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Abstract—A sensor barrier consists of a subset of sensors that
divide an area of interest into two regions so that no intruder
can move from one region to another without being detected
by at least one sensor. The length of time over which the
sensors protect the area can be maximized if the sensors are
divided into disjoint barriers, and only one barrier is active
at a time. Dividing the sensors into a maximum number of
disjoint barriers can be done with the well-known Stint algorithm.
However, recently, a new security problem was discovered, known
as a barrier-breach, that allows an intruder to cross the area
undetected by taking advantage of the time when one barrier
is replaced by the next. This is dependent not on the structure
of an individual sensor barrier, but on the relative shape of two
consecutive sensor barriers. There have been several heuristics
proposed in the literature that attempt to maximize the number
of breach-free barriers. In recent work, we proposed a heuristic
that outperforms earlier heuristics. In this paper, we refine our
previous heuristic to deliver even better performance than before
by the careful elimination of redundant nodes. In addition, me
present a simple modification of the Stint algorithm that results in
a method that outperforms all others when the density of sensors
nodes is very high.

Keywords–Sensor networks; Barrier coverage; Security
breaches.

I. INTRODUCTION

A wireless sensor network (WSN) consists of an area
of interest in which a large number of sensor nodes have
been deployed. We assume each sensor has a limited battery
lifetime, and thus it is crucial for the network to use the limited
sensor lifetime wisely. Information that the sensors collect
could be relayed to a wireless base station [1].

In general, there are two types of coverage provided by
a sensor network: full coverage and partial coverage. In full
coverage, the entire area is covered at all times by the sensors.
Therefore, any event occurring anywhere in the area is detected
immediately [2] [3] [4] [5]. In partial coverage, only certain
regions at a time are covered by the sensors. Thus, any event
occurring outside of the current region being monitored is not
detected. [6] [7] [8].

A sensor barrier consists of a subset of sensors that divide
an area of interest into two regions so that no intruder can
move from one region to another without begin detected by
at least one sensor. Barrier coverage is thus a special case of
partial-coverage. There have been extensive studies of sensor
barriers due to their many applications, in particular intrusion
detection [9] [10] [11] [12] [13] [14] [15] [16]. Figure 1(a)

highlights a subset of sensors that provide barrier coverage to
the area.

Maintaining full coverage is often counter-productive for
applications such as intrusion detection, because the protection
only lasts for the duration of a single lifetime of the sensors.
However, if n disjoint barriers are constructed, then only one
barrier needs to be active at a time. When the currently active
barrier is running out of power, the next barrier is activated.
In this manner, the protection lasts n times the lifetime of a
sensor. Figure 1(b) shows the sensors divided into four barriers.

The problem of dividing the sensors into the maximum
number of disjoint barriers has been solved in polynomial time
in [11]. Here, two optimal algorithms, Stint and Prahari, are
presented. Stint considers the case when the remaining battery
level of each sensor is equal, while Prahari addresses the harder
case in which each sensor may have different remaining battery
level. Their approach is based on transforming the sensor
connectivity graph into a maximum flow problem.

In recent years, [17] [18], a vulnerability of sensor barriers,
known as a barrier breach, was discovered. For some barriers,
it is possible for an intruder to cross the area of interest after
activating one barrier and deactivating the previous one. This
is true even though each of these two sensor barriers correctly
divides the area into two disjoint regions, and thus provides
appropriate coverage.

Although methods have been devised for dividing a group
of sensors into breach-free barriers [17] [18], these are heuris-
tics and are not guaranteed to be optimal. To our knowledge,
the computational complexity of determining the largest num-
ber of breach-free sensor barriers remains an open problem.

In earlier work [19], we presented a heuristic which outper-
forms those in [17] [18]. In this paper, we refine our previous
heuristic to deliver even better performance than before by the
careful elimination of redundant nodes. In addition, me present
a simple modification of the Stint algorithm that results in a
method that outperforms all others when the density of sensors
nodes is very high.

The rest of this paper is organized as follows. Section II
reviews earlier work, such as the definition of a barrier breach
and the heuristics from [17] [18] [19]. In Section III, we
present our improved heuristic. In Section IV, we present a
modification of Stint whose output is guaranteed to be breach-
free. Finally, simulation results and concluding remarks are
presented in Sections V and VI respectively.
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Figure 1. Sensor Barriers

II. BACKGROUND

In this section, we overview the concept of a barrier breach.
In addition, we discuss Stint [11], and how its solution is
vulnerable to barrier breaches. We then overview the heuristics
presented in [17] [18] [19].

