
GitStud: A Web-based Application for Sharing
Project Files

Mohammad Bsoul, Emad E. Abdallah, Qais Saif, Ibrahim Albarghouthi, Mohammed Albeddawi, Essam Qaddurah
Faculty of Prince Al-Hussein Bin Abdullah II for Information Technology

The Hashemite University email:mbsoul@hu.edu.jo
Zarqa, Jordan

Abstract—The aim of this paper is implementing a web-based
application for facilitating the communication of the members of
the same project (assignment) group. Most of the group work
needs to be organized and shared between teammates to enable
team working and collaboration, which makes it easier and faster
to accomplish tasks. Our contribution to this field is a web-
based application that grants access to a repository with complete
history of all files regarding a specific project. This web-based
application named GitStud is expected to make it easier for
students who work in groups to organize their work and keep
track of all files that are being committed up-to-date. GitStud is
based on sharing directories, which makes storing files from local
to global. We used Git version control software to implement our
web-based application. Git version control software is considered
an open source, distributed version control system that can handle
projects of different sizes.

Keywords–Git; web-based application; Students; Instructors;
Projects.

I. INTRODUCTION

The students who work on the same project might face
difficulties in communicating with each other. Team work
needs cooperation between teammates, and this could be done
better by sharing the project files with other teammates. The
process of sharing files requires a shared repository which
provides everyone with an access to the project files.

The files related to a project should be viewed by all
team members to see and edit as needed. Git version control
software [1] allows the user to track the history of a collection
of files and includes the functionality to revert a file back
to its previous version. Each version captures a snapshot of
the file at a certain time. The collection of files belonging to
the same project files and their complete history are stored
in a repository. This way, losing files or any conflict in the
development process will be avoided. There is a number of
hosting services Git repositories such as Assembla, Beanstalk,
Bitbucket, CloudForge, Codebase, Fog Creek Kiln, GitHub,
GitLab, Planio, Perforce, RhodeCode, and Unfuddle [2].Git
development began in 2005. Git was originally designed as a
low-level version control system engine on top of which others
could write front ends. Then, the core Git project has become
a complete version control software that can be used directly.
However, the existing version control software is not dedicated
for educational purposes where the intended users are students
and instructors. This kind of software is needed to facilitate
the communication between students of the same group and
between students and instructors.

In this paper, we implemented a web-based application
named GitStud and which is based on Git. GitStud provides

a web-based graphical interface, which is much easier to
work with than Git which is strictly a command-line tool.
GitStud is expected to help improve collaboration and eases
the communication process between the project members.

The rest of this paper is structured as follows. Related
works are presented in Section II. Section III describes the
new web-based application. In Section IV, we show some
screen results from the web-based application. Finally, Section
V concludes the paper and describes future work.

II. RELATED WORKS

In this section, we will discuss the differences between
our implemented GitStud and other version control software
(including Git that we used in our implemented GitStud).

Bazaar [3] can be used by either a developer that is
working on many branches which have local content or by
groups sharing work through a network. Bazaar is free software
written in Python programming language.

Darcs [4] is a distributed version control system that has
many features such as the ability to select which changes to
accept, and interaction with local or remote repositories.

Mercurial [5] is a cross-platform and distributed revision
control tool that can be used by software developers and It
is written in Python programming language. Mercurial is a
command line program.

Revision Control System [6] is a software that automates
the storing, retrieval, logging, identification, and merging of
changes. The Revision Control System is useful for text that
is modified frequently.

Apache Subversion [7] is a software for maintaining current
and historical versions of files.

StarTeam [8] is employed in software development, espe-
cially when a project involves many teams in various places.

Code Co-op [9]is a system that employs peer-to-peer
architecture to share projects and to control modifications to
files. Code Co-op replicates its database on every device in the
project.

PTC Integrity [10] uses a client/server model and allows
software developers to track their work.

Git has many features over other version control software.
One of its features is its branching model. In this model, it
is allowed to have multiple local branches that are entirely
independent of each other. The creation, merging, and deletion
of these lines of development only needs seconds. Additionally,
Git treats the stored data as a stream of snapshots. As a result,
when a project is committed, or saved in Git, it takes a snapshot

20Copyright (c) IARIA, 2016. ISBN: 978-1-61208-499-2

ICSNC 2016 : The Eleventh International Conference on Systems and Networks Communications

of what all the files look like at that moment and adds a
reference to the snapshot. If there is no change on the file,
Git does not store the file again, but only adds a link to the
previous identical file.

None of the above version control software is dedicated
for educational purposes. Therefore, there is a need for a
software that facilitates the communication between students
in the same project. Additionally, this software is needed to
facilitate the communication between students and instructors
who create assignments for these students.

