
An Over the Air Update Mechanism for ESP8266 Microcontrollers

Dustin Frisch∗, Sven Reißmann†, Christian Pape∗
∗Department of Applied Computer Science

Fulda University of Applied Sciences, Fulda, Germany
Email: {dustin.frisch, christian.pape}@cs.hs-fulda.de

†Datacenter
Fulda University of Applied Sciences, Fulda, Germany

Email: sven.reissmann@rz.hs-fulda.de

Abstract—Over the last years, a rapidly growing number of IoT
devices is found on the market, especially in the area of the
so-called smart home. These devices, which are deployed in vast
numbers, are frequently in use over many years. They pose a risk
to the users privacy and to the internet as a whole if not provided
regularly with security patches. Hence, a fully automated process
for large-scale software updates of such embedded devices must
be considered. In this article, we present an implementation
of a durable and stable system for building and publishing
cryptographically secure firmware updates for embedded devices
based on ESP8266 microcontrollers. This includes mechanisms to
build the updates from source and automatically sign, distribute
and install them on the target devices.

Keywords–IoT; Secure Updates; Over the Air; ESP8266.

I. INTRODUCTION

In todays marketplace, an explosive growth can be ob-
served in the area of so-called smart devices, often referred to
as Internet of Things (IoT). Conventional devices (e.g., door
locks, light bulbs, washing machines) are extended with smart
functions for remote control and monitoring. To implement the
additional smart functions, small embedded computer systems
are getting integrated into the devices, allowing them to
connect to the local WiFi network.

In embedded systems, the software, also known as
firmware, is an essential part of the system. On one side,
it interacts with the hardware in a system specific way by
implementing the specifications required by the components
used in the system. On the other side, it provides use-case
dependent functionality in interaction with general purpose
hardware components. Embedded systems are often thought as
systems that never change their requirements or functionality.
However, practical use shows that the environment in which
these systems run does, in fact, change. These changes include,
but are not limited to, modifications to the expected behavior
or additions to it, reconfiguration of parameters related to the
communication with other systems or the users, as well as
correcting errors, particularly security related issues, that have
been reported after deployment and roll-out. In almost all
cases, the requirements can be accomplished by changing the
firmware and do not need any modification to the hardware.
For updating the firmware on a system being deployed, the
system must provide an interface for altering the firmware.
In addition, such an interface should provide mechanisms
to check which firmware is currently installed and which
configuration parameters are used.

Even if systems are equipped with an interface for apply-
ing updates, the maintenance cost can still be enormous if
an administrator has to interact with each device physically

and the systems are located in areas where reachability is
limited. If a system is already able to communicate over
a network interface, this can be leveraged to apply updates
on these system - this is typically referred to as Over the
Air (OTA). By reusing the existing communication channels,
the dedicated update interface can be omitted, which leads
to smaller packaging and reduces production cost. It also
decreases the maintenance cost drastically, because updates
can be triggered remotely. OTA updates enable administrators
to apply automation methods on the update process allowing
to roll out new releases and fixes in a controlled fashion. As an
example, updates can be done on test-devices first, followed
by security-critical deployments and subordinate ones can be
delayed to times when the device is not utilized. Further, a
feedback channel, which provides information about the update
status of a devices allows administrators to apply monitoring
techniques ensuring all updates are installed and devices are
in the desired state.

The remaining part of this paper is laid out as follows.
Section II discusses related work. Next, in Section III we
present the environment, our research is based on, while
Section IV defines the requirements for the implementation
of an OTA update mechanism in this environment. A concept
for the implementation is presented in Section V and a
reference implementation can be found in Section VI. Finally,
a conclusion and future work can be found in Section VII.

