
Resilient Delay Sensitive Load Management in Environment Crisis Messaging

Systems

Ran Tao, Stefan Poslad, John Bigham

Dept. of Electronic Engineering and Computer Science

Queen Mary, University of London

London, UK

{ran.tao, stefan.poslad, john.bigham}@eecs.qmul.ac.uk

Abstract—Typical environment crisis messaging systems, e.g.,

those used in Tsunami Early Warning Systems, are open,

distributed, and heterogeneous. In such systems, Publish

Subscribe Message Oriented Middleware (PSMOM) is widely

deployed using message brokers to enable open and distributed

data publishers and subscribers to exchange raw and

processed sensor data, authority driven workflows, and

information generated by citizens. A key security challenge is

that such message brokers may suffer a Denial of Service (DoS)

attack, becoming overloaded and resulting in performance

degradation or even worse in a broker crash. This significantly

decreases the effectiveness of the system as vital messages may

face unexpected delays or become lost. In order to address this

challenge, a resilient workload management framework is

required to better redistribute the message exchange from

overloaded brokers to brokers with lesser loads. However,

existing workload management mechanisms are not suitable to

manage load in such environment crisis messaging systems as

they are not designed to handle message traffic that may have

different Quality of Service (QoS) requirements, e.g., different

end-to-end transmission latency requirements. These may

cause unexpected delays for sensitive messages or trigger

unnecessary load balancing. In this paper, we propose a

resilient delay sensitive workload management framework that

extends an existing state-of-the-art messaging system,

Publish/Subscribe Efficient Event Routing (PEER), by adding

support for workload allocation, a Queue Depth load metric,

and dynamic load thresholds, enabling end-to-end latency

guarantees and avoiding unnecessary load balancing. The

model has been validated in a simulation.

Keywords-PSMOM; Denial of Service attack; Workload

Management

I. INTRODUCTION

Modern environment crisis management systems, such as
Tsunami Early Warning Systems (EWS) follow a System-of-
System (SoS) framework that integrates various messaging
components and subsystems, e.g., different information
sources, processing services, and crisis simulation systems,
and takes into account the open, distributed, heterogeneous,
and collaborative nature of such systems. In such a SoS
framework, PSMOM is deployed as a messaging bus
because it allows components and subsystems to be
distributed on heterogeneous platforms and to communicate
asynchronously in a loosely coupled manner [1]. In addition,
QoS-aware policies can be used to help differentiate message

traffic in a PSMOM to allow different types of data, such as
raw and processed sensor data, service data, and simulation
data to be exchanged via inter-linked message brokers [13].
Figure 1 shows an example EWS framework based on
PSMOM (Messaging Bus) support. In this framework, “P”
are message publishers or pubs that label messages with
respect to different subjects and send these to message
Brokers “B”. “S” are subscribers or subs that request the
messages of interest to them and receive messages matched
to their interests via a message broker. The message
interaction in the system consists of the following. First, a
sensor data bus type broker acquires physical sensor data
from different sources, e.g., physical sensors, such as buoys
and tide gauges, and human sensed data via social networks
data sources, such as Twitter on mobile phones. Second, a
database (DB) receives and records the live sensor data and
publishes the historical sensor data via a processing message
broker or bus. Third, this processing bus receives both live
and historical sensor data, processes this data and publishes
the analysis results to a User Interface (UI). Fourth, the UI
receives and displays the analysis results. Fifth, a service
controller publishes service control messages to message
components when they need to change its performance to
adapt to a changing environment situation, e.g., to increase
the sensor data collection frequency in case the onset of a
crisis is detected. With the support of PSMOM, these system
components can be distributed in monitor centres at different
geographically locations and work collaboratively.

Figure 1. EWS with PSMOM Support

165Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

mailto:john.bigham%7D@eecs.qmul.ac.uk

A core security risk in such environment crisis messaging
systems is a Denial of Service attack [13] that significantly
reduces the efficiency and accuracy of an early warning
when message brokers become overloaded. This can be
caused by: rogue publishers that can flood the broker with
large fake messages, high-rate messages, and many useless
topics; rogue subscribers with a slow subscription speed can
cause messages to build up in the broker. A standard method
to avoid such problem is to use user authorization, i.e., only
authorized pubs and subs are legal and able to exchange
messages using the message broker. However, this blocks
the unauthorized publishers that could come online and
provide useful information to improve the ground truth at a
crisis. The above attacks can be modeled as a message burst
(rogue publisher attack) and a capacity reduction (rogue
subscriber attack). Workload management through an
improved broker resilience model, e.g., mirroring and load
balancing, is a feasible solution. Some forms of resilience,
such as mirroring, are quite standard and are already
supported in our resilient messaging system. Instead, in this
paper, we focus on a more challenging workload
management sub-system to provide load balancing for
message brokers in EWS.

