
Performance of Low Buffer Resource Flexible
Router for NoCs

Israel Mendonça dos Santos
and Felipe M. G. França

PESC/COPPE, Universidade Federal do Rio de Janeiro
Rio de Janeiro, RJ, Brasil

Email: {israel, felipe}@cos.ufrj.br

Victor Goulart
E-JUST Center, Kyushu University

Fukuoka, Japan
Email: goulart@ejust.kyushu-u.ac.jp

Abstract—Nowadays, the performance of advanced multi-core
systems is mostly limited by communication bottlenecks instead of
computing speed or memory resources. Interconnection networks
start to replace buses as the standard system-level interconnection
infrastructure. Many researchers have been working on on-chip
interconnection networks (Network-on-Chip - NoC) to improve
its performance in terms of latency, throughput and power
consumption. Buffers are the most influential element affecting
performance in this architecture, and also the most expensive
resource. The vast range of applications concurrently executing
in the network and their different communication patterns leave
some buffers of the routers underutilized. In this paper, we
study the performance of low buffer resource flexible routers
which can adaptively schedule resources (buffers) according to the
dynamic behavior of the communication demand in the NoC. Our
simulations showed this router architecture was able to improve
throughput up to 21% or have similar performance while using
half the number of buffers compared to a standard router.

Keywords—Flexible Routers, Network-on-Chip (NoC), Adaptive
Router, Buffer Resources.

I. INTRODUCTION

Processor technology scaling down allowed the integration
of billions of transistors on a single chip, and the emergence
of multi-core systems with dozens of hundreds of processors
and multiple (distributed) memories. Such high complexity
systems on chip are hard to implement with traditional bus-
based communication infrastructure. To solve this problem the
concept, of Network-on-Chip (NoC) [1] [2] [3] was introduced
and is the focus of recent research. In a NoC-based system,
on-chip modules exchange code or data using a network as
a sub-system for the information traffic. NoCs are built from
multiple point-to-point data links interconnected by routers.
Recently, researchers have been pushed to substitute the bus
architectures by NoCs due to their scalability and efficiency
benefits. In the design of NoCs, high throughput and low
latency are both important design parameters and the router is
the essential key to meet these requirements. High-throughput
routers are required to allow an outflow of packets that matches
the needs of the applications. Normally, a higher number of
buffers improves performance (network throughput), but they
also impact the power consumption, being responsible for
about 64% of the total router leakage power [4].

NoCs can have different communication performance and
costs, depending on their architecture features and design,
and their target applications. Designing the same NoC router

to cover the whole spectra of applications would lead to an
oversize and expensive router, in terms of area and power. On
the other hand, if one tries to design an application specific
router for different markets, the designer would need to take
several design decisions in a very early stage, eventually com-
promising scalability and optimization capabilities for distinct
application behaviors.

According to Dally and Towles [5], a router role lies
basically in efficiently traversing packets through the net-
work links. Router buffering is used to hold packets that are
unable to be forwarded to the desired output port due to
contention. An ideal router should be able to adapt to different
application requirements at runtime without compromising its
performance. According to the experiments realized by Xuning
and Peh [4], even at high loads, there were still 85% of
idle buffers, which highlights the importance of performance
optimization. In fact, it has been observed that storing a packet
consumes far more energy than transmitting if forward [6].

Given the aforementioned significance of the NoC buffers,
the concept of Flexible Router [8] [9] was introduced; it
has a new router architecture approach that fully utilizes the
available buffers in a flexible or adaptive way. When all the
buffers of an input port are already in use and the upstream
router asks for a buffer space, instead of just denying the
request, and so causing contention, the flexible router will try
to allocate any other empty buffer to the upstream, and, by
doing so, avoiding contention.

Flexible Routers are a potentially promising architecture
approach to overcome buffer under utilization and improve
performance. In this work, a router that can reconfigure the
buffers to better attend the communication demands is ana-
lyzed under various architecture design parameters. The result
showed that the proposed router improved over the traditional
router’s performance in terms of throughput up to 21% and
having similar performance when using half of the buffers.

This paper is organized as follows. Section II gives back-
ground information about the traditional baseline router and
summarizes the related works. The Flexible Router architecture
and functionality is explained in Section III. Section IV shows
the experimental framework and results. Finally, the conclusion
is shown in Section V.