II. RELATED WORK

Wireless sensor and actor networks are a crucial ele-
ments of today’s effort to support and implement Industry
4.0 architectures and modern manufacturing processes. Small
programmable logic controllers (PLC) and cloud comput-
ing are enabler but also drivers of these new manufactur-
ing paradigms[1]. Thus, the networked interconnection of
everyday objects, the automation of home appliances and
environmental metering and monitoring based on sensor and
actor networks controlled by ESP-based chipsets are subject
of current research. In [2], a low-cost multipurpose wireless
sensor network using ESP8266 PLCs is introduced. The us-
age of ESP8266 PLCs in combination with Raspberry PI
acting as base station for the sensors is discussed in [3].
The article [4] presents a home automation solution based
on a MQTT message queue with ESP8266-based sensors and
actors. The control of smart bulbs with PLCs is summarized
in [5]. Unfortunately, soft ware update mechanisms are not
addressed in these publications. The importance of regular
security updates for today’s infrastructures is summarized in
[6]. An approach of decentralized software updates in Contiki-

12Copyright (c) IARIA, 2017. ISBN: 978-1-61208-591-3

ICSNC 2017 : The Twelfth International Conference on Systems and Networks Communications

based IoT environments are introduced in [7]. In [8], a software
update solution for devices able to execute a Java Virtual
Machine (JVM) is introduced. Both solutions are not appli-
cable for small MCU devices. In [9], a diagnoses and update
system for embedded software of electronics control units in
vehicles is introduced. Secure firmware updates targeted for
the automotive industry is introduced in [10]. Furthermore,
a secure The Over the Air programming capabilities of the
ESP8266 PLCs are described in [11].

III. ENVIRONMENT

The research presented in this paper was mainly driven
by Magrathea Laboratories e.V. [12], the local hackerspace
in Fulda, Germany, in cooperation with researchers at the de-
partment for computer science at Fulda University of Applied
Sciences. Requirements were clearly defined by Magrathea
Laboratories’ demands to provide local and remote control
over various sensors and actors in the foundations rooms to
visitors and members. Such components include door sensors,
power sockets, temperature sensors, projectors and screens
who are all managed by a home-automation controller, which
is driven by the software home-assistant [13]. It provides direct
control over all existing components using a web-based user
interface and allows to define rules and automations on how
these components interact.

For the component’s hardware, boards based on the
ESP8266 [14] micro-controller are used. These boards feature
a small and robust design, achieve very low power consump-
tion and integrate WiFi without requiring any extra compo-
nents. It integrates a Tensilica L106 32-bit micro controller
unit (MCU) with a maximum CPU performance of 160 MHz,
64 kB instruction memory and another 96 kB of main memory.
According to the manufacturer, the ESP8266 is among the
most integrated WiFi-capable chips in the industry. While at
the beginning of this research, mostly ESP-01s [15] boards
in combination with self-developed power supplies and use-
case specific hardware components were deployed, Sonoff [16]
wireless smart switches product series offered by ITEAD have
been integrated quickly.

The firmware for all of the ESP8266-based devices in the
hackerspace has been implemented using a common software
platform, referred to as ESPer. Sming [17], which in turn is
based on the open-source software development kit (SDK)
for ESP8266, provides the base library for this framework.
It integrates a lot of other software components and provides
all kinds of functionality shared by all devices, allowing to
reuse parts of the source code in multiple devices.

For communication with the controller, the Message Queue
Telemetry Transport (MQTT) [18] protocol is used. It provides
a lightweight messaging mechanism implementing the publish-
subscribe pattern that allows devices to listen for commands
and publish their current state to the controller and other
interested parties. The controller software has out-of-the-box
support for this protocol, which allows easy integration of all
different device types using the same patterns.

The components all share the same configuration in regard
to the network access and the controller to communicate
with. The configuration is provided during build time, which
eschews the need for a configuration interface and reduces the
management overhead, thus minimizing security leaks.

IV. REQUIREMENTS

For the implementation of an OTA update mechanism, the
following requirements were defined.

1) The systems must be able to perform updates on the
release of new software without manual interaction. If a
new firmware version is published for a type of devices, the
target devices must fetch and install the new software version
automatically, and start using it subsequently if no errors have
occurred during the update.

2) To ensure minimal maintenance effort, the update pro-
cess should be insusceptible to errors as much as possible.
Even if the installation of an update fails while reprogramming
the device, the system should continue to work fully functional
immediately and after reboot.

3) Firmware downloads must be possible over the same
WiFi connection as used during normal operation. Fetching the
firmware should be done side-by-side with operational traffic.