A. Barrier Breaches

We first illustrate the concept of a barrier breach with the
example of Figure 1(b). The figure shows four different sensor
barriers, with each barrier displayed with different line types.

Assume the intruder penetrates the area in the direction of
the users. Assume also that all sensor nodes have the same
lifetime, which we normalize to one unit. If all sensors are
operational at the same time, then we form a single barrier
that protects the users for a duration of one unit.

Instead, we can divide the sensors in four barriers, B1

through B4. If we use the barriers in a sequential wakeup-sleep
cycle (B1, B2, B3, and finally B4), the users are protected for
a total of four time units.

While this strategy is appealing, it suffers from the follow-
ing drawback.

(a) The order in which B1 and B2 are scheduled affects
the effectiveness of the barriers. Consider scheduling B2,
followed by B1. In this case, an intruder could move to
the point highlighted by a diamond, and after B2 is turned
off, the intruder is free to cross the entire area.

(b) Only one of B3 and B4 is of use. To see this, suppose that
we activate B3 first. In this case, the intruder can move
to the location marked by the black star. Then, when B4

is activated and B3 deactivated, the intruder can reach the
users undetected. The situation is similar if B4 is activated
first, and the intruder moves to the location of the grey star.

The above drawback was originally presented in [17] and
given the name barrier breach. A barrier breach for an ordered
pair (B1, B2) of barriers is a point p such that p is outside the
sensing range of B1 and B2, and furthermore, B1 cannot detect
an intruder moving from the top of the area towards p, and B2

cannot detect the intruder moving from p towards the bottom
of the area.

Note that this definition can be easily extended to a
sequence of barriers, and thus, to the schedule used to activate
the barriers.

B. Upper Bound on Breach-Free Barriers

Under the assumption that all sensor nodes have equal
lifetime, finding the largest number of disjoint sensor barriers
has been solved in polynomial time by Kumar et. al. [11]
with their algorithm known as Stint. This provides obviously
an upper bound on the maximum number of breach-free
barriers, because Stint does not take barrier breaches into
account. Given that the complexity of obtaining the largest
number of breach-free barriers remains an open problem,
several heuristics have been presented in the literature [17]
[18] [19]. Some of these heuristics are based on Stint, so we
briefly overview Stint below.

Consider Figure 2(a), with a sample sensor network. The
first step consists of adding a virtual source node S and
a virtual destination node T . Then, a connectivity graph is
built containing all the sensor nodes as vertices in the graph,
including the virtual nodes S and T . Two nodes are then
connected via an edge iff their sensing ranges overlap. Also, an
edge is added between S and any sensor whose range overlaps
the left border of the area. Similarly, an edge is added between
T and any sensor whose range overlaps the right border of the
area. The resulting graph is shown in Figure 2(b). Finally, the
maximum number of node-disjoint paths are found between S
and T .

Computing the maximum number of node-disjoint paths is
done with a small variation of the above graph and applying
a maximum-flow algorithm. Each sensor node x in the graph
is replaced by two nodes, xin and xout, with a directed edge
from xin to xout. For every sensor node y that is a neighbor
of x, the directed edges (xout, yin) and (yout, xin) are added
to the network. Finally, an edge (S, xin) is added for every
neighbor x of S, and also an edge (yout, T ) for every neighbor
y of T . All of these directed edges have a capacity one. The
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Figure 2. Stint Sensor Barriers

resulting enhanced connectivity graph is shown in Figure 2(c).
The node-disjoint paths are obtained by running a maximum-
flow algorithm on this enhanced connectivity graph.

C. Barrier Crossings

Several heuristics for maximizing the number of non-
penetrable barriers have been proposed in [17] [18]. These
heuristics are based on variations of Stint that restrict the
connectivity graph of Figure 2(b) in a manner that ensures the
output is breach-free. In [18], it was shown via simulation that
one of these heuristics outperforms the others. Next, we briefly
describe this heuristic, which will be used for comparison
against our heuristic that we present in Section III.