The aim of our web-based application called GitStud is
implementing a web-based application using Git and deploy it
to ease the communication between the project members.

III. GITSTUD WEB-BASED APPLICATION

This paper is about implementing a web-based application
using Git. Its target is making the communication process
easier between the students of the same project group (team-
mates). GitStud provides a user interface that is used by the
group members to work on the files of the project (assignment).
The provided user interface includes all the functionalities
needed to work on the project posted by the instructor on
GitStud.

GitStud offers a time saving solution for students to over-
come team-working problems. GitStud supports the commu-
nication between students of the same group and between
students and instructors by providing a global repository that
is based on Git service.

GitStud requirements are:

• Web browser.
• Latest version of Java.
• Git software.
• Internet connection.

Figure 1 shows the workflow diagram of GitStud. One of
the student (named Super Student) in the project group has
first to login to his account in order to create a repository for
the project. This created repository will contain the files that
belong to the project. Then, all the students in this project
group can pull the files in this repository in order to work
on them and then push them back into the repository after
they finish. Upon completion of the project, their work can be
submitted to the instructor who posted the project (assignment)
for evaluation.

Figure 2 shows the use case diagram, and Tables I to IX
show detailed descriptions of use cases.

Figure 1. Workflow diagram.

Figure 2. Use case diagram.

TABLE I. SIGN UP USE CASE.

Name Sign up.
Brief description This use case is the basic step to enter the system. It

ensures security and authentication for users.
Actors Students, instructors.
Pre-conditions The system should be up and running and the sign up

form must be opened.
Main flow of events A user opens GitStud and clicks the sign up button to

open the sign up form. Then, the user chooses if he is a
student or instructor. Next, the user provides the needed
information such as the user name, e-mail, password and
student ID/instructor ID and click on sign up button to
confirm his information.

Alternative flow of events A user opens GitStud and clicks the sign up button
to open the sign up form. Then, the user provides
the needed information. The information that the user
entered appears that it already exists in the system such
as the user name, e-mail and the student ID/instructor
ID. If username, e-mail, or student ID/instructor ID
exists, the user is prompted that he has an existing
account.

Post-conditions If the sign up process went successfully the system
shows a message to the user to inform him that the sign
up process was successful. Otherwise, the user will be
informed to enter the required missing information or to
correct the incorrect information.

21Copyright (c) IARIA, 2016. ISBN: 978-1-61208-499-2

ICSNC 2016 : The Eleventh International Conference on Systems and Networks Communications

TABLE II. SIGN IN USE CASE.

Name Sign in.
Brief description This step allows the user to access the system in order

to use the features and functions of GitSud.
Actors Students, instructors.
Pre-conditions The user must have an existing account on GitStud to

be able to access the system.
Main flow of events A user enters his username and password in the sign in

form. After successful sign in, the user will have access
to GitStud’s dashboard.

Alternative flow of events A user enters incorrect username and password in the
sign in form. In this case, the system notifies the user
that his user name or password is incorrect.

Post-conditions After signing in, GitStud’s dashboard will appear and
the user will have access to functions of the system.

TABLE III. CREATE REPOSITORY USE CASE.

Name Create Repository.
Brief description The creation of the repository allows students to have a

shared data store to add their work files to.
Actors Students.
Pre-conditions Student must have an account to see this function.
Main flow of events A student sign in. Then, he student chooses the create

repository feature. Next, the student names the new
repository. Then, the student sees the available courses.
Next, the student chooses one of the courses in order
to see the assignments for this course. If the student
chooses an assignment, an empty repository is created
for it. This student will become the super student for
this repository and will have full control over it.

Alternative flow of events A student chooses to create a new repository. This
student has another repository with the same name. The
student is prompted to rename the new repository. The
student has to rename the new repository.

Post-conditions The new empty repository is created and ready for use.

TABLE IV. PULL USE CASE.

Name Pull.
Brief description A pull request updates current local directory to up-to-

date files in the repository.
Actors Students.
Pre-conditions A student must share a repository and the repository has

work files to be pulled. The student must first clone the
repository to a local directory. The student ensures that
the local directory is not up-to-date.

Main flow of events A student clicks on the pull button from the desktop
application.

Alternative flow of events A student tries to pull some files before cloning the
repository. The student is asked to clone the repository
first to be able to pull latest files.

Post-conditions New work files are added to his local directory.

TABLE V. PUSH USE CASE.

Name Push.
Brief description The push feature adds modified files to the repository.
Actors Students.
Pre-conditions A student must share a repository. The student must

first clone the repository to a local directory. Next,
the student ensures that the local directory is modified.
Then, the student has to commit changes.

Main flow of events A student clicks the push button from the desktop
application.

Alternative flow of events A student tries to push some files before cloning the
repository. In this case, the student is asked to clone
repository first. The student must commit before push
operation.