4) The update process must be possible over any untrusted
wireless network or Internet connection. To prevent possible
attackers from injecting malicious software into the embedded
devices, a cryptographic signature mechanism must be imple-
mented. New firmware only gets accepted by the device, if the
cryptographic signature of the downloaded firmware image can
be verified.

5) To reduce network load and aim for the maximum
possible uptime of the device, the update process should only
be done if a new firmware version is available. In contrast, on
the release of new firmware, the roll-out to all devices should
be performed as fast as possible. While checking for available
updates and downloading such an update, the device should
continue to work as usual.

6) For easy maintenance and monitoring, each device must
provide information about the currently installed firmware
version and other details relevant for the update process.

7) Devices are categorized by types. Each type runs the
same software and therefore provides the same functionality.
As the device type is hardly coupled to the hardware and
the software interacts with it on a specific way, the update
process must ensure that the correct firmware is used while
reprogramming.

V. CONCEPT FOR IMPLEMENTING OTA UPDATES

To implement OTA updates under the given requirements,
we first define a topology that integrates our build infrastruc-
ture, firmware repository, and controller with the IoT WiFi
network, which the devices are connected to. For our refer-
ence implementation, we particularly chose lightweight and
common software projects to allow for easy exchangeability
of the individual components. The base topology, as well as
the specific components used is shown in Figure 1.

The source code of the ESPer project is published into a
Git [19] source code repository. From there, the continuous in-
tegration (CI) system is responsible for automatically building
and publishing the firmware image files, as soon as updated
source code is available. It is also in charge of assembling
and publishing meta-information consisting of version number
and cryptographic signature required for the update process.
The CI systems is described in detail in the following section.
Updates to the devices firmware are either triggered actively
(i.e., manual or by the CI) or on a regular schedule by the
devices themselves. This process is described in Section V-B.

13Copyright (c) IARIA, 2017. ISBN: 978-1-61208-591-3

ICSNC 2017 : The Twelfth International Conference on Systems and Networks Communications

Build Server

SCM

Controller

Home Assistant

Broker

Firmware Repository

T260

ES
P

ESP2

Access Point

TM

…

Build Server

drone.io Meta + ROM0/1

Update Trigger

Status

Public Key

Meta + ROM{0,1}

Update Trigger

T260

ES
P

ESPn

Public Key

Private Key

Source

T260

ES
P

ESP1

Public Key

Figure 1. The base network topology.

For monitoring and maintenance purposes, each device
publishes a set of information to a well-known MQTT topic
after connecting to the network. Beside data like device type,
chip and flash ID, the published data includes details about
the bootloader, SDK and firmware version as well as relevant
details from the bootloader configuration, like the currently
booted ROM slot and the default ROM slot to boot from. This
allows administrators to find devices with outdated bootloaders
and helps to find missing or failed updates.

A. Common framework and build infrastructure
The framework includes a build system, which allows to

configure basic parameters for all devices, including, but not
limited to, the WiFi access parameters, the MQTT connection
settings and the updater URLs. Each device requires to have
the UPDATE_URL option set to make the update work. Skip-
ping the option results in the exclusion of the code for update
management during the build. By sharing the same code, all
devices ensure to have a common behavior when it comes
to reporting the device status or interacting with the home-
automation controller. This eases configuration and allows to
collect information about all devices at a central location.

As development on the devices usually happens in cycles,
some of the projects would miss updates of the framework
and therefor would not benefit from newly added features
or fixed problems. Regularly updating the framework version
and rebuilding the firmware would often result in an easy
gain of these benefits, but requires manual interaction. Further,
problems could arise if the application programming interface
(API) of the framework changes. In this situation, the device
firmware must be updated to use the changed API, which
can be an unpleasant and complex task that leads to higher
latency for firmware updates. To prevent these problems, the
firmware of all devices in the hackerspace is integrated together
with the framework into a larger project. By doing so, any
device specific code is always linked to the latest version of
the framework. The according device type is provided as a
string through a global constant at compile time and it must
never be changed during operation. Device specific code is
organized in a sub-folder for each device type. To build the
software, a Makefile [20] is used, which provides a simple way
for reproducible builds. Whenever a new build is started, the
build system scans for all device specific folders and calls the
build process for each of them. After the build of the firmware
has finished, the build system also creates a file for each device
type, containing the build version and cryptographic signatures
of the corresponding firmware images. To avoid interferences

between different build environments, and to roll out new
versions as quickly as possible, the code has been integrated
into a CI system, which is also responsible for publishing
the resulting firmware images to the firmware server queried
during updates, and for notifying the devices to check for an
update.