The heuristic begins by constructing the connectivity graph
of Stint, as in Figure 2(b), and removing edges that cross each
other. For example, in Figure 2(b), edges (c, b) and (a, d) cross
each other. One of these edges must be removed, leaving in
place a graph where no edges cross. Then, as in Stint, the
maximum number of node-disjoint paths are found, resulting
in the desired sensor barriers.

What remains to be decided is, of the set of edges that
cross each other, which ones should be removed? Note that in
the example only one of the edges needs to be removed, not
both. The method proposed in [18] deletes the edge that has
the least impact on the number of node-disjoint paths from S
to T .

That is, for every edge (x, y) that crosses other edges, the
edge is removed and Stint is run on the remaining graph.
The edge whose removal produces the largest number of
disjoint paths is chosen for permanent removal. The process is
repeated until no two edges cross each other. A more detailed
description may be found in [18].

Note that this is a computationally intensive algorithm in
the case of a dense sensor network where many edges cross
each other. This is because if there are m number of edges that
cross other edges, then Stint has to be run m times, which
results in a graph with m − 1 crossing edges. This in turn
requires Stint to be run m− 1 times, and so on.

D. Ordered Ceilings

In [19], we presented a heuristic which outperforms those
presented in [17] [18]. We briefly overview it here, as it is the
foundation for our improved heuristic in Section III.

Consider Figure 3(a), and note that a sensor barrier B
divides the area of interest into an upper region and a lower

region. The ceiling of B consists of all points p along the
border of the sensing radius of each sensor in B such that
one can travel from p to any point in the upper region without
crossing the sensing area of any sensor. The floor of B is
defined similarly but with respect to the lower region. Consider
again the sensor barrier depicted in Figure 3(a). Its ceiling and
floor are depicted in Figure 3(b).

Our heuristic finds each barrier iteratively as follows. Con-
sider the set of all sensor nodes as a single barrier, and obtain
its ceiling. The first barrier consists of all sensor nodes that
take part of this ceiling. These nodes are then removed from
the network. The remaining sensor nodes are again considered
as a single barrier, and their ceiling is found, which in turn
yields the second barrier, etc..

For example, consider Figure 3(c). The first barrier, B1,
is obtained from the ceiling of all the sensor nodes. The next
barrier, B2, is obtained by removing B1 and obtaining the
ceiling of the remaining nodes. B3 is found the same way.

To obtain the ceiling of a set of nodes, one simply begins
with the top-most node that intersects the left border of the
area. Let b0 be this node, and p0 the top-most point where b0
intersects the left border. Point p1 is the first point, clockwise
from p0, where the sensing area of b0 intersects the sensing
area of another node b1. This point becomes p1. This process
continues until either the right border is reached, and thus the
barrier is complete, or it returns to the left border, in which
case the nodes are discarded since they do not take part of any
barrier.

We refer to our heuristic as the ordered-ceilings heuristic,
and is presented in more detail in [19].

III. COMPRESSED CEILINGS HEURISTIC

We next present our enhancement to the above heuris-
tic, which we refer to as the compressed ceilings heuristic.
Consider the barrier in Figure 4(a). Assume that it was
obtained using the ordered ceilings heuristic. As the barrier
is constructed from left to right, the algorithm runs into node
i. The next clockwise node after i is j. Similarly, k follows j
clockwise. Note that the next clockwise node after k is i again.
In this case, all three nodes j, k, and l, serve no practical
purpose. We call these nodes a detour because they simply
return to the original node. We can remove these nodes and
still maintain a sensor barrier.

Consider now nodes x, y, and z. Again, the next clockwise
node after x is y, followed clockwise by z. Note, however, that
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y is not needed for the integrity of the barrier. Nonetheless,
our earlier heuristic will have included it in the barrier. Thus,
y can be removed. We refer to y as a spurious node, because
it connects two nodes which are already connected.

Spurious nodes and detours could be removed as the barrier
is constructed, or doing a pass over the barrier once its
construction finishes. We choose the latter for its simplicity.
The nodes that we remove as described above are not deleted
permanently from the network. Simply deleting them would
serve no purpose at all. Instead, the removed nodes remain
available in the pool of potential sensors for the construction
of the next barrier. By doing so, we increase the likelihood
of being able to construct more barriers in the iterations that
remain in the algorithm.

