
 DCM+: Robust Congestion Control Protocol for Mobile Networks

Rushdi A. Hamamreh
Al-Quds University

Jerusalem, Palestine

Email: rushdi@staff.alquds.edu

Derar Khader
Al-Quds University

Jerusalem, Palestine

Email: cedkhader@gmail.com

Abstract—This paper aims at presenting a new robust

congestion control protocol for mobile networks. It also can be

used for mixed networks and mobile adhoc networks

(MANETs). The proposed protocol is called Dynamic

Congestion Control Protocol for Mobile Networks (DCM+). It

makes use of the bandwidth estimation algorithm used in

Westwood+ algorithm. We evaluate DCM+ on the basis of

known metrics like throughput, average delay, packet loss and

Packet-Delivery-Ratio (PDR). New metrics like Normalized

Advancing Index (NAI) and Complete-Transmission-Time

(CTT) have been introduced for a comprehensive comparison

with other congestion control variants like NewReno, Hybla,

Ledbat and BIC. The simulations are done for a one-way

single-hop-topology (sender->router->receiver). The findings in

this paper clearly show excellent properties of our proposed

technique like robustness and stability. It avoids congestions,

increases performance, minimizes the end-to-end delay and

reduces the transmission time. DCM+ combines the

advantages of the protocols NewReno and Westwood+. The

simulation results show high improvements, which make this

approach extremely adequate for different types of networks.

Keywords-Congestion control; DCM+; wireless; ns3 simulator.

I. INTRODUCTION

Congestion control is a vital process for data networks,

especially those that rely mainly on TCP (Transmission

Control Protocol) traffic. It has a central role for achieving

high performance and throughput through managing

congestions. This results in preventing the global networks

like the Internet from collapse [2][3]. Since 1986, many

protocols have been proposed and implemented for

controlling data transmission between hosts. TCP NewReno

is one of the most prominent variants of the old days

[4][9][13][25], which though has some drawbacks and

limitations, especially in wireless, mobile and mixed

networks [3][5][7][20]. Another limitation of TCP

NewReno is its little support for mobility [3][7][9], which

makes it unusable in MANETS. TCP NewReno has been

implemented in the TCP protocol stack of different

applications and operating systems. Recently, newer TCP

variants like TCP Westwood+, BIC, CUBIC, HighSpeed,

Scalable, Hybla and Ledbat are available in modern

applications and operating systems like Linux

[6][8][10][11]. TCP Ledbat, for example, is implemented

under MS Windows Server 2019, and also in MS Windows

10 [12].

TCP DCM+ is a new end-to-end approach that we have

proposed in [1]. It stands for dynamic congestion control for

mobile systems. It uses the Bandwidth Estimation (BWE)

algorithm of TCP Westwood+, and hence comes the (+)

sign. DCM+ is designed to avoid the congestion events in

wireless and mobile networks. It also improves the

performance in wired and mixed networks.

Despite the appropriate design for managing

congestions in old (wired) networks, the main weakness of

TCP NewReno is that it cannot distinguish the reasons for

packet losses [3][5]. Two main reasons are known for

packet losses. The first reason is a “full buffer” of the

intermediate router, which is known as “network

congestion”. In this case, the data packet could be dropped

intentionally from the router [13]-[18] like in Random-

Early-Discard (RED). The aim of this strategy is to mitigate

the large number “queue” of packets waiting for entrance

into the router interface. The second reason is a signal error

on the wireless channel, which is known as Link-Error (LE)

[3][5][19][20][23]. In both cases, TCP NewReno drops its

Congestion Window (cwnd) to the half, even if no real

congestion exists and the packet was only dropped because

of a bad wireless link [3][4][22]-[25]. This is the main

reason for the bad performance of TCP NewReno in

wireless and mobile networks.

This paper contains 5 sections. It is structured as

follow: In section 2, works related to congestion control are

mentioned. In section 3, we present our proposed technique.

In section 4, the results and the simulations are shown.

Section 5 is the conclusion and possible future work.