B. Device setup and flash layout
Microcontroller boards based on the ESP8266 MCU are

mostly following the same layout: the MCU is attached to
a flash chip, which contains the bootloader, firmware and
other application data. The memory mapping mechanism of
the MCU allows only a single page of 1 MB of flash to be
mapped at the same time [21] and the selected range must be
aligned to 1 MB blocks.

As the firmware image to download and install possibly
exceeds the size of free memory heap space, the received data
must be written to flash directly. In contrast, executing the code
from the memory mapped flash while writing the same area
with the downloaded update leads to unexpected behavior, as
the executed code changes immediately to the updated one. To
avoid this, the flash is split into half to contain two firmware
ROM slots with different versions, one being executed and
one which is being downloaded (see Figure 2). In addition
to the two firmware ROM slots, the flash provides room for
the bootloader and its configuration. For alignment and easy
debugging, the second block is shifted by the same amount of
bytes as the first block. The gap of 8192 bytes is available to
applications to store data, which can persist over application
updates.

0x1000000x0820000x0800000x0020000x000000

Bo
ot

lo
ad

er

Pa
dd

in
g

fo
r a

lig
nm

en
t

First ROM Second ROM

Figure 2. The flash layout used for two ROM slots.

This standby ROM slot also acts as a safety mechanism
if the download fails or is interrupted as the previous version
stays intact and can still be used (refer to requirement IV-2).

C. Cryptographically securing the firmware update
To ensure only valid firmware is running on the devices, a

cryptographic signature of the firmware images is calculated
and checked as part of the update process. For calculating and
verifying the signatures of a firmware image, the SHA-256
hashing algorithm [22] and an elliptic curve cipher based on
Curve25519 [23] are used, which are both considered modern
and secure methods for software signing (see [24], [25]). The
cryptographic signature for each of the two firmware images is
created by the continuous integration system during build time
and is provided as meta-information along with the firmware
images. Therefore, the CI system must be equipped with the
private key used to create the signatures. In contrast, to be
able to verify the cryptographic signature the micro controller
only needs to know the according public key. For the same
reason as stated in Section V-B, the signature of the new
firmware image can not be verified before it is written to flash.

14Copyright (c) IARIA, 2017. ISBN: 978-1-61208-591-3

ICSNC 2017 : The Twelfth International Conference on Systems and Networks Communications

Therefore, the calculation of the SHA-256 checksum required
for the signature check is done while the update is downloaded
and written to flash. After the download has succeeded, the
checksum is verified against the signature and the bootloader
gets reconfigured iff the signature is validated successfully.
Otherwise, the bootloader will not be reconfigured and the
system will not start the invalid firmware.

VI. IMPLEMENTATION

Implementing OTA updates under the given requirements
involves multiple components, which interact closely. The
continuous integration system is in charge of building the
firmware from source, calculating cryptographic signatures,
and publishing the built firmware images. The deployment
infrastructure provides resources for downloading the firmware
images and triggering the update on all devices. Finally, the
implementation of the update mechanism, as a part of the
firmware running on the embedded device, is responsible for
downloading and installing the updates.

A. Build infrastructure and automatic deployment
The CI system, which is based on drone [26] allows to

execute commands, whenever a new version is published into
the projects Git repository. A corresponding drone config-
uration called .drone.yml exists beside the source code
(Figure 3). Within this configuration file, settings relevant to
the build process are provided to the build environment. First,
the CONFIG=maglab option lets the build system use an
additional configuration file (Configurion.mk.maglab),
which is stored inside the framework repository and provides
environment specific information, such as the WiFi SSID. To
keep secrets like the WiFi password and the private key unex-
posed, it is not written down in the configuration file. Instead,
to include secrets into a build process while allowing to keep
the configuration public, drone allows to encrypt these with
a repository specific key. Using this method, the secrets are
stored as .drone.sec file inside the repository from where
they are injected into the build environment. Also noticeable
in Figure 3 is the firmware version, which is configured to be
the first 8 letters of the Git commit hash uniquely identifying
a version of the source code. For deployment, only the master
branch is considered. After a successful build, all distribution
files (the firmware image and meta-information files) of all
device types are copied to the repository server, from where
they are served by a HTTP 1.1 [27] server. The configuration
file (Configurion.mk.maglab) references exactly this
repository server as the source for updates.