Note that the savings can be significant, in particular, if we
consider networks that are very dense, i.e., with many sensors
per unit of area. Consider a sequence of sensors that are very
close to each other. The location of each sensor in the sequence
is only a slight amount to the right of the previous one in the
sequence. In this case, a large number of spurious nodes will
exist, which can be removed and then reclaimed for the next
barrier created by the heuristic.

However, removing nodes to be later reclaimed by other
barriers does have its perils: barrier breaches may occur.
Consider Figure 4(b). Two barriers are shown. The top barrier
(i.e., scheduled first) has circles with solid lines. The lower
barrier (i.e. scheduled second) has circles with dashed lines.
The top barrier has a detour, and the sensors involved in the
detour are marked with thicker lines. Once the detour nodes
are removed, the results are shown in Figure 4(c). Note that
the lower barrier does not have a detour because, although
close, the same node is not visited twice. Because of this, the
location marked by the star is actually a barrier breach. That
is, an intruder can move to this location while the first barrier
is active, and once the switch to the second barrier occurs, the
intruder is free to move to the lower part of the area.

One method to avoid this barrier breach is to check after
the completion of barrier number m whether there is a barrier
breach with the previous barrier m − 1. If so, all the nodes
of barrier number m could be removed from the network.
This, however, is somewhat drastic because perhaps only a few
nodes of the barrier are involved in the breach, and removing
the whole barrier is unnecessary.

Instead, as each node is added to the barrier, we can check
if adding this node will cause a barrier breach, and if so, this
individual node is removed from the network. Again, the node
is not permanently removed, it is just set aside and possibly
reused in the construction of subsequent barriers.

To detect if a node is causing a barrier breach, we use the
following result which we proved in [19].

An ordered pair of barriers (B1, B2) has a breach
iff the floor of B2 intersects the ceiling of B1.

Figure 5(a) shows the first three nodes of a barrier, and also
the left border of the area of interest. Note that the contribution
of node 2 to the ceiling or floor of the barrier is not defined
until node 3 is chosen. Thus, in our heuristic, when node i+1
is chosen, then the arc that node i contributes to its floor can
be checked against the ceiling of the previous barrier, and see
if they intersect, as shown in Figure 5(b). If so, then node i is
removed from the current barrier and no longer considered a
candidate for this barrier, while node i + 1 is returned to the
set of candidate nodes for this barrier.

Figure 5(a) also shows the ceiling points and the floor
points. These are the points in the ceiling (respectively floor)
where the sensing areas of two consecutive sensors intersect
plus the points where the ceiling (respectively floor) intersects
the left or right border of the area of interest. We make use of
these definitions in the pseudocode of our heuristic, which is
presented in Algorithm 1.

IV. BREACH-FREE STINT

In addition to the heuristics of [18] [19], we consider a
simple modification to the Stint protocol [11]. The heuristics
of [18] [19] pre-process the sensor graph before running the
Stint algorithm in a manner such that breaches are avoided.
We take the opposite approach of first using Stint to obtain
the maximum number of barriers, which of course contain a
significant number of barrier breaches, and then we eliminate
the barrier breaches using the intersection of the floor and
ceiling of consecutive barriers.

Thus, after we run Stint, we sort the barriers in order of
their intersection with the left wall of the area of interest. If
there were no barrier breaches, then the barriers would be
scheduled from top to bottom. To check for breaches, we
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consider each pair (Bi, Bi+1) of consecutive barriers. If the
floor of Bi+1 intersects the ceiling of Bi, then Bi+1 is removed
from the network. We keep repeating this until all barrier
breaches are removed.

V. SIMULATION RESULTS

In this section, we compare the performance of our Com-
pressed Ceilings (CC) heuristic presented in Section III against
several other heuristics: Ordered Ceilings (OC) that we pre-
sented in [19] and overviewed in Section II-D, Max-Flow-
Edge-Eraser (MFEE) [18] that we overviewed in Section II-C,
and Breach-Free Stint (BFS) that we presented above. We use
pure Stint as an upper bound on these heuristics, since it is
oblivious to barrier breaches. We only compare against the
MFEE heuristic and not against other heuristics in [17] [18]
as it was shown in [18] that MFEE is clearly superior to the
others.