35Copyright (c) IARIA, 2014. ISBN: 978-1-61208-368-1

ICSNC 2014 : The Ninth International Conference on Systems and Networks Communications

II. BACKGROUND AND RELATED WORK

Before explaining the functionality of the flexible router
and its advantages, we present a brief introduction about the
operation of the base router and the state-of-art concerning it.

A. Baseline Router

The baseline router used in this paper uses the architecture
proposed by Dally and Towles [5], Figure 1. It is composed
of several components that collectively implement the routing
function and flow control functions. These functions are re-
quired to store and forward flits en route to their destinations
through the network. The components are input controllers,
one or more buffers per input or output port, a routing compo-
nent, an arbitration component, and output controllers. A base
router usually implements wormhole flow-control [10] with P
ports, where P depends on the dimension of the topology. In
a 2-D topology, P=5, as it includes the 4 ports to the neighbor
(North (N), South (S), East (E), and West (W)) and the local
port (L) (from/to the processor or memory core). Every input
port has a certain amount of buffers to store flits. Flits are
saved in buffers because they were unable to cross the network
due to diverse factors, such as lack of credits on the link,
lose the switch arbitration, among other things. The buffers
are organized as First In First Out (FIFO) queues. Virtual
Channel flow control [11] is the technique that separates the
allocation of the buffers from the allocation of the channel.
In case of blocking in one buffer, the input port can make
use of another buffer. Flits entering the router are put in one
of these buffers, called Virtual Channels (VCs), depending on
their Virtual Channel Identifier (VCID). Queues on the input
port are connected to a crossbar that links any input buffer to
any output port.

The packet processing on the base router can be separated
in a five-stage pipeline: The first stage is the Routing Compu-
tation (RC), where the Routing Module will decide an output
port based on information extracted from the packet header.
After RC, Virtual Channel Arbitration (VA) is done. During
this stage, a buffer on the downstream router is selected. The
VC Allocator sends a request signal to the downstream router
that replies it with a grant signal containing a VCID (or a
”no-buffer signal” depending of the availability of the buffer).
Based on the answer of the downstream router, the requester
upstream router will attach the replied VCID to every flit of
the packet so that when it arrives in the downstream, it is put
in the correct virtual channel. After the VA stage, we have
the Switch Arbitration stage (SA). In this stage, the flits will
compete for the usage of the crossbar. At the Switch Traversal
(ST) stage the flits cross the crossbar in the direction to the
output port. And, finally at the Link Traversal (LT) stage, the
packet is forwarded to the next router.

The main limitation during the Base Router operation
is the contention problem. Contention occurs when a buffer
request at some input port is blocked because this port has
no buffer to allocate this packet. Such contention may lead
to further blockings in the network and hence congestion
occurs [12] [13], which degrades the performance of the
network.

Fig. 1. Base Router Architecture [5].

B. Related Work

Several works have been proposed to maximize the perfor-
mance through different buffer management techniques within
the router. In Karol et al. [14] and Ramanujam et al. [15],
a shared-buffer scheme is proposed to emulate an Output
Buffered Router (OBR), but their mechanism greatly increases
the number of the buffers of the router by adding extra Middle-
Memories and a difficult control logic, which increases the area
by 58% and the power usage by 35%.

In ViChaR [16], a Unified Buffer Structure (UBS) [17]
is proposed with a dynamic virtual channel regulator called
ViChaR, which also dynamically allocates virtual channels and
buffers according to the network traffic conditions. They used
the unified buffer unit instead of partitioned buffers as in our
approach. The UBS is committed to create an illusion that
the number, and size, of virtual channels of the router varies
according to the traffic load. As the traffic load increases,
ViChaR disposes more virtual channels to amortize the effect
of the traffic. Although this mechanism has notable advantages,
it has also suffered from a complex logic implementation
increasing the area and probably causing power overheads.

In [18], Matos et al. propose the usage of a partitioned
buffer that could lend/borrow buffer slots from each neighbor
is proposed. By doing so, the depth of each channel could vary
in time according to the traffic demands. But virtual channels
were not used, only one buffer was available per channel, and
since it could lend any buffer slot from its neighbors, it needed
several multiplexers to provide the correct functionality of the
mechanism, increasing the area and power demand. Also, the
size of the multiplexer was determined by the size of the
buffer, increasing linearly the necessary area. In our approach,
the size of multiplexers is fixed, so the depth of the virtual
channels have no influence on the size of our multiplexer.
Also, our control mechanism is simpler, allowing the router to
work in high frequencies, differently from the two previously
mentioned approaches.