Post-conditions The files are added to the repository with information
about the commit activity.

TABLE VI. COMMIT USE CASE.

Name Commit.
Brief description The commit adds files that will be pushed to a repository.
Actors Students.
Pre-conditions A student has modified files and wants to add them to

the repository.
Main flow of events A student works on files on the local directory. Then,

the student selects the files that are ready for the push
process and adds a message with the commit.

Alternative flow of events The student did not select the files to be committed. In
this case, the student is asked to select the files first.

Post-conditions The files are added to the staging area and are ready to
be pushed.

TABLE VII. VIEW HISTORY USE CASE.

Name View history.
Brief description This feature allows user to trace full history of commits.
Actors Students, instructors.
Pre-conditions The user must have an access to the repository.
Main flow of events The User selects the repository that he wants to view its

history. The user clicks on view history.
Alternative flow of events ——————————————–
Post-conditions The User can move between commits.

TABLE VIII. CREATE ASSIGNMENT (PROJECT) USE CASE.

Name Create assignment.
Brief description An instructor adds an assignment for a specific course

so students can work on.
Actors Instructors.
Pre-conditions The instructor must have added at least one course.
Main flow of events The instructor chooses a course then fills the assignment

form. Next, he clicks on the upload button to upload the
required assignment.

Alternative flow of events The instructor did not fill the required fields. The in-
structor is notified to fill the empty fields.

Post-conditions The students in the course are informed about the
assignment.

TABLE IX. EDIT ASSIGNMENT (PROJECT) USE CASE.

Name Edit assignment.
Brief description An instructor modifies an assignment.
Actors Instructors.
Pre-conditions The instructor must have added at least one assignment

to the course.
Main flow of events The instructor chooses a certain assignment. Then, the

instructor clicks on edit assignment button. Next, the
instructor modifies the assignment and clicks on save.

Alternative flow of events The instructor modifies a field by leaving it empty. The
instructor is notified that he left a field empty.

Post-conditions The students of the assignment are notified of the change
made to the assignment.

Figure 3 shows the class diagram and the variables and
methods of each entity (class). Super student entity represents
the student (one of the project members) who is responsible
for repository creation, deletion, and management.

Figure 3. Class diagram.

IV. RESULT SCREENS

In this section, we show some screen results from our
implemented web-based application.

Figure 4 shows the content of one of the files belonging to
the repository of an assignment (project) group.

22Copyright (c) IARIA, 2016. ISBN: 978-1-61208-499-2

ICSNC 2016 : The Eleventh International Conference on Systems and Networks Communications

Figure 4. In file screen.

In Figure 5, it can be seen the files in one of the assignment
repositories.

Figure 5. Repository files screen.

Figure 6 shows the screen that appears to the instructor
when he wants to create a new assignment.

In Figure 7, it is shown the assignments created by one of
the instructors.

V. CONCLUSION

In this paper, we have implemented a web-based appli-
cation named GitStud using Git.This web-based application
has been designed to make it easier for students who work in
groups to organize their work and keep track of all files that
are being committed up-to-date.

GitStud allows students to track the history of a collection
of files and includes the functionality to revert the collection
of files back to the previous version. In this way, losing files
or any conflict in work will be avoided. It is also expected
to help improve collaboration and ease the communication
process between the students of the same project group.

In future work, we plan to add e-learning feature where
the students can watch the lectures posted by instructors.
Additionally, we plan to support more languages. Finally,
we plan to have user testing for GitStud to prove that it
makes it easier for students to work collaboratively, enhance

Figure 6. Create assignment screen.

Figure 7. Instructor assignments screen.

communication between them in team-work situations and
work together on files.

REFERENCES
[1] https://git-scm.com, [retrieved: July, 2016].
[2] T. Gunther, “12 git hosting services compared,” http://www.git-tower.

com/blog/git-hosting-services-compared/, 2014, [retrieved: July, 2016].
[3] http://bazaar.canonical.com/en/, [retrieved: July, 2016].
[4] http://darcs.net/, [retrieved: July, 2016].
[5] https://www.mercurial-scm.org/, [retrieved: July, 2016].
[6] http://www.gnu.org/software/rcs/rcs.html, [retrieved: July, 2016].
[7] https://subversion.apache.org/, [retrieved: July, 2016].
[8] http://www.borland.com/en-GB/Products/Change-Management/

StarTeam, [retrieved: July, 2016].
[9] http://www.relisoft.com/co op/index.htm, [retrieved: July, 2016].

[10] http://www.ptc.com/application-lifecycle-management/integrity,
[retrieved: July, 2016].

23Copyright (c) IARIA, 2016. ISBN: 978-1-61208-499-2

ICSNC 2016 : The Eleventh International Conference on Systems and Networks Communications