II. RELATED WORK

Many approaches dealing with modelling and

identification of packet losses have been suggested [19][24],

but this problem is still an active research topic. Fuzzy

Logic (FL) and Machine Learning (ML) are some of the

fields that have been used and tested to answer the question:

“why is the packet lost?”. Fuzzy inference systems [26][27],

ANFIS [28], ML classification [29][30], neural networks

[31][32] and random forests are just some of the modern

approaches and algorithms to distinguish between true and

false congestion events in mixed and mobile networks. The

correctly identified congestion events are known as TP or

“True Positives”. In this case, Congestion-Avoidance (CA)

37Copyright (c) IARIA, 2019. ISBN: 978-1-61208-753-5

ICSNC 2019 : The Fourteenth International Conference on Systems and Networks Communications

mailto:rushdi@staff.alquds.edu
mailto:cedkhader@gmail.com

phase will be launched and new values for both Slow-Start

Threshold (ssth) and cwnd will be calculated. Otherwise, if

the packet is dropped because of a link error, then the

transmission continues without any change [27][29][30].

Hence, no or little false drops will occur, and thus,

throughput will not suffer as in old TCP variants.

DCM+, on the other hand, is not causing any

congestions during the transmission. It increases its cwnd

size during the CA phase depending on the values of

previous and current Round-Trip Times (RTT). Hence,

DCM+ high performance is achieved because of using RTT

as implicit feedback to predict the probability of a

congestion, and thereafter to put the appropriate cwnd on the

channel. This way, DCM+ reduces the probability of a

congestion to an extremely low level. As a result,

theoretically, the number of cwnd drops will be zero or very

small. This results in high Packet-Delivery-Ratio (PDR),

even when the packet-error-rates is too high. An example of

the dynamics of TCP transmission using DCM+ is shown in

Figure 1.

Figure 1. dynamic behavior of cwnd in DCM+

We see that cwnd is always tracking the actual state of

slow-start-threshold (ssthresh). This causes a speedup in the

transmission and hence, outperforms other TCP variants.

Except at countable time points, which represent the lost

packets, cwnd is tracking the state of ssthresh. When a

packet is lost because of a bad link conditions, the timeout

counter signals this through a drop in the window size. This

simulation is done using ns-3 with the following parameters:

• Bottleneck Bandwidth = 10 Mbps

• Access Bandwidth at the destination = 100 Mbps

• Packet-error-rate = 0.01

• Maximum Transmission Unit (MTU) = 1500

Bytes.

III. PROPOSED APPROACH

DCM+ is an End-To-End approach that uses the same

algorithm explained in TCP Westwood+ [5][11][21][22] to

find the accurate estimation of available bandwidth on the

link. It describes a sender-side modification of CA phase of

TCP Westwood+ protocol. Depending on the current

discrete values of BWE, DCM+ calculates the values for the

next interval. The behavior of cwnd is observed to be

dynamical. If a change (increase/decrease) of ssthresh has

been observed within a specific time interval, then cwnd of

DCM+ keeps using the same value of ssthresh until a newer

state of ssthresh has been reached. After that, cwnd moves

and remains at the new state for a new time interval. This

way, cwnd will never (barely) exceed the available ssthresh.

Hence, congestion events will be extremely minimized.

Figure 1 shows this behavior for packet-error-rate = 0.01,

MTU =1500 bytes, bottleneck BW=10 Mbps and access-

BW=100 Mbps.

Steady-state and stability for packet error rates lower

than (0.05) can be observed from the simulations. Higher

packet error rates, different MTU sizes and different sizes of

TCP buffer can affect the dynamics of DCM+. Hence, the

number of the packet drops is affected as shown in Figure 2

and Figure 3. The simulations are executed under ns-3.29

using the file ‘tcp-variants-comparison.cc’. The used

topology is a simple one-hop network. The topology is built

of (TCP Source-> Router -> TCP Destination). The traffic is

one-way TCP traffic only. No reverse traffic is used. The

simplicity of this topology is vital to show the best

performance that can be achieved by the different TCP

variants. The used TCP variants are part of the simulator.

NewReno, Hybla, Ledbat, BIC, Westwood/Westwood+ are

implemented as C++ files. DCM+ has been implemented as

a modified TCP Westwood+. The wireless channel is

represented as a channel with high variable sporadic packet

error rates.