The idea of the flexible router was proposed in [8] and [9].
In this works, flexible router was implemented using Store-
and-Forward (SAF) flow control and Virtual Channels were

36Copyright (c) IARIA, 2014. ISBN: 978-1-61208-368-1

ICSNC 2014 : The Ninth International Conference on Systems and Networks Communications

not used. Due to this limited implementations, it was not
possible to verify all the improvements that the flexible router
architecture could provide. In this work we do a broader
evaluation under different design parameters for the router,
such as Wormhole flow-control, and use of Virtual Channels,
analyzed under different traffic patterns, packet sizes and
number and size of virtual channels.

III. PROPOSED FLEXIBLE ROUTER

Statistically, not all buffers are used all the time, lead-
ing to underutilization of these valuable resources. In our
architecture, it is possible to dynamically allocate idle buffers
to other channels. The proposed Flexible router addresses
the poor utilization of buffers which lead to lower than the
theoretical ideal throughput. At the same time, it tackles the
area constraints of implementing a shared buffer router. With
a simple control mechanism and the addition of a module
called FIFO Flexibility Controller (FFC), the virtual channels
are decoupled from the input port, as now any flit is able to
acquire any buffer provided that VC is not in use already.
Essentially, FFC virtually provides more buffers allocation
resources between routers.

To guarantee packet delivery, a flow control mechanism
needs to be employed. The proposed flexible router uses on/off
flow control in order to prevent the drop of packets. If the
downstream router is about to get full, a control signal is sent
to the upstream router; by receiving this message, the upstream
knows that the VCs of the downstream are about to get full and
stop transmitting flits until another message arrives informing
that the downstream router buffers are free.

Since power is a valuable resource in NoC domain, the
power-performance trade-off of variable size and amount of
VCs configurations must be explored. Although, for some
cases, the performance of the flexible router can be the same
as the baseline router, we try to reduce the amount of resources
of our router and still have reasonable performance. Therefore,
we evaluate configurations in which the flexible router has less
buffer space available than the baseline router and still achieve
similar results.

Finally, on-chip routers ought to operate at high clock
frequencies. It is a design need to carefully architect the
pipelines with low complexity logic at each stage. Our design
employs a balanced five-stage pipeline. The proposed architec-
ture can achieve higher performance than the traditional router
with comparable buffering while adding reasonable area and
complexity overhead in managing the flexibility of the input
ports.

A. Flexible Micro-architecture and Pipeline

Figure 2 shows the router micro-architecture of the pro-
posed flexible router and its corresponding five-stage pipeline.
Incoming flits are first stored in their respective input buffer,
which are segmented into a certain amount of VCs. The RC
stage of the flexible router, differently from the base router,
employs a look-ahead routing scheme, where the output of
a packet is computed based on the destination coordinates,
one hop in advance. This happens only for the head-flit of
the packet. This is done so that the FFC mechanism can
use this information to avoid deadlocks. Further explanation

Fig. 2. Flexible Router Architecture.

Fig. 3. Modified input port. A multiplexer and an extra module called FFC
was employed.

about deadlocks will be provided in subsection B. The VA
stage is substantially different from the base router. Instead
of arbitrating for free VCs in a specific input port at the
downstream, it can be extended to the other buffers belonging
to other input ports if they are not being used. After the VA
stage, the router pipeline is exactly the same as the one on
the baseline router. Subsequently, the packets dispute for the
use of the crossbar on the SA stage. Winning flits of the SA
stage traverse the crossbar at the ST stage, and finally the flit
departs from the output port at the LT stage.

Figure 3 shows proposed input port modules of the North
Channel as an example. In this architecture, it is possible for a
channel to lend its idle buffers to other channels. In conformity
with this figure, each input port now has an extra multiplexer
and an extra unity called FFC. The multiplexer is required
in order to deviate the packets from their original channel and
store them in the North buffer. The FIFO Flexibility Controller
deals with the virtual channel allocation. Besides allocating
VCs in its respective input port, it also works by allocating free

37Copyright (c) IARIA, 2014. ISBN: 978-1-61208-368-1

ICSNC 2014 : The Ninth International Conference on Systems and Networks Communications

Fig. 4. (a) Baseline router designed with two buffers per port and FIFO depth
4; (b)Flexible router with the buffers reconfigured to attend the demand.

