
 DCM+: Robust Congestion Control Protocol for Mobile Networks 
 

 

Rushdi A. Hamamreh 
Al-Quds University 

Jerusalem, Palestine 

Email: rushdi@staff.alquds.edu 

 

Derar Khader 
Al-Quds University 

Jerusalem, Palestine 

Email: cedkhader@gmail.com 

 

 

Abstract—This paper aims at presenting a new robust 

congestion control protocol for mobile networks. It also can be 

used for mixed networks and mobile adhoc networks 

(MANETs). The proposed protocol is called Dynamic 

Congestion Control Protocol for Mobile Networks (DCM+). It 

makes use of the bandwidth estimation algorithm used in 

Westwood+ algorithm. We evaluate DCM+ on the basis of 

known metrics like throughput, average delay, packet loss and 

Packet-Delivery-Ratio (PDR). New metrics like Normalized 

Advancing Index (NAI) and Complete-Transmission-Time 

(CTT) have been introduced for a comprehensive comparison 

with other congestion control variants like NewReno, Hybla, 

Ledbat and BIC. The simulations are done for a one-way 

single-hop-topology (sender->router->receiver). The findings in 

this paper clearly show excellent properties of our proposed 

technique like robustness and stability. It avoids congestions, 

increases performance, minimizes the end-to-end delay and 

reduces the transmission time. DCM+ combines the 

advantages of the protocols NewReno and Westwood+. The 

simulation results show high improvements, which make this 

approach extremely adequate for different types of networks. 

 

Keywords-Congestion control; DCM+; wireless; ns3 simulator. 

I.  INTRODUCTION 

Congestion control is a vital process for data networks, 

especially those that rely mainly on TCP (Transmission 

Control Protocol) traffic. It has a central role for achieving 

high performance and throughput through managing 

congestions. This results in preventing the global networks 

like the Internet from collapse [2][3]. Since 1986, many 

protocols have been proposed and implemented for 

controlling data transmission between hosts. TCP NewReno 

is one of the most prominent variants of the old days 

[4][9][13][25], which though has some drawbacks and 

limitations, especially in wireless, mobile and mixed 

networks [3][5][7][20]. Another limitation of TCP 

NewReno is its little support for mobility [3][7][9], which 

makes it unusable in MANETS. TCP NewReno has been 

implemented in the TCP protocol stack of different 

applications and operating systems. Recently, newer TCP 

variants like TCP Westwood+, BIC, CUBIC, HighSpeed, 

Scalable, Hybla and Ledbat are available in modern 

applications and operating systems like Linux 

[6][8][10][11]. TCP Ledbat, for example, is implemented 

under MS Windows Server 2019, and also in MS Windows 

10 [12]. 

TCP DCM+ is a new end-to-end approach that we have 

proposed in [1]. It stands for dynamic congestion control for 

mobile systems. It uses the Bandwidth Estimation (BWE) 

algorithm of TCP Westwood+, and hence comes the (+) 

sign. DCM+ is designed to avoid the congestion events in 

wireless and mobile networks. It also improves the 

performance in wired and mixed networks. 
 

Despite the appropriate design for managing 

congestions in old (wired) networks, the main weakness of 

TCP NewReno is that it cannot distinguish the reasons for 

packet losses [3][5]. Two main reasons are known for 

packet losses. The first reason is a “full buffer” of the 

intermediate router, which is known as “network 

congestion”. In this case, the data packet could be dropped 

intentionally from the router [13]-[18] like in Random-

Early-Discard (RED). The aim of this strategy is to mitigate 

the large number “queue” of packets waiting for entrance 

into the router interface. The second reason is a signal error 

on the wireless channel, which is known as Link-Error (LE) 

[3][5][19][20][23]. In both cases, TCP NewReno drops its 

Congestion Window (cwnd) to the half, even if no real 

congestion exists and the packet was only dropped because 

of a bad wireless link [3][4][22]-[25]. This is the main 

reason for the bad performance of TCP NewReno in 

wireless and mobile networks. 

 

This paper contains 5 sections. It is structured as 

follow: In section 2, works related to congestion control are 

mentioned. In section 3, we present our proposed technique. 

In section 4, the results and the simulations are shown. 

Section 5 is the conclusion and possible future work.   