build:
image: maglab/sming
environment:
- CONFIG=maglab
- WIFI_PWD=$$WIFI_PWD
- VERSION=$${COMMIT:0:8}

commands:
- make clean && make

Figure 3. The drone configuration for the ESPer project.

Support for multiple devices of different type is imple-
mented in both, the ESPer framework itself and the build
system. The framework keeps control over the application life-
cycle. It ensures that device unspecific code is executed at the
right time and provides an API for device specific functionality.

For this, a simple interface is specified by the framework,
which must be implemented by each device. A single function
Device* getDevice() must be defined exactly once in
each device specific folder. To implement this interface, a static
instance of Device is created and returned. Each Device
is populated with device specific Feature instances. While
the Feature-API leverages common run time polymorphism
to share functionality between features, the initial Device
creation uses compile time polymorphism, which reduces the
need for memory management and increases performance by
avoiding virtual function tables. Figure 4 shows the complete
device specific code used for a simple power socket, which is
mainly confined to the device type and its capabilities (e.g.,
the GPIO pin numbers to use).

constexpr const char NAME[] = "socket";
constexpr const uint16_t GPIO = 12; // General purpose I/O

Device device;
OnOffFeature<NAME, 12, false, 1> socket(&device);

Device* getDevice() { return &device; }

Figure 4. Device specific code for a socket driver.

The actual compilation of the source code is mainly con-
trolled using two Makefiles. The first one is a helper Makefile
built to accept a parameter for device type identifiers called
DEVICE, and to create its whole output inside a subdirectory
specific to the device type. In addition, the primary Makefile
scans a project subdirectory and uses each directory in there
as a container for device specific code. For each of these
directories, the helper Makefile is called and the subdirectories
name is used as the value of the DEVICE parameter. By
splitting the build and recompiling the framework each time
before intermixing it with the device specific code, the device
type identifier can be used inside the shared framework code.
While building a devices firmware, the meta-information file
used during updates is also created and stored beside the
firmware image. For development, each device can be build
separately by using the device type identifier as Makefile target.
In addition, the suffix /flash can be used to flash a specific
firmware to the device.

While building the firmware images for a device, the
build environment provides some constants, which are baked
into the resulting firmware image. Beside the environmental
configuration like the WiFi credentials, MQTT topics and other
configurable tweaks, the current device and version identifiers
are provided as compile time constants. In addition, the public
key used to verify firmware signatures during updates is
derived from the private key and provided as a object file,
which is linked into each firmware image (Figure 5). This
allows to use all the information inside the code without any
overhead while being configurable during build time.

As the ESP-01s is only equipped with 1 MB of flash,
this means that the whole memory is mapped to a contiguous
address space (refer to Section V-B). Therefore, the second
ROM slot can not be re-mapped to have the same start address
as the first ROM slot. While the firmware is executed without
any dynamic linking mechanism and the chip does not support
position independent code, the addresses used in the ROM slots
are dependent to the offset at which the firmware is stored.
This arises the need for building two firmware images, one

15Copyright (c) IARIA, 2017. ISBN: 978-1-61208-591-3

ICSNC 2017 : The Twelfth International Conference on Systems and Networks Communications

for each target location. To do so, a linker script for each
of the two ROM slots was created, which is used to create
two variations of the same firmware, only differing in ROM
placement. The two resulting firmware image files are both
provided for download via HTTP 1.1 - which one to download
depends on the target ROM slot and is selected by the device
during the update process. Figure 6 shows the only difference
between the two linker scripts, where ${SLOT} is replaced
with the slot number according to the current build.

update_key_pub.bin:
echo "$(UPDATE_KEY)" | ecdsakeygen -p | xxd -r -p > "$@"

update_key_pub.o: update_key_pub.bin
$(OBJCOPY) -I binary $< -B xtensa -O elf32-xtensa-le $@

Figure 5. Creating the linker object containing the public key.