Figure 2. DCM+ behavior for different MTU

38Copyright (c) IARIA, 2019. ISBN: 978-1-61208-753-5

ICSNC 2019 : The Fourteenth International Conference on Systems and Networks Communications

The design of DCM+ is similar to NewReno, which is

detailed as an RFC [25]. DCM+ uses the same 4 phases like

NewReno (SS, CA, fast retransmission (FR) and fast

recovery (FV)). In DCM+, the behavior in CA has been so

modified to enforce the cwnd to track ssth in the next time

interval. TCP timing parameters RTT and RTO have been

used as feedback signals to control the values of ssth and

cwnd in the next interval.

rateCA = RTT_old / RTT_new (1)

Figure 3. DCM+ drops vs. TCP buffer size

Figures 3 and 4 are shown for different TCP buffer

sizes of the intermediate node. Figure 3 shows how many

cwnd drops occur depending on the buffer size. According

to [1], these drops occur only if a packet is lost because of a

bad wireless link as no congestion events are allowed. We

see that we get a minimum of drops when the buffer size is

equal 512 KB. On the other hand, in Figure 4, we have the

complete transmission time (CTT) as a function of TCP

buffer size. Per definition, CTT is the difference between

the arrival time of last ACK and first ACK segments:

CTT = last_ACK_time – first_ACK_time (2)

Figure 4 shows that for TCP buffer sizes equal or

higher than 512KB, the TCP connection will have the

shortest possible CTT.

DCM+ follows the following principle: it considers

values of rateCA higher than 1 as advance or “Link

Capacity Increasing”, and values lower than 1 as danger or

“Link Capacity Decreasing”. Depending on the conditions

stated in the algorithm of CA phase in [1], if cwnd is less

than ssth, then rateCA will be used to start the

retransmission in wide steps, otherwise, retransmission goes

slowly, which prevents any possible congestions. Please,

refer to Figure 5 to see the changing of rateCA during the

transmission.

Figure 4. CTT vs. TCP buffer size

Figure 5 depicts the timing parameters for the

simulation in Figure 1. We see that cwnd drops occur at the

points: 21 sec, 90 sec, 151 sec, 168 sec and 240 sec. These

points coincide with the spike points in Figure 5.

We discovered that if current RTT value is less than

previous RTT, then we have an increase in the cwnd size.

Otherwise, if a spike occurs, then a packet is lost, and this is

signaled through a spike on the RTT curve. When a spike

occurs, RTO counter is exceeded, and a packet is lost.

Hence, RTO timer is reset to 1, and this leads to the cwnd

size to be reset to 1 packet. Look at Figure 5, and compare

the time points of spikes and the cwnd drops.

At each time point during the transmission, the value of

the next RTO is affected by the newly calculated rateCA. If

the current RTT is decreasing, then RTO shall be also

reduced, as no congestion is expected. As described in the

algorithm of CA phase in [1], next value of ssth depends on

the available channel capacity, which is calculated regarding

TCP Westwood+ algorithm [5],[21],[22]. The calculation of

next cwnd depends on current rateCA and previous cwnd.

39Copyright (c) IARIA, 2019. ISBN: 978-1-61208-753-5

ICSNC 2019 : The Fourteenth International Conference on Systems and Networks Communications

Figure 5. Timing parameters during the transmission

After we executed 1000’s of simulations with different

parameters, we found that our technique poses excellent

stability and robustness properties.

Our simulations of the mentioned topology for many

cases with different parameters show that next cwnd does

not exceed the available ssth. According to the theoretical

results of the simulations, we make the assumption that

DCM+ does not suffer or cause any congestion events,

because it estimates the available channel capacity before

sending data. More complex simulations are still to be

executed to intensively study fairness and friendliness in the

presence of other TCP sources and destinations.

Figure 6. DCM+ performance compared with other techniques

We see that the quick tracking of the state of ssth and

the smart way of selecting the transmission size are the main

reasons for the improved performance and robustness of

DCM+, as depicted in Figure 6, which is created with same

parameters as Figure 1. Even better results are expected for

higher bandwidth-delay-products due to the quick dynamic

behavior of cwnd that is not available in other techniques.