II. RELATED WORK 

Many approaches dealing with modelling and 

identification of packet losses have been suggested [19][24], 

but this problem is still an active research topic. Fuzzy 

Logic (FL) and Machine Learning (ML) are some of the 

fields that have been used and tested to answer the question: 

“why is the packet lost?”. Fuzzy inference systems [26][27], 

ANFIS [28], ML classification [29][30], neural networks 

[31][32] and random forests are just some of the modern 

approaches and algorithms to distinguish between true and 

false congestion events in mixed and mobile networks. The 

correctly identified congestion events are known as TP or 

“True Positives”. In this case, Congestion-Avoidance (CA) 
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phase will be launched and new values for both Slow-Start 

Threshold (ssth) and cwnd will be calculated. Otherwise, if 

the packet is dropped because of a link error, then the 

transmission continues without any change [27][29][30]. 

Hence, no or little false drops will occur, and thus, 

throughput will not suffer as in old TCP variants. 

 

DCM+, on the other hand, is not causing any 

congestions during the transmission. It increases its cwnd 

size during the CA phase depending on the values of 

previous and current Round-Trip Times (RTT). Hence, 

DCM+ high performance is achieved because of using RTT 

as implicit feedback to predict the probability of a 

congestion, and thereafter to put the appropriate cwnd on the 

channel. This way, DCM+ reduces the probability of a 

congestion to an extremely low level. As a result, 

theoretically, the number of cwnd drops will be zero or very 

small. This results in high Packet-Delivery-Ratio (PDR), 

even when the packet-error-rates is too high. An example of 

the dynamics of TCP transmission using DCM+ is shown in 

Figure 1. 

Figure 1.   dynamic behavior of cwnd in DCM+ 
 

We see that cwnd is always tracking the actual state of 

slow-start-threshold (ssthresh). This causes a speedup in the 

transmission and hence, outperforms other TCP variants. 

Except at countable time points, which represent the lost 

packets, cwnd is tracking the state of ssthresh. When a 

packet is lost because of a bad link conditions, the timeout 

counter signals this through a drop in the window size. This 

simulation is done using ns-3 with the following parameters: 

 

• Bottleneck Bandwidth = 10 Mbps 

• Access Bandwidth at the destination = 100 Mbps 

• Packet-error-rate = 0.01 

• Maximum Transmission Unit (MTU) = 1500 

Bytes. 

III. PROPOSED APPROACH 

DCM+ is an End-To-End approach that uses the same 

algorithm explained in TCP Westwood+ [5][11][21][22] to 

find the accurate estimation of available bandwidth on the 

link. It describes a sender-side modification of CA phase of 

TCP Westwood+ protocol. Depending on the current 

discrete values of BWE, DCM+ calculates the values for the 

next interval. The behavior of cwnd is observed to be 

dynamical. If a change (increase/decrease) of ssthresh has 

been observed within a specific time interval, then cwnd of 

DCM+ keeps using the same value of ssthresh until a newer 

state of ssthresh has been reached. After that, cwnd moves 

and remains at the new state for a new time interval. This 

way, cwnd will never (barely) exceed the available ssthresh. 

Hence, congestion events will be extremely minimized. 

Figure 1 shows this behavior for packet-error-rate = 0.01, 

MTU =1500 bytes, bottleneck BW=10 Mbps and access-

BW=100 Mbps. 

 

Steady-state and stability for packet error rates lower 

than (0.05) can be observed from the simulations. Higher 

packet error rates, different MTU sizes and different sizes of 

TCP buffer can affect the dynamics of DCM+. Hence, the 

number of the packet drops is affected as shown in Figure 2 

and Figure 3. The simulations are executed under ns-3.29 

using the file ‘tcp-variants-comparison.cc’.  The used 

topology is a simple one-hop network. The topology is built 

of (TCP Source-> Router -> TCP Destination). The traffic is 

one-way TCP traffic only. No reverse traffic is used. The 

simplicity of this topology is vital to show the best 

performance that can be achieved by the different TCP 

variants. The used TCP variants are part of the simulator. 

NewReno, Hybla, Ledbat, BIC, Westwood/Westwood+ are 

implemented as C++ files. DCM+ has been implemented as 

a modified TCP Westwood+. The wireless channel is 

represented as a channel with high variable sporadic packet 

error rates. 