The build process will create the two firmware images, one
for each ROM slot, and the meta-information file. To create the
meta-information file, the current version identifier is written
to the .version file. After the build, the signatures for both
firmware images are created and attached to the file. Due to
modern compilers doing link time optimization, the resulting
firmware images include only code needed according the actual
configuration.

irom0_0_seg :
org = (0x40200000 // The memory mapping address

+ 0x2010 // Bootloader code and config
+ 1M / 2 * ${SLOT}), // Offset for the ROM slot

len = (1M / 2 - 0x2010) // Half ROM size excl. offset

Figure 6. Linker script to build firmware for two ROM slots.

B. The update mechanism
The update mechanism is split into four main phases:

checking for updates, reprogramming the device, calculating
and verifying the cryptographic signature of the updated
firmware, and - assuming that the update was successful -
reconfiguring the boot process to use the new firmware.

1) Checking for updates: In order to inform the IoT devices
of the availability of a new firmware version, the update
server provides a file for each device type containing meta-
information about the latest available firmware version. The
meta-information file has a simple line oriented ASCII format,
which is easy to generate and efficient to parse within the
limited constraints of the embedded device. It consists of the
version identifier and the cryptographic signatures of both of
the firmware binaries. The version identifier can be an arbitrary
string as the content is not interpreted semantically but only
compared to the version identifier used during build time. The
other two lines in the meta-information file provide the hex-
adecimal representation of the cryptographic signatures, one
line for each firmware binary file. These meta-information files
are provided by the update server using HTTP 1.1 [27] under
the following path pattern: ${DEVICE}.version (whereas
${DEVICE} gets replaced by the device type name). Each
device queries the update server regularly for the currently
available firmware version. It uses the UPDATER_URL option
to identify the update server. After the meta-information file
has been downloaded successfully, the version identifier is
extracted and compared to the version identifier of the running

firmware. If the version identifiers differ, the update process
is initialized. In cases where the download fails, the update
server or network connection is not available, or any other
error occurres, another attempt will be made automatically at
the next regular interval. In addition to the interval, a special
MQTT topic shared by all devices is subscribed on device
startup: ${MQTT_REALM}/update. Every time a message is
received on this topic, a fetch attempt for the meta-information
file is triggered and the process restarts. This allows faster roll-
outs of updates and finer control for manual maintenance.

2) Reprogramming the device: The firmware files provided
on the update server are the exact same ones as used to
initially flash the chip for the according version. Using the
same files for flashing and updating allows better debugging
by eliminating errors related to the update process itself and
eases development and initial installation. Figure 7 shows
the algorithm used to determine the download address and
reconfigure the bootloader. The update server provides these
files in the exact same way as it provides the meta-information
files, but the path pattern differs: the suffixes .rom{0,1} are
used to provide the firmware image files for the first and second
slot respectively. For installing a firmware update, the new
firmware image file is downloaded using an HTTP 1.1 GET
request.

#define URL_ROM(slot) ((URL "/" DEVICE ".rom" slot))

// Select rom slot to flash
const auto& bootconf = rboot_get_config();
if (bootconf.current_rom == 0) {
updater.addItem(bootconf.roms[1], URL_ROM("1"));
updater.switchToRom(1);

} else {
updater.addItem(bootconf.roms[0], URL_ROM("0"));
updater.switchToRom(0);

}

Figure 7. Configuring the updater to download the right firmware image and
update the booloader accordingly.

3) Verifying the cryptographic signature: While the image
is being downloaded, each chunk received in the download
stream is used to update the SHA256 hash before it is written
to the flash. When the write has been finished, the next chunk
is received and the process continues until all chunks have
been processed. After downloading the new firmware image
has been finished successfully, the calculated hash is checked
against the signature of the according firmware image. There-
fore, the cryptographically signed hash, which was provided
in the meta-information file triggering the update, is verified
against the Curve25519 public key stored as a constant in the
running firmware. Only if the checksum matches the provided
signature, the firmware is considered valid and the process is
continued.