virtual channels that belong to other input ports. Whenever a
header flit enters the VA stage at the upstream router and issues
a request to the FFC of the downstream one, this request will
be forwarded to the FFC in the downstream router. FFC will
preferentially first look for free VCs into its corresponding
input port, if it fails to do so, it will try to reserve a VC
belonging to another input port. The process of reserving a
VC at the neighbor input ports is an asynchronous process
with three stages started whenever a FFC detects that it will
not have enough buffer space to house the incoming flit. The
first stage of the process starts when it issues a request to
other FFCs. In the second stage, the FFC that receive the
request message, will lookup into its virtual channels and if
it finds an empty VC, a reply signal is sent with an ACK
(if there are no free VCs, it will send a NACK). The last
stage of the communication is when the issuer of the request
message receives the replies from its neighbors. Then it makes
a selection between the ACKs and replies the VCID to the
upstream router (in case of receiving just NACKs, it replies a
NOT AVAILABLE message).

To keep track of the availability of the VCs, we created
an auxiliary structure called the Flexible Availability Table.
The table contains the identification of each buffer and its
status. If the FFC reserve one buffer, it is marked in the
table as reserved. At the end of the usage of this buffer, the
FFC changes the status in the table to available. This kind of
structure reduces the amount of communication because the
FFC asks directly to a port that is known to have empty VCs.

In this design, the usage of local input port buffers is not
considered. The flexible router local port is not different from
the one in the baseline router. Only the North, South, West,
and East ports were changed. This is done in order to make the
Flexible Router mechanism simple and not affect the injector
queues.

The policy of choice of the neighbor VC, in case of more
than one ACK, may influence the router performance. In our
router, it was employed Dimension Order XY (DOR X-Y)
algorithm [7], so the probability of filling up the buffers of
the X direction is greater than the ones in the Y direction.
Considering this fact, the Buffer Choosing Algorithm tries to
choose buffers from ports that have less probability to be used
through the execution of the system. The algorithm will be
better clarified in subsection B.

Figure 4 shows how the VCs of the flexible router can be
reconfigured. First, the depth of the buffers must be defined
at design time, in this example, it has size equal to 4 and the

Fig. 5. Eight possible turns from a packet within a router.

packet size is 2, as illustrated in Figure 4(a). After this, the
traffic is unbalanced and an entire virtual channel from North
is lent to South port, and two buffer slots from West port are
lent to East port, as shown in Figure 4(b). One can look that
even though the West port houses a packet from the East port,
it also can store packets from other ports as well. Flexible
router has no issue about mixing packets from different ports
in the same buffer, the only thing to be taken into consideration
is not to interleave the packets. The mix is possible because
once the packet acquires a VC, the routing information of the
reader will be used for all the following packets of the VC
until a tail flit is founded. If we interleave packets, body flits
would go to wrong routes. The allocation of several packets in
the same input port is possible because the tail flit releases the
VC when it leaves the router. By doing so, even if the buffer
is not empty, it can be reallocated to another packets if the
previous packet is totally inside the buffer. We do not allow
flits to go to different buffers because it would add complexity
to organize these flits. The basic mechanism of the FIFO is
thus kept.

B. Deadlock Problem

Due to the flexibility of the flexible router, any packet can
be stored in any buffer regardless of its direction. This situation
may lead to deadlock. For example, considering two neighbor
routers connected through a channel in the X-axis (A and B), if
all packets stored in router A are going to the Eastern direction
and, at the same time, all packets in router B are going to the
Western direction, a deadlock will occur, since there will be
no available space in the destination buffers, and vice versa.
This problem can be extended for more than two routers. The
solution for this problem is analogue to the one used in [8].
As illustrated in Figure 5, there are eight possible turns that
a packet can do inside a router. The turn-model [19] restricts
the usage of two out of the eight turns. By restricting turns,
the turn model imposes a total order on the allocation of the
buffers, hence avoiding deadlocks.

C. Virtual Channel Allocation Method

Due to the aforementioned deadlock problem, a special
Virtual Channel Arbitration algorithm must be implemented.
This algorithm will implement the restrictions and will also
give priority to allocate buffers in the vertical direction. Since
we are using a X-Y algorithm, buffers of the X axis (West
and East) might become heavily utilized. So, it makes sense
to give priority to the allocation of the routers belonging to
the Y axis (North or South).