Existing MOM workload management mechanisms are
not applicable in EWS because of the following limitations.
First, much work focuses on homogeneous broker models
where brokers are assumed to have the same processing
power and bandwidth. However, EWSs tend to be
heterogeneous because different system components and
subsystems have varying CPU, memory, disk size and
network bandwidth. Second, the heterogeneity of messages
is not fully considered. Although messages have been
divided into different subjects and assigned with different
sizes and rates, different QoS requirements for different
types of messages are ignored. This may trigger unnecessary
load balancing and result in a waste of system resources or
introduce unexpected delays to time-critical messages and
result in a delay for critical decision-making.

In this paper, we propose a delay sensitive workload
management solution for PSMOM used in EWS. This
solution extends the Publish/Subscribe Efficient Event
Routing (PEER) framework [1] by adding a workload
distribution mechanism that assigns message brokers with
least utilized load capacities to clients, a Queue Depth load
metric and dynamic thresholds, to provide latency guarantees
and to avoid unnecessary load balancing.

The remainder of the paper is organized as follows.
Section II describes related work. Section III shows the
system overview. Section IV describes the workload
management framework. Section V presents a validation of
the framework. Section VI reports the conclusions and
projects the future work.

II. RELATED WORK

Load balancing in distributed system has been widely
researched for over two decades [1, 4]. The goal of load-
balancing solutions is to efficiently distribute the workload to
the available resources so as to lower the risk of system
overload and to maintain system performance.

Load balancing solutions can be executed in different
layers: the network layer, operating system layer,
middleware layer, and application layer. The layer, where the
load balancing mechanisms can effectively detect and
balance the load, is the best place to deploy the solution. For
example, it would be ineffective to use a random DNS
redirection strategy in the network layer or perform process
migration in the OS layer for load balancing. This is because
these approaches cannot identify the relationship between
subscriptions nor estimate the load imposed by a
subscription onto a broker [1]. Therefore, we focus on the
load balancing strategy in the middleware layer as a
PSMOM system is middleware based.

In a PSMOM system, the broker workload depends on
the number and type of subscriptions served by this broker,
i.e., on message size and the incoming and outgoing
messages rates. Load balancing in a PSMOM is achieved by
migrating subscriptions from overloaded brokers to ones
with lesser loads.

Gupta et al. [6] proposed two types of load balancing in a
peer-to-peer content-based PS system [2, 12]. Load
balancing is achieved by splitting the peer with the heaviest
subscription load in half and propagating events to a newly
joint replicated peer. Chen and Schwan [7] proposed an
optimized overlay reconstruction algorithm that performs
load distribution based on CPU load. Load Balancing is
triggered only when clients find a broker that is closer than
its current connected broker. Subscription clustering [8, 9,
10, 11] is another solution that partitions a set of
subscriptions into a number of clusters in order to reduce the
overall network traffic. The above solutions can balance the
load but they are all designed for homogeneous systems.

Cheung et al. [1] proposed the PEER framework that
aims to overcome the above limitations for load balancing in
PSMOM. Its primary target is content-based PSMOM but
the author claims that it can also be applied to topic-based
PSMOM. In PEER, brokers have different processing
capabilities and Internet links. The load of a broker is
detected by periodically monitoring three middleware layer
load metrics: input utilization, matching delay, and output
utilization, and comparing the monitoring results of each
metric with two static thresholds. Among these metrics,
input utilization is determined by the quotient of the input
rate (Rinput) in messages per second over the matching rate
(Rmatching) in messages per second, i.e., Rinput/Rmatching;
matching delay is defined as the average time (in second)
spent in a broker to process matching; output utilization is
defined as the quotient of the used bandwidth (BWused) over
the total bandwidth (BWtotal), i.e., BWused/BWtotal. If
unbalanced load or overload is detected, a load balancing is
triggered and the system migrate subscriptions from the
offloading broker onto a load-accepting broker, while not
overloading it. An evaluation of the design compared to a
naive random load balancing approach shows that PEER is
capable of efficiently balancing load in a heterogeneous
messaging environment. However, PEER ignores the
heterogeneity of system applications, such as the different
end-to-end latency requirements, and therefore may trigger
unnecessary load balancing if all the applications are delay

166Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

tolerant or introduce unexpected delays for delay sensitive
applications. In addition, it does not distinguish the uplink
that is used to disseminate messages to subscribers and
downlink that is used to receive messages. The differences
between these may introduce different client migration
priorities in a load-balancing phase. Further, there is no pre-
emptive workload distribution mechanism in PEER. It
therefore requires extra work to migrate subscriber clients
from one (edge) broker to another based on the load
differences.

Our work extends the PEER framework by adding
support for workload allocation and more comprehensive
delay sensitive aware load detection, and redesigns the load
analysis and balancing mechanisms to fit the detection and
distribution mechanism.

III. SYSTEM OVERVIEW

In Figure 1, multiple message brokers (B) form a
messaging bus that works as an integrated message
exchange. In our design, these brokers are organized into a
Head-Edge Broker model that is motivated by the
architecture adopted