IV. RESULTS

Table 1 depicts the used parameters to create Figures 7,

8 and 9. The simulations are executed for different packet

error rates (1e-6 to 0.05). The used environment is ns-3.29

[33] under Ubuntu Linux VM inside Oracle VirtualBox

5.2.22.

TABLE I. PARAMETERS OF THE SIMULATION ENVIRONMENT

Data size BW Access BW MTU Size Duration

(sec)

100 MB 1 Gb/sec 100 Mbps 1500 Bytes 2000

Figures 7, 8 and 9 below show the performance metrics

for some TCP congestion control protocols (DCM+,

NewReno, BIC, Ledbat and Hybla). Newer approaches like

TCP CUBIC, TCP PCC and TCP ex Machina are to be

compared against our approach in other works.

A. Throughput

In Figure 7, we see the throughput of different

protocols, and we clearly see the advantage of DCM+ over

other protocols. The high throughput extends nearly over the

complete range of error rates, which is from 1e-6 to 0.05.

For error rates less than 1e-3, only BIC protocol performs

better, but that is at the expense of other metrics like PDR,

average delay and packets losses, where BIC performs

worst. Lost packets of BIC are highest in the range 1e-5 to

1e-3.

Figure 7. Throughput for different Protocols

40Copyright (c) IARIA, 2019. ISBN: 978-1-61208-753-5

ICSNC 2019 : The Fourteenth International Conference on Systems and Networks Communications

B. Normalized Advancing Index (NAI)

For the reason of detailed comparison, we introduced a

new metric, which we called normalized advancing index

(NAI). It is defined as the ratio of throughput divided by the

product of lost packets (given in bytes) and error rates. Its

unit is (1/sec), and should indicate the speed of delivering

the complete size of data from one end to the other despite

the existence of lost packets at a specific error rate.

The robustness of DCM+ is visible in Figure 8. It

shows that DCM+ performs better than all other protocols

mentioned in this paper. This robustness is a result of less

packet losses, lower average delay and a higher throughput

than other approaches.

(3)

Figure 8. NAI as robustness indicator for different protocols

We clearly see that DCM+ has the best results over the

whole range of simulated error rates. This reflects the best

transmission speed and quality for the underlying TCP

applications.

C. Complete Transmission Time (CTT)

It is a good advantage to finish transmission in short

time without causing congestions, if possible. This is the

case with DCM+ protocol as depicted in Figure 9. It has the

lowest (CTT) among all tested protocols. CTT is defined as

the time needed for the last ACK segment to arrive at the

sender. We see from Figure 4 that the performance of CTT

can be improved through changing the size of TCP buffer in

the sender, receiver and intermediate router.

Based on the results presented above, TCP applications

and devices that use DCM+ can extremely accelerate the

data transmission and hence finish using the link earlier.

This results in less power consumption.

Figure 9. CTT for different protocols

V. CONCLUSION

We have demonstrated a new approach (DCM+) that

has better performance than all other used approaches. We

made the assumption that it does not cause any congestions

as DCM+ is TCP fair and friendly. It is usable in the

different types of networks, but more adequate for

mobile/wireless and MANET networks. In this research

work, we have shown that our approach is robust. It has the

ability to minimize the average delay and packet losses, but

also to improve the throughput and the speed of the

transmission under high error rates. It is designed in similar

fashion like TCP NewReno. It is an end-to-end technique,

which will be used from the TCP sender to control the sent

amount of data on the transmission link. It has a modified

behavior in CA phase. It uses the BWE algorithm described

in TCP Westwood+ protocol to estimate the available

channel capacity. Thereafter, it calculates the appropriate

values for both ssth and cwnd depending on the feedback

signals RTT and RTO, the parameter rateCA, and whether

the calculated cwnd is less than ssth or not. As feedback

signals, we used previous states of both RTT and RTO.

