemes
requires the exchange of some keying material. The amount
of bits exchanged impacts on the energy used for the radio.
For comparison we will exclude the overheads such MAC
addresses, protocol headers, etc.

The DH scheme requires the two parties to exchange
their public keys from which to derive a common secret.
To authenticate each other, the public keys need to be
signed by a trusted authority. For ECC schemes, the basic

235Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

components include a public key which is a point on the
elliptic curve, its hash value, and the signature comprising
two integers provided by the trusted authority. Using 160 -
bits, an authenticated ECDH scheme would require exchange
of at least 768 bits. Compared to our scheme requiring Nb
-bits, this is larger by more than 10 times.

Key computation time and energy: In an optimised
implementation of the ECDH scheme for WSN [6], the key
computation took 710 ms, and used 17.04 mJ of energy in a
MICAz mote running TinyOS. Another implementation us-
ing the EC-ElGamal scheme on a MICAz mote [7] reported
570 ms for key computation. These do not include signature
verifications which would also require substantial amount of
time and energy. For example, in [21], TinyECC was used
to implement ECDH for key computation and ECDSA for
signature verification in a MICAz mote. The results showed
that with all optimizations enabled, the execution times were:
ECDSA initialisation 3,393 ms, verification 2,436 ms, and
for ECDH initialisation 1,839 ms, and key computation
2,117 ms. Hence, key computation and signature verification
can take 4.5 seconds, after initialisation of about 5.2 seconds.
Our key computation times depends on the choice of m and
N as shown in Table I. In the largest case with N = 2 and
m = 4095, the key computation took 1.9 seconds.

Memory requirements: The largest use of memory in
our scheme is bmN2 -bits for the private keys. This is static
and can be stored in program memory. The code itself is very
simple and compact requiring only a few hundred bytes of
ROM storage. The total ROM memory for data code was
less than 40 kB for the the largest values of m = 4095 and
N = 2.

RAM storage was required only for variables such as the
N3 secret numbers, the pairwise key, and some counters. For
the case of N = 2, only 382 bytes of RAM was required,
as shown in Table I.

The PKC schemes require substantially more memory,
especially RAM storage. In a MICAz mote implementing
TinyECC [21], the memory requirements, with all optimi-
sations enabled for ECDSA was 19,308 bytes ROM and
1,510 bytes RAM, for ECIES 20,758 bytes ROM and 1,774
bytes RAM, and for ECDH 16,018 bytes ROM and 1,774
bytes RAM. With all optimisations disabled, all the RAM
sizes were only around 150 bytes but with consequently
huge execution times, such as 31 seconds for ECDH key
establishment! In [22] the code size for ECDSA as 56,600
bytes ROM and 1,700 bytes RAM.

VII. CONCLUSION

We presented our implementation of the modified Blom’s
scheme using multiple-keys which, while retaining the ad-
vantages of the basic scheme, improves it to make it very
attractive for use in WSN. It is able achieve large pairwise
key sizes, fast, and requires little energy and computational
resources. We implemented our scheme in a MICAz mote

and the results showed it be very advantageous compared
other PKC schemes in terms of speed, energy, and RAM
storage requirements. The network is fully secure if the
number of compromised nodes do not exceed the capture
threshold. The best choice was N = 2 keys, enabling
pairwise key size of 128 bits requiring only 382 bytes of
RAM. The ROM requirements are mainly for the node’s
private keys and its size depends on the capture threshold.
In our case, the largest amount required was about 40 kB
for a network with capture threshold of about 2,000 nodes.
The key computation time increases as the capture threshold
increases. This ranged from 34 ms for a capture threshold
of 32 nodes, to 1.9 s for a capture threshold of 2,000 nodes
using N = 2 keys.

REFERENCES

[1] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar,
“Spins: Security protocols for sensor networks,” Wireless
Networks, vol. 8, pp. 521–534, 2002.

[2] S. Zhu, S. Setia, and S. Jajodia, “Leap: Efficient security
mechanisms for large-scale distributed sensor networks,” Pro-
ceedings of the 10th ACM conference on Computer and
communications security, 2003.

[3] L. Eschenauer and V. D. Gligor, “A key-management scheme
for distributed sensor networks,” In Proceedings of the 9th
ACM Conference on Computer and Communications Security,
pp. 41–47, 2002.

[4] J. G. Steiner, C. Neuman, and J. I. Schiller, “Kerberos: An
authentication service for open network systems.” In Pro-
ceedings of the Winter 1988 USENIX Conference. USENIX,
February 1988.

[5] M. Liu, W. Wei, and Z. Liu, “A secure key pre-distribution
scheme for wireless sensor networks,” International Confer-
ence on Industrial Electronics and Applications, ICIEA., pp.
1762 –1768, May 2009.

[6] C. Lederer, R. Mader, M. Koschuch, J. Groschdl, A. Szekely,
and S. Tillich, Energy-Efficient Implementation of ECDH Key
Exchange for Wireless Sensor Networks. Springer Verlag,
LNCS 5746, September 2009.

[7] O. Ugus, D. Westhoff, R. L. 0002, A. Shoufan, and S. A.
Huss, “Optimized implementation of elliptic curve based ad-
ditive homomorphic encryption for wireless sensor networks,”
2nd Workshop on Embedded Systems Security - WESS’2007,
Salzburg, Austria., October 2007.

[8] J. Groschdl, A. Szekely, and S. Tillich, “The energy cost of
cryptographic key establishment in wireless sensor networks,”
Proc. The 2nd ACM Symposium on Information, Compter and
Communication Security, 2007.

[9] G. de Meulenaer, F. Gosset, F.-X. Standaert, and O. Pereira,
“On the energy cost of communications and cryptography in
wireless sensor networks,” IEEE International Conference on
Wireless & Mobile Computing, Networking & Communica-
tion, pp. 580–585, 10 2008.

236Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

[10] L. E. Law, A. J. Menezes, M. Qu, J. A. Solinas, and
S. A. Vanstone, “An efficient protocol for authenticated key
agreement,” Designs, Codes and Cryptography, vol. 28, no. 2,
pp. 119–134, 2003.

[11] J. Zheng, J. Li, M. J. Lee, and M. Anshel, “A lightweight
encryption and authentication scheme for wireless sensor
networks,” Int. J. Security and Networks, vol. 1, no. 3/4, pp.
138–146, 2006.

[12] R. Blom, “An optimal class of symmetric key generation
systems,” Linkopping University, Tech. Rep., 1984.

[13] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of
Applied Cryptography. CRC Press, Inc., 1996.

[14] W. Du, S. Y. Han, J. Deng, and P. K. Varshney, “A pairwise
key pre-distribution scheme for wireless sensor networks,”
Proceedings of the conference on Computer and communica-
tions security, October 2003.

[15] S.-J. Wang, Y.-R. Tsai, and J.-W. Chan, “A countermeasure
against frequent attacks based on the blom-scheme in ad
hoc sensor networks,” International Symposium on Wireless
Pervasive Computing, 2007.

[16] N. Chen, J.-b. Yao, and G.-j. Wen, “An improved matrix
key pre-distribution scheme for wireless sensor networks,”
International Conference on Embedded Software Systems, p.
4045, 2008.

[17] Memsic Corporation, MICAz Datasheet. [Online].
Available: http://www.memsic.com/products/wireless-sensor-
networks/wireless-modules.html, Retrieved: April 12, 2012

[18] P. Levis, TinyOS programming, 2006. [Online]. Available:
http://csl.stanford.edu/ pal/pubs/tinyos-programming.pdf. Re-
trieved: April 12, 2012

[19] C. Hartung, J. Balasalle, and R. Han, “Node compromise in
sensor networks: The need for secure systems,” Department of
Computer Science, University of Colorado at Boulder, Tech.
Rep., January 2005.

[20] A. Becher, Z. Benenson, and M. Dornseif, “Tampering with
motes: Real-world physical attacks on wireless sensor net-
works,” Proceedings of the Third international conference
on Security in Pervasive Computing, vol. 3934, pp. 104–118,
2006.

[21] A. Liu and P. Ning, “Tinyecc: A configurable library for
elliptic curve cryptography in wireless sensor networks,” in
Proceedings of the 7th International Conference on Informa-
tion Processing in Sensor Networks, pp. 245–256, April 2008.

[22] H. Wang and Q. Li, “Efficient implementation of public
key cryptosystems on mote sensors (short paper,” in In
International Conference on Information and Communication
Security (ICICS), LNCS 4307, 2006, pp. 519–528.

237Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