38Copyright (c) IARIA, 2014. ISBN: 978-1-61208-368-1

ICSNC 2014 : The Ninth International Conference on Systems and Networks Communications

The proposed mechanism consists of lending VCs from
other input ports according to the availability of the buffers. If
a packet wants to be transmitted and the input port is full, the
FFC makes a request for an empty buffer in other ports. At
every cycle, FFC look up the table trying to find an available
buffer. If it fails, a request will be placed to another FFC.
Even though the VC is available, it doesn’t guarantee that it
will be reserved to the requesting FFC; the same buffer can
be requested for more than one FFC, in this case the owner
of the buffer will choose a winner using a round-robin arbiter.
In the buffer availability check, the FFC request and reply
can be performed within one cycle, which means performance
overhead. Moreover, as the channel demands for each router
can vary in time for one or multiple applications, the buffer
allocation of the flexible router is dynamic at runtime.

IV. EXPERIMENT CONFIGURATION AND ANALYSIS

A. Simulation Platform

To evaluate the efficiency of the proposed flexible router
against the baseline router, a cycle-based accurate simulator
called TOPAZ [20] was employed. TOPAZ is implemented
in C++, models the pipeline of the routers, and operates at
the granularity of individual architectural components. Simu-
lations were performed using 64 routers organized as a 8x8
MESH network. In the simulator, we varied the buffer size,
packet size, and quantity of virtual channels per input port
over different traffic loads. Table I summarize the simulation
parameter evaluation.

Each router has five physical bi-directional channels (ports)
including the local port. The simulator keeps injecting mes-
sages into the network until it reaches 50.000 messages. A
simple DOR-XY routing is used for all of our simulations
where packets are first routed in the X-dimension followed
by the Y-dimension. A DOR-XY was used because the main
focus is on highlighting the improvement in performance due
to the flexible router’s adaptability, rather than the routing
algorithm’s. Wormhole flow control is also employed to control
the flow of packets alongside the network, complementing
previous evaluations. The tested network traffic pattern was
the Uniform Random, where a node injects messages into the
network at regular intervals specified by the injection rate.
Normal Random distribution, where each node has the same
probability of being chosen as a destination for a packet, was
used for the destination node selection.

B. Analysis of Results

Our simulation exploration starts with the throughput com-
parison between the conventional, statically assigned buffer
architecture in the base router compared to the proposed
flexible router implementation. We started our discussions
assuming that both use the same number of virtual channels.
Results are shown varying the packet size from four flits up
to sixteen flits for both of them. The injection load measures
how many flits are injected in the network per cycle per router
(flits/cycle/router), and the throughput is the amount of flits
that leave the network per cycle (flits/cycle). Each line is
labeled after the architecture in use and the packet size. For
example, Flex 4 means that the line shows the performance of
the scenario using a packet size of 4 and the flexible router
architecture.

As the injection rate grows, the difference in throughput
between the flexible and the base router increases. From the
figures 6 to 8, we can see the difference for several buffer
sizes using two virtual channels. It can be noticed that the
difference in throughput grows up to 21% (4 flits per buffer,
Figure 6) and the flexible router outperforms the base router in
most cases 9% (8 flits per buffer, Figure 7) and 11% (16 flits
per buffer, Figure 8). Another important result is that flexible
saturates for higher injection loads when compared to the base
one. The difference between both approaches is reduced as
more resources are introduced to the network (larger buffers
and increased amount of virtual channels). This is expected
since the flexible router more efficiently manages routers with
more limited number of resources. As the number of virtual
channels grows, the flexible router starts to show a closer
performance to the base router’s. For four virtual-channels,
the difference in performance between the two routers is small.
Using packet size of 16 flits, flexible router outperforms the
base router in 6% for buffer size of 4 and 8 flits (Figure 9),
and 3% for buffer size of 16 flits (Figure 10 and Figure 11).
Even though the flexible router outperform the base router in
most cases (for packets of 4 flits and buffer size of 8 and 16
flits), the baseline router has respectively 10% and 8% better
performance (Figure 10 and Figure 11).

As we can see in the charts, the best results are the ones
in which the packet size matches exactly the size of the buffer
size. An explanation for this is that packets can be moved
entirely through VCs. By doing so, a packet doesn’t interfere
with other packets in the same buffer since no packets are
allocated together. As the size of the packets grows, one needs
more than one buffer to allocate these packets, in the worst
case needing to allocate four buffers in different routers when
the packet has sixteen flits and buffer size is four. The lack of
resources increases the congestion of the network.