We found through intensive simulations that DCM+ has

improved properties like high throughput, low delay, low

drops and extremely fast speed in delivering data to the end

device. We also introduced new performance metrics, NAI

and CTT to show the advantages of the dynamic behavior of

DCM+. In the future, these results are to be validated

through more complex topologies in the presence of

different traffic types. Also, a comprehensive mathematical

model will be presented to show the theoretical limits of this

approach. A comparison with newer techniques like CUBIC

and ex Machina is planned as a future work.

41Copyright (c) IARIA, 2019. ISBN: 978-1-61208-753-5

ICSNC 2019 : The Fourteenth International Conference on Systems and Networks Communications

REFERENCES

[1] R. Hamamreh and D. Khader, “DCM+: a multi-purpose
protocol for congestion control”, 2019 IEEE 7th Palestinian
International Conference on Electrical and Computer
Engineering (PICECE), Date of Conference: 26-27 March
2019, DOI: 10.1109/PICECE.2019.874723.

[2] V. Jacobson and M. J. Karels, “Congestion Avoidance and
Control”, Computer Communication Review, 18(4), pp. 314 –
329, Aug. 1988.

[3] Y. Tian, K. Xu and N. Ansari, “TCP in Wireless
Environments: Problems and Solutions”, IEEE Radio
Comm., pp. S27 – S32, March 2005.

[4] S. Floyd and T. Henderson, “The NewReno Modification to
TCP’s Fast Recovery Algorithm”, RFC 3782, 2004.

[5] L. Grieco and S. Mascolo, “Performance Evaluation and
Comparison of Westwood+, New Reno, and Vegas”, ACM
SIGCOMM Computer Communication Review, Volume 34
Issue 2, pp. 25-38, April 2004.

[6] K. Miller and L. Hsiao, “TCPTuner: Congestion Control Your
Way”, Stanford University, 2016.

[7] P. Kaushika and R. Jagdish, “A survey on effectiveness of
TCP Westwood in mixed wired and wireless networks”,
International Journal of Scientific & Engineering Research,
Volume 4, Issue 6, pp. 197 – 205, June-2013.

[8] S. Arianfar, “TCP’s Congestion Control Implementation in
Linux Kernel”, Aalto University, 2012.

[9] T. Henderson, S. Floyd, A. Gurtov and Y. Nishida. “The
NewReno Modification to TCP's Fast Recovery Algorithm”,
RFC 6582. April 2012.

[10] P. Sarolahti and A. Kuznetsov, “Congestion Control in Linux
TCP”, Institute of Nuclear Research at Moscow, 2002.

[11] A. Dell’Aera, L. A. Grieco and S. Mascolo, “Linux 2.4
Implementation of Westwood+ TCP with rate-halving: A
Performance Evaluation over the Internet”, Tech. Rep. No.
08/03/S , 2004.

[12] Microsoft Networking Blog. Category- “Ledbat”.

https://blogs.technet.microsoft.com/networking/category/wind
ows-transports/ledbat/, [retrieved: September-2019].

[13] A.E. Eckberg and D.T. Luan, “Meeting the challenge:
congestion and flow control strategies for broadband
information transport”, 1989 IEEE Global
Telecommunications Conference and Exhibition 'Comm.
Technology for the 1990s and Beyond'. 1989.

[14] C. Yang and A.V.S. Reddy, “A taxonomy for congestion
control algorithms in packet switching networks”, IEEE
Network, Volume: 9, Issue: 4, pp. 34 – 45, 1995.

[15] K Bala, I. Cidon and K. Sohraby. “Congestion control for
high speed packet switched networks”, IEEE INFOCOM,
1990.

[16] M. May, J. Bolot, C. Diot, and B. Lyles, “Reasons not to
deploy RED”, Inria, Sprint Labs.

[17] R. Torres, J. Border, J. Xu and J. Jong, “Congestion control
using RED and TCP window adjustment”, MILCOM 2012 -
2012 IEEE Military Comm. Conf., 2012.

[18] S. Floyd and V. Jacobson, “Random Early Detection
Gateways for Congestion Avoidance”, IEEE/ACM
Transactions on Netw., Vol. I, No. I, pp. 397 – 413, 1993.