4) Reconfiguring the boot process: For the bootloader,
rBoot[28] has been choosen as it is integrated within the
Sming framework and allows to boot to multiple ROM slots.
For configuration, an rBoot specific structure is placed in the
flash at a well-known location directly after the space reserved
for the bootloader code. This structure contains, among other
things, the target offsets for all known ROM slots and the
number of the ROM slot to boot on next startup. To switch to
the updated ROM slot after successful installation, the number
ROM slot to boot on startup is changed in the configuration
section and the device is restarted.

16Copyright (c) IARIA, 2017. ISBN: 978-1-61208-591-3

ICSNC 2017 : The Twelfth International Conference on Systems and Networks Communications

VII. CONCLUSION

In this article, we have presented a concept for building
and publishing cryptographically secure Over The Air updates
for embedded devices based on ESP8266 microcontrollers. A
proof of concept implementation has been developed, which is
now an essential part of the home-automation development and
deployment in the Magrathea Laboratories e.V. hackerspace.
All of the devices running the OTA-enabled firmware have
undergone multiple major updates without any problems. This
includes a major network configuration change and an im-
portant stability fix for the network communication stack. All
devices applied the update successfully and started to work
without any manual interaction required afterwards.

While the devices from various manufacturers in the hack-
erspace are all delivered with a pre-installed firmware, which
is thought to be ready for smart home application, none of
them has been provided with updates by the manufacturer so
far. It is not visible to the users if the current firmware of these
devices is at the latest version nor which versions are installed
or how to update them.

The update infrastructure has been the crucial point for
most of our members towards the framework. Enabling the
developers to do updates in combination with the shared
configuration and behavior provided by the framework resulted
in a massive speedup when it comes to project deployment.
Before that, the cost for applying changes after deployment
was estimated so high, that most projects tend to delay deploy-
ment until all required and wanted features were implemented.
Now, as the devices are deployed as soon as the hardware is
considered stable, these devices start to provide functionality
early and therefore the developers can get better feedback on
the provided functionality.

The project will be continued to extend the functionality
and security with features already being in development. The
latest development includes further security enhancements by
implementing checksum verification during startup where the
hash of the firmware image is checked on each boot by the
bootloader to detect tempering and defects. It also considers
including the device identifier into the signature to prevent con-
founding of images between different device types. Last, the
standby ROM slot will be updated right after each successful
update to be more failsafe.

In addition, the information provided by the device about
the firmware status will be enhanced to allow better control
and reduce maintenance effort even more. A web interface to
review the published information is currently in development.

REFERENCES
[1] “Industry 4.0: A Cost and Energy efficient Micro PLC for Smart

Manufacturing,” Indian Journal of Science and Technology, vol. 9,
no. 44, Nov. 2016.

[2] “Design of a low cost multipurpose wireless sensor network,” in
2015 IEEE International Workshop on Measurements and Networking
(M&N). IEEE, 2015, pp. 1–6.

[3] “ESP8266 based implementation of wireless sensor network with Linux
based web-server,” in 2016 Symposium on Colossal Data Analysis and
Networking (CDAN). IEEE, 2016, pp. 1–5.

[4] “MQTT based home automation system using ESP8266,” in 2016 IEEE
Region 10 Humanitarian Technology Conference (R10-HTC). IEEE,
2016, pp. 1–5.

[5] “An IOT by information retrieval approach: Smart lights controlled
using WiFi,” in 2016 6th International Conference - Cloud System and
Big Data Engineering (Confluence). IEEE, 2016, pp. 708–712.

[6] A. R. Beresford, “Whack-A-Mole Security: Incentivising the Produc-
tion, Delivery and Installation of Security Updates,” in IMPS@ ESSoS,
2016, pp. 9–10.

[7] P. Ruckebusch, E. De Poorter, C. Fortuna, and I. Moerman, “GITAR
- Generic extension for Internet-of-Things Architectures enabling dy-
namic updates of network and application modules.” Ad Hoc Networks,
2016.

[8] “Decentralized coordination of dynamic software updates in the Internet
of Things,” in 2016 IEEE 3rd World Forum on Internet of Things (WF-
IoT). IEEE, 2016, pp. 171–176.