The area of interest is a square of size 100 × 100 me-
ters. We also simulated rectangles of dimensions 60 × 100,
80× 100, 100× 60, and 100× 80 meters, but the results were
similar. Also, n sensor nodes are randomly deployed in each
area, where n ranges from 30 to 80, and the sensing radius
ranges from 15 meters to 25 meters. Every point in our plots
corresponds to the average of 100 simulations.

Figure 6 shows our first comparison, where the number of
sensor ranges from 30 to 80. It shows the results for three
different sensing ranges r: 15, 20, and 25. Our CC heuristic
clearly outperforms all others, being more noticeable as the

number of sensor nodes increases or as the radius increases.
I.e., as the density of sensor nodes increases, the CC heuristic
improves its margin over the other heuristics.

Our second group of simulations are shown in Figure 7.
The transmission range varies from 15 to 20, and the number
of nodes is 40, 50, or 60. Again CC outperforms all other
heuristics. The difference becomes more significant as the
number of sensors increases from n = 40 in Figure 7(a) to
n = 60 in Figure 7(c).

A curious observation in both of these figures is that BFS
begins to outperform some of the heuristics as the sensor
density increases. For example, in Figure 6, BFS begins to
outperform MFEE when r = 20, and significantly outperforms
it when r = 25. A similar pattern can be observed in Figure
7 as the number of nodes increases.

In order to explore this phenomenon, we took Figure 6
and extended the number of sensors dramatically, up to 600
sensors. The results are shown in Figure 8.

First note that our CC heuristic significantly outperforms
our previous OC heuristic. In addition, in Figure 8(a), where
r = 15, BFS begins to approach the performance of our earlier
OC heuristic. In Figure 8(b), where r = 20, BFS outperforms
OC staring around 300 nodes which yields about 20 barriers.
Finally, in Figure 8(c), where r = 25, BFS outperforms even
our current heuristic CC, again starting around 300 nodes
which yields about 45 barriers. Thus, in very dense networks,
a simple variation of the Stint method can actually produce
more breach-free barriers than any other current heuristic.
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Algorithm 1 Compressed-Ceilings (N)
Inputs: sensor node set N .
Output: set O of node-disjoint breach-free sensor barriers.

1: O ← ∅;
2: N ′ ← N ;
3: while exists a sensor in N ′ whose range crosses the left

edge of the area do
4: Barrier ← top sensor overlapping left edge of area;
5: lastBarrier ← ∅;
6: done← false;
7: success← false;
8: while ¬done do
9: s← lastSensor(Barrier);

10: p← last point in the ceiling of Barrier;
11: Q← {q | [∃ t ∈ N ′, q ∈ (range(s)

⋂
range(t))]};

12: p′ ← first point in Q clockwise from p around s;
13: s′ ← sensor whose range overlaps that of s at p′;
14: if range of s′ overlaps the area’s left edge then
15: success← false;
16: done← true;
17: end if
18: Barrier ← append(Barrier, s′);
19: if lastBarrier 6= ∅ ∧ |Barrier| ≥ 2 ∧

intersect(floor(Barrier), ceiling(lastBarrier)
then

20: q ← next-to-last(Barrier);
21: N ′ ← N ′ − q;
22: Barrier ← Barrier − {s′, q};
23: else
24: if range of s′ overlaps the area’s right edge then
25: success← true;
26: done← true;
27: end if
28: end if
29: end while
30: if success then
31: O ← O

⋃
Barrier;

32: end if
33: N ′ ← N ′ −Barrier;
34: end while
35: return O

VI. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we have refined our previous heuristic to
deliver a higher level of performance by carefully eliminating
redundant nodes. We have also presented a simple modification
of the Stint algorithm that results in a method that outperforms
all others when the density of sensors nodes is very high.
This points to the possibility that that there is still room for
improving our earlier heuristics, because the Stint protocol
is oblivious to breaches, and our modification to Stint is
straightforward by eliminating any barrier in its output that
causes a breach with a previous barrier.
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Figure 6. Number of sensors (horizontal) vs. number of barriers (vertical) in
100× 100 region
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Figure 7. Transmission range (horizontal) vs. number of barriers (vertical) in
100× 100 region
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Figure 8. Number of sensors (horizontal) vs. number of barriers (vertical) in
100× 100 region