Another observation made in this paper is the performance
of the flexible router using two virtual channels when com-
pared with the performance of the baseline router using four
virtual channels and both using four flits per buffer in an 8x8
mesh. As we can see in Figure 12, even though the baseline
router has doubled the number of buffers, the throughput of
the flexible router is only 3% inferior. When we added more
two buffers in the baseline router, the contention problem was
reduced improving its overall performance, but the flexible
router was also able to overcome the same level of contention
using just half the number of buffers. This implies great
reductions in router area. As mentioned before buffers occupy
most of the area of the router. This reduction is not only in
the area but also in energy since the buffers are power-hungry
components. A detailed discussion about the energy and the
area savings caused by a flexible router can be found in [21].

Due to the inherent capacity of the flexible router to allo-
cate resources in a more efficient way, the average bandwidth
of the network is increased, which also increases the outflow of
packets, and by doing so, mitigating the congestion problem.

V. CONCLUSION AND FUTURE WORK

In this paper, a perform analysis was done on the effects of
the usage of virtual channels of flexible routers, as much as the
employment of a wormhole flow control, which improved the

39Copyright (c) IARIA, 2014. ISBN: 978-1-61208-368-1

ICSNC 2014 : The Ninth International Conference on Systems and Networks Communications

TABLE I
SIMULATION PARAMETER VARIATION

Parameter Values

Packet Size 4, 8, 12, and 16

Buffer Size 4, 8, and 16

of Virtual Channels 2 and 4

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

0.
03

	
0.
06

	
0.
09

	
0.
12

	
0.
15

	
0.
18

	
0.
21

	
0.
24

	
0.
27

	
0.
3	

0.
33

	
0.
36

	
0.
39

	
0.
42

	
0.
45

	
0.
48

	
0.
51

	
0.
54

	
0.
57

	
0.
6	

0.
63

	
0.
66

	
0.
69

	
0.
72

	
0.
75

	
0.
78

	
0.
81

	
0.
84

	
0.
87

	
0.
9	

Th
ro
ug
hp

ut
	 (f
/c
)	

Injec3on	 load	 (f/c/r)	

Flexible	 2	 VC	 vs	 Base	 2	 VC	 -‐	 4	 flits/buffer	

Flex	 4	

Flex	 8	

Flex	 12	

Flex	 16	

Base	 4	

Flex	 8	

Flex	 12	

Flex	 16	

Fig. 6. Throughput - 2 Virtual Channels and 4 flits per buffer.

0	

5	

10	

15	

20	

25	

0.
03

	
0.
06

	
0.
09

	
0.
12

	
0.
15

	
0.
18

	
0.
21

	
0.
24

	
0.
27

	
0.
3	

0.
33

	
0.
36

	
0.
39

	
0.
42

	
0.
45

	
0.
48

	
0.
51

	
0.
54

	
0.
57

	
0.
6	

0.
63

	
0.
66

	
0.
69

	
0.
72

	
0.
75

	
0.
78

	
0.
81

	
0.
84

	
0.
87

	
0.
9	

La
te
nc
y	
(f/

c)
	

Injec/on	 load	 (f/c/r)	

Flexible	 2	 VC	 vs	 Base	 2	 VC	 -‐	 8	 flits/buffer	

Flex	 4	

Flex	 8	

Flex	 12	

Flex	 16	

Base	 4	

Base	 8	

Base	 12	

Base	 16	

Fig. 7. Throughput - 2 Virtual Channels and 8 flits per buffer.

0	

5	

10	

15	

20	

25	

0.03	 0.09	 0.15	 0.21	 0.27	 0.33	 0.39	 0.45	 0.51	 0.57	 0.63	 0.69	 0.75	 0.81	 0.87	

Th
ro
ug
hp

ut
	 (f
/c
)	

Injec3on	 load	 (f/c/r)	

Flexible	 2	 VC	 vs	 Base	 2	 VC	 -‐	 16	 flits/buffer	

Flex	 4	

Flex	 8	

Flex	 12	

Flex	 16	

Base	 4	

Base	 8	

Base	 12	

Base	 16	

Fig. 8. Throughput - 2 Virtual Channels and 16 flits per buffer.

utilization of buffers proposed by the original flexible router
and consequently enhanced its throughput and latency. Due to
the before mentioned improvements, the contention problem

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

0.
03

	
0.
06

	
0.
09

	
0.
12

	
0.
15

	
0.
18

	
0.
21

	
0.
24

	
0.
27

	
0.
3	

0.
33

	
0.
36

	
0.
39

	
0.
42

	
0.
45

	
0.
48

	
0.
51

	
0.
54

	
0.
57

	
0.
6	

0.
63

	
0.
66

	
0.
69

	
0.
72

	
0.
75

	
0.
78

	
0.
81

	
0.
84

	
0.
87

	
0.
9	

Th
ro
ug
hp

ut
	 (f
/c
)	

Injec3on	 load	 (f/c/r)	

Flexible	 4	 VC	 vs	 Base	 4	 VC	 -‐	 4	 flits/buffer	

Flex	 4	

Flex	 8	

Flex	 12	

Flex	 16	

Base	 4	

Base	 8	

Base	 12	

Base	 16	

Fig. 9. Throughput - 4 Virtual Channels and 4 flits per buffer.