[19] J. Olsen, “On Packet Loss Rates used for TCP Network
Modeling”, Dep. of Math., Uppsala Univ., Sweden. 2004.

[20] K. Tan, F. Jiang and Q. Zhang, “Congestion Control in
Multihop Wireless Networks”, IEEE Transactions on
Vehicular Technology, Vol. 56, No.2, March 2007.

[21] S. Mascolo, L.A. Grieco, R. Ferorelli, P. Camarda and G.
Piscitelli, “Performance evaluation of Westwood+ TCP
congestion control”, ResearchGate, uploaded in May 2014.

[22] S. Mascolo, “Testing TCP Westwood+ over Transatlantic
Links at 10 Gigabit/Second rate”, (2005).

[23] C. Parsa and J.J. Garcia-Luna-Aceves, “Differentiating
Congestion vs. Random Loss: A Method for Improving TCP
Performance over Wireless Links”, Computer Engineering
Dep., Baskin School of Engineering, University of California.

[24] M. Allman, V. Paxson and E. Blanton, “TCP Congestion
Control”, RFC: 5681. 2009.

[25] M. H. Yaghmaee, F. Fatemipour. M. Bahekmat and A.
Barasani, “A New Fuzzy Logic Approach for TCP
Congestion Control”, Researchgate, 2015.

[26] H. Elaarag and M. Wozniak, “Using Fuzzy Inference to
improve TCP congestion control over wireless networks”,
BSc. Thesis, Stetson University, DeLand, Florida. 2010.

[27] S. M. Hosseini and B. N. Araabi, “A Neuro-Fuzzy Control for
TCP Network Congestion”, Advances in Intelligent and Soft
Computing, Springer Verlag, Sep. 2009.

[28] I. Elkhayat, P. Geurts and G. Leduc, “Enhancement of TCP
over wired/wireless networks with packet loss classifiers
inferred by supervised learning”, Tech. Report. Montefiore
Inst., Belgium. 2004.

[29] P. Geurts, I. Elkhayat and G. Leduc, “A Machine Learning
Approach to Improve Congestion Control over Wireless
Computer Networks”, University of Li`ege, Belgium, 2005.

[30] S. Alavandar, “ANN Based Intelligent Congestion Controller
for High Speed Computer Networks”, Journal of Electrical
Engineering. 2015.

[31] L. Niu, “Applying the Linear Neural Network to TCP
Congestion Control”, Fuyang Teachers College, china,
Published by Atlantis Press, 2015.

[32] P. Yang, J. Shao, W. Luo, L. Xu, J. S. Deogun and Y. Lu,
“TCP Congestion Avoidance Algorithm Identification”, CSE
Journal Articles, IEEE/ACM Transactions on Networking,
Vol. 22, No. 4, August 2014.

[33] Ns-3 network simulator. Website: https://www.nsnam.org/,

[retrieved: September-2019].

42Copyright (c) IARIA, 2019. ISBN: 978-1-61208-753-5

ICSNC 2019 : The Fourteenth International Conference on Systems and Networks Communications

https://doi.org/10.1109/PICECE.2019.8747237
https://blogs.technet.microsoft.com/networking/category/windows-transports/ledbat/
https://blogs.technet.microsoft.com/networking/category/windows-transports/ledbat/
https://ieeexplore.ieee.org/author/37376509900
https://ieeexplore.ieee.org/author/37356887400
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=808
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=808
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=808
https://ieeexplore.ieee.org/author/37615354400
https://ieeexplore.ieee.org/author/38231190000
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=65
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=65
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8987
https://scholar.google.com/citations?user=azcMaLoAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=EcCPw9gAAAAJ&hl=en&oi=sra
https://www.computer.org/csdl/proceedings/infcom/1990/2049/00/00091290.pdf
https://www.computer.org/csdl/proceedings/infcom/1990/2049/00/00091290.pdf
https://ieeexplore.ieee.org/author/38548614200
https://ieeexplore.ieee.org/author/38546940400
https://ieeexplore.ieee.org/author/37421836600
https://ieeexplore.ieee.org/author/37337947600
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6383191
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6383191
https://www.nsnam.org/