 
Figure 2.   DCM+ behavior for different MTU 
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The design of DCM+ is similar to NewReno, which is 

detailed as an RFC [25]. DCM+ uses the same 4 phases like 

NewReno (SS, CA, fast retransmission (FR) and fast 

recovery (FV)). In DCM+, the behavior in CA has been so 

modified to enforce the cwnd to track ssth in the next time 

interval. TCP timing parameters RTT and RTO have been 

used as feedback signals to control the values of ssth and 

cwnd in the next interval. 

 

rateCA = RTT_old / RTT_new   (1) 

 

 
Figure 3. DCM+ drops vs. TCP buffer size 

 

Figures 3 and 4 are shown for different TCP buffer 

sizes of the intermediate node. Figure 3 shows how many 

cwnd drops occur depending on the buffer size. According 

to [1], these drops occur only if a packet is lost because of a 

bad wireless link as no congestion events are allowed. We 

see that we get a minimum of drops when the buffer size is 

equal 512 KB. On the other hand, in Figure 4, we have the 

complete transmission time (CTT) as a function of TCP 

buffer size. Per definition, CTT is the difference between 

the arrival time of last ACK and first ACK segments: 

 

CTT = last_ACK_time – first_ACK_time       (2) 

 

Figure 4 shows that for TCP buffer sizes equal or 

higher than 512KB, the TCP connection will have the 

shortest possible CTT. 

 

DCM+ follows the following principle: it considers 

values of rateCA higher than 1 as advance or “Link 

Capacity Increasing”, and values lower than 1 as danger or 

“Link Capacity Decreasing”. Depending on the conditions 

stated in the algorithm of CA phase in [1], if cwnd is less 

than ssth, then rateCA will be used to start the 

retransmission in wide steps, otherwise, retransmission goes 

slowly, which prevents any possible congestions. Please, 

refer to Figure 5 to see the changing of rateCA during the 

transmission. 

 

 
Figure 4. CTT vs. TCP buffer size 

 

Figure 5 depicts the timing parameters for the 

simulation in Figure 1. We see that cwnd drops occur at the 

points: 21 sec, 90 sec, 151 sec, 168 sec and 240 sec. These 

points coincide with the spike points in Figure 5. 

 

We discovered that if current RTT value is less than 

previous RTT, then we have an increase in the cwnd size. 

Otherwise, if a spike occurs, then a packet is lost, and this is 

signaled through a spike on the RTT curve. When a spike 

occurs, RTO counter is exceeded, and a packet is lost. 

Hence, RTO timer is reset to 1, and this leads to the cwnd 

size to be reset to 1 packet. Look at Figure 5, and compare 

the time points of spikes and the cwnd drops. 

 

At each time point during the transmission, the value of 

the next RTO is affected by the newly calculated rateCA. If 

the current RTT is decreasing, then RTO shall be also 

reduced, as no congestion is expected. As described in the 

algorithm of CA phase in [1], next value of ssth depends on 

the available channel capacity, which is calculated regarding 

TCP Westwood+ algorithm [5],[21],[22]. The calculation of 

next cwnd depends on current rateCA and previous cwnd. 

39Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-753-5

ICSNC 2019 : The Fourteenth International Conference on Systems and Networks Communications



 
Figure 5.   Timing parameters during the transmission 

 

After we executed 1000’s of simulations with different 

parameters, we found that our technique poses excellent 

stability and robustness properties. 

 

Our simulations of the mentioned topology for many 

cases with different parameters show that next cwnd does 

not exceed the available ssth. According to the theoretical 

results of the simulations, we make the assumption that 

DCM+ does not suffer or cause any congestion events, 

because it estimates the available channel capacity before 

sending data. More complex simulations are still to be 

executed to intensively study fairness and friendliness in the 

presence of other TCP sources and destinations. 

 
Figure 6.   DCM+ performance compared with other techniques 

We see that the quick tracking of the state of ssth and 

the smart way of selecting the transmission size are the main 

reasons for the improved performance and robustness of 

DCM+, as depicted in Figure 6, which is created with same 

parameters as Figure 1. Even better results are expected for 

higher bandwidth-delay-products due to the quick dynamic 

behavior of cwnd that is not available in other techniques. 

IV. RESULTS 

Table 1 depicts the used parameters to create Figures 7, 

8 and 9. The simulations are executed for different packet 

error rates (1e-6 to 0.05). The used environment is ns-3.29 

[33] under Ubuntu Linux VM inside Oracle VirtualBox 

5.2.22. 