0	

5	

10	

15	

20	

25	

0.
03
	

0.
06
	

0.
09
	

0.
12
	

0.
15
	

0.
18
	

0.
21
	

0.
24
	

0.
27
	

0.
3	

0.
33
	

0.
36
	

0.
39
	

0.
42
	

0.
45
	

0.
48
	

0.
51
	

0.
54
	

0.
57
	

0.
6	

0.
63
	

0.
66
	

0.
69
	

0.
72
	

0.
75
	

0.
78
	

0.
81
	

0.
84
	

0.
87
	

0.
9	

Th
ro
ug
hp

ut
	 (f
/c
)	

Injec3on	 load	 (f/c/r)	

Flex	 4	 VC	 vs	 Base	 4	 VC	 -‐	 8	 flits/buffer	

Flex	 4	

Flex	 8	

Flex	 12	

Flex	 16	

Base	 4	

Base	 8	

Base	 12	

Base	 16	

Fig. 10. Throughput - 4 Virtual Channels and 8 flits per buffer.

0	

5	

10	

15	

20	

25	

0.
03
	

0.
06
	

0.
09
	

0.
12
	

0.
15
	

0.
18
	

0.
21
	

0.
24
	

0.
27
	

0.
3	

0.
33
	

0.
36
	

0.
39
	

0.
42
	

0.
45
	

0.
48
	

0.
51
	

0.
54
	

0.
57
	

0.
6	

0.
63
	

0.
66
	

0.
69
	

0.
72
	

0.
75
	

0.
78
	

0.
81
	

0.
84
	

0.
87
	

0.
9	

Th
ro
ug
hp

ut
	 (f
/c
)	

Injec3on	 load	 (f/c/r)	

Flexible	 4	 VC	 vs	 Base	 4	 VC	 -‐	 16	 flits/buffer	

Flex	 4	

Flex	 8	

Flex	 12	

Flex	 16	

Base	 4	

Base	 8	

Base	 12	

Base	 16	

Fig. 11. Throughput - 4 Virtual Channels and 16 flits per buffer.

was smoothed and the performance was increased up to 21%
when buffers are small.

A flexible router was shown to be more efficient when
the resources of the network were limited and had similar
performance of the base router with double resources. Having
presented the achievable improvements done by the flexible
router, the new router architecture should be considered as an
alternative for the base router when the network lacks resources
when under heavy injection loads.

40Copyright (c) IARIA, 2014. ISBN: 978-1-61208-368-1

ICSNC 2014 : The Ninth International Conference on Systems and Networks Communications

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

Th
ro
ug
hp

ut
	 (f
/c
)	

Injec3on	 load	 (f/c/r)	

Flexilbe	 2VC	 vs	 Base	 4VC	 -‐	 Mesh	 8x8	

Flex	 4	

Flex	 8	

Flex	 12	

Flex	 16	

Base	 4	

Base	 8	

Base	 12	

Base	 16	

Fig. 12. Throughput - 2 Virtual Channels flexible and 4 Virtual Channels
base.

As future work, we intend to test new routing approaches,
traffic-patterns and workloads and traces from existing System-
on-Chip architectures.

ACKNOWLEDGMENT

The authors would like to thank Coordenação de
Aperfeiçoamento Pessoal de Nı́vel Superior (CAPES), Brazil,
and Japan Student Services Organization (JASSO) Foundation
for funding Israel M. Santos’ work.

REFERENCES

[1] L. Benini and G. D. Micheli, ”Networks on Chips: A New SoC
Paradigm,” IEEE Computer, vol. 35, pp. 70-79, 2002.

[2] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Milberg, and
D. Lindqvist, ”Network on chip: An architecture for billion transistor
era,” in Proceedings of the IEEE NorChip Conference, pp. 65-79, 2000.

[3] W. J. Dally and B. Towles, ”Route Packets, Not Wires: On-Chip
Interconnection Networks,” in Proceedings of the Design Automation
Conference (DAC), pp. 684-689, 2001.

[4] C. Xuning and L. S. Peh, ”Leakage power modeling and optimization
in interconnection networks”, in Proceedings of the International Sym-
posium on Low Power Electronics and Design (ISLPED), pp. 90-95,
2003.

[5] W. J. Dally and B. Towles, ”Principles and practices of interconnection
networks”, Morgan Kaufmann, 2004 .

[6] T. T. Ye, L. Benini, and G. D. Micheli, ”Analysis of power consumption
on switch fabrics in network routers,” in Proceedings of the 39th Design
Automation Conference (DAC), pp. 524-529, 2002.

[7] Duato, J. , A new theory of deadlock-free adaptive routing in wormhole
networks, IEEE Transactions on Parallel Distributed Systems, v. 4, n. 12,
pp. 13201331, 1993.

[8] M. S. Sayed, A. Shalaby, M. E.-Sayed, and V. Goulart, ”Flexible
router architecture for network-on-chip”. Computers & Mathematics with
Applications, pp. 13011310, 2012.

[9] M. S. Sayed, A. Shalaby, M. Ragab, M. E.-Sayed, and V. Goulart,
”Congestion mitigation using flexible router architecture for Network-on-
Chip”, Electronics, Communications and Computers (JEC-ECC), 2012
Japan-Egypt Conference on, pp.182-187, March, 2012.

[10] W. J. Dally and C. L. Seitz, ”The torus routing chip,”Journal of
Distributed Computing, vol 1(3), pp. 187-196, 1986.

[11] W. J. Dally, ”Virtual-Channel flow control”, in Proceedings of the 17th
Annual Internation Symposium on Computer Architecture (ISCA), pp.
60-68, 1990.

[12] L. Benini and and G. De Micheli, ”Networks on Chips: Technology
and Tools”, Morgan Kaufmann, 2006.

[13] M. J. Karol, M. G. Hluchyj, and S. P. Morgan, Input versus Output
queuing on a space-division packet switch, IEEE Trans. Communication.,
Vol. 35, no. 12, pp. 1347-1356, December, 1987.

[14] R.S. Ramanujam, V. Soteriou, B. Lin , and Li-S. Peh, ”Design of a High-
Throughput Distributed Shared-Buffer NoC Router”, Networks-on-Chip
(NOCS), pp. 69-78, May, 2010.

[15] R. S. Ramanujam, V. Soteriou, B. Lin , and Li-S. Peh, ”Extending the
Effective Throughput of NoCs With Distributed Shared-Buffer Routers”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, v.30(4), pp. 548-561, April, 2011.

[16] C. A. Nicopoulos, D.Park, J. Kin, N. Vijaykrishnan, M. S. Yousif,
R. Das Chita, ”ViChaR: A Dynamic Virtual Channel Regulator for
Network-on-Chip Routers”. 2006 39th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO06), pp. 333346, December,
2006.

[17] Y. Tamir and G.L. Frazier, ”High-performance multiqueue buffers for
VLSI communication switches”, in: Proceeding of the 15th Annual
International Symposium on Computer Architecture, ISCA, pp. 343354,
May, 1988.

[18] D. Matos, C. Concatto, F. Kastensmidt, L. Carro, A. Susin, and M.
Kreutz, ”Reconfigurable Routers for Low Power and High Performance”,
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pp.
2045-2057, September, 2010.

[19] C.J. Glass, and L.M. Ni, ”The turn model for adaptive routing”, in:
Proceeding of the 19th Annual International Symposium on Computer
Architecture, ISCA, pp. 278287, May, 1992.

[20] P.Abad, P.Prieto, L.Menezo, A.Colaso, V.Puente, and J.A. Gregorio,
”TOPAZ: An Open-Source Interconnection Network Simulator for Chip
Multiprocessors and Supercomputers”, Networks on Chip (NoCS), 2012
Sixth IEEE/ACM International Symposium on, pp. 99-106, May, 2012.

[21] H. El-Sayed, M. Ragab, M. S. Sayed., and V. Goulart, ”Hardware
Implementation and Evaluation of Flexible Router Architecture for
NoCs”, in Proc. of 20th IEEE Intl. Conf. on Electronics, Circuits and
Systems, pp. 621-624, December, 2013.

41Copyright (c) IARIA, 2014. ISBN: 978-1-61208-368-1

ICSNC 2014 : The Ninth International Conference on Systems and Networks Communications