[9] K. Mansour, W. Farag, and M. ElHelw, “AiroDiag: A sophisticated tool
that diagnoses and updates vehicles software over air,” in 2012 IEEE
International Electric Vehicle Conference (IEVC), year = 2012, pages
= 1–7, publisher = IEEE.

[10] D. K. Nilsson and U. E. Larson, “Secure Firmware Updates over the
Air in Intelligent Vehicles,” in ICC 2008 - 2008 IEEE International
Conference on Communications Workshops. IEEE, 2008, pp. 380–
384.

[11] S. Gore, S. Kadam, S. Mallayanmath, and S. Jadhav, “Review on
Programming ESP8266 with Over the Air Programming Capability,”
International Journal of Engineering Science, vol. 3951, 2016.

[12] Magrathea Laboratories e.V., “Magrathea Laboratories - Creating new
Worlds,” URL: https://maglab.space/, [accessed: 2017.05.22].

[13] Home Assistant, “Awaken your home,” http://home-assistant.io/, [ac-
cessed: 2017.05.22].

[14] ESPRESSIF, “ESP8266 Overview,” URL: http://www.espressif.com/en/
products/hardware/esp8266ex/overview, [accessed: 2017.05.22].

[15] SparkFun, “WiFi Module - ESP8266,” URL: https://www.sparkfun.com/
products/13678, [accessed: 2017.05.22].

[16] ITEAD, “Sonoff Smart-home,” URL: https://www.itead.cc/smart-home.
html, [accessed: 2017.05.22].

[17] Sming, “Sming - Open Source framework for high efficiency native
ESP8266 development,” URL: http://sminghub.github.io/Sming/about/,
[accessed: 2017.05.22].

[18] OASIS Standard Incorporating, “MQTT Version 3.1.1 Plus Er-
rata 01,” URL: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/
mqtt-v3.1.1-errata01-os-complete.html, [accessed: 2017.05.22].

[19] git, “git - a free and open source distributed version control system,”
URL: https://git-scm.com, [accessed: 2017.05.22].

[20] The IEEE and The Open Group, “The Open Group Base Specifi-
cations Issue 6 - make - maintain, update, and regenerate groups
of programs,” URL: http://pubs.opengroup.org/onlinepubs/009695399/
utilities/make.html, [accessed: 2017.05.22].

[21] E. Community, “ESP8266 Memory Map,” URL: http://www.esp8266.
com/wiki/doku.php?id=esp8266 memory map, [accessed: 2017.05.22].

[22] D. Eastlake and T. Hansen, “US Secure Hash Algorithms (SHA and
SHA-based HMAC and HKDF),” Internet Requests for Comments, RFC
Editor, RFC 6234, May 2011, http://www.rfc-editor.org/rfc/rfc6234.txt.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc6234.txt

[23] D. J. Bernstein, “Curve25519: new Diffie-Hellman speed records,” in
International Workshop on Public Key Cryptography. Springer, 2006,
pp. 207–228.

[24] E. Barker and Q. Dang, “NIST Special Publication 800–57 Part 1,
Revision 4,” 2016.

[25] F. O. for Information Security, “Cryptographic Mechanisms: Rec-
ommendations and Key Lengths,” Online, Federal Office for Infor-
mation Security, BSI Technical Guideline BSI TR-02102-1, Febru-
ary 2017, URL: https://www.bsi.bund.de/SharedDocs/Downloads/EN/
BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf, [ac-
cessed: 2017.05.22].

[26] Drone, “Drone is a Continuous Delivery platform built on Docker,
written in Go,” URL: https://github.com/drone/drone, [accessed:
2017.05.22].

[27] The Internet Society, “Hypertext Transfer Protocol – HTTP/1.1,”
URL: https://www.w3.org/Protocols/rfc2616/rfc2616.html, [accessed:
2017.05.22].

[28] R. A. Burton, “An open source bootloader for the ESP8266,” URL:
https://github.com/raburton/rboot, [accessed: 2017.05.22].

17Copyright (c) IARIA, 2017. ISBN: 978-1-61208-591-3

ICSNC 2017 : The Twelfth International Conference on Systems and Networks Communications