 
TABLE I. PARAMETERS OF THE SIMULATION ENVIRONMENT 

Data size BW Access BW MTU Size Duration 

(sec) 

100 MB 1 Gb/sec 100 Mbps 1500 Bytes 2000 

 

Figures 7, 8 and 9 below show the performance metrics 

for some TCP congestion control protocols (DCM+, 

NewReno, BIC, Ledbat and Hybla). Newer approaches like 

TCP CUBIC, TCP PCC and TCP ex Machina are to be 

compared against our approach in other works. 

 

A. Throughput 

In Figure 7, we see the throughput of different 

protocols, and we clearly see the advantage of DCM+ over 

other protocols. The high throughput extends nearly over the 

complete range of error rates, which is from 1e-6 to 0.05. 

For error rates less than 1e-3, only BIC protocol performs 

better, but that is at the expense of other metrics like PDR, 

average delay and packets losses, where BIC performs 

worst. Lost packets of BIC are highest in the range 1e-5 to 

1e-3. 

 

 
Figure 7.   Throughput for different Protocols 
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B. Normalized Advancing Index (NAI) 

For the reason of detailed comparison, we introduced a 

new metric, which we called normalized advancing index 

(NAI). It is defined as the ratio of throughput divided by the 

product of lost packets (given in bytes) and error rates.  Its 

unit is (1/sec), and should indicate the speed of delivering 

the complete size of data from one end to the other despite 

the existence of lost packets at a specific error rate. 

 

The robustness of DCM+ is visible in Figure 8. It 

shows that DCM+ performs better than all other protocols 

mentioned in this paper. This robustness is a result of less 

packet losses, lower average delay and a higher throughput 

than other approaches. 

 

(3) 

 

 
Figure 8.   NAI as robustness indicator for different protocols 

 

We clearly see that DCM+ has the best results over the 

whole range of simulated error rates. This reflects the best 

transmission speed and quality for the underlying TCP 

applications. 

 

C. Complete Transmission Time (CTT) 

It is a good advantage to finish transmission in short 

time without causing congestions, if possible. This is the 

case with DCM+ protocol as depicted in Figure 9. It has the 

lowest (CTT) among all tested protocols. CTT is defined as 

the time needed for the last ACK segment to arrive at the 

sender. We see from Figure 4 that the performance of CTT 

can be improved through changing the size of TCP buffer in 

the sender, receiver and intermediate router. 

 

Based on the results presented above, TCP applications 

and devices that use DCM+ can extremely accelerate the 

data transmission and hence finish using the link earlier. 

This results in less power consumption. 

 

 
Figure 9.   CTT for different protocols 

V. CONCLUSION 

We have demonstrated a new approach (DCM+) that 

has better performance than all other used approaches. We 

made the assumption that it does not cause any congestions 

as DCM+ is TCP fair and friendly. It is usable in the 

different types of networks, but more adequate for 

mobile/wireless and MANET networks. In this research 

work, we have shown that our approach is robust. It has the 

ability to minimize the average delay and packet losses, but 

also to improve the throughput and the speed of the 

transmission under high error rates. It is designed in similar 

fashion like TCP NewReno. It is an end-to-end technique, 

which will be used from the TCP sender to control the sent 

amount of data on the transmission link. It has a modified 

behavior in CA phase. It uses the BWE algorithm described 

in TCP Westwood+ protocol to estimate the available 

channel capacity. Thereafter, it calculates the appropriate 

values for both ssth and cwnd depending on the feedback 

signals RTT and RTO, the parameter rateCA, and whether 

the calculated cwnd is less than ssth or not. As feedback 

signals, we used previous states of both RTT and RTO. 

 

We found through intensive simulations that DCM+ has 

improved properties like high throughput, low delay, low 

drops and extremely fast speed in delivering data to the end 

device. We also introduced new performance metrics, NAI 

and CTT to show the advantages of the dynamic behavior of 

DCM+.  In the future, these results are to be validated 

through more complex topologies in the presence of 

different traffic types. Also, a comprehensive mathematical 

model will be presented to show the theoretical limits of this 

approach. A comparison with newer techniques like CUBIC 

and ex Machina is planned as a future work. 
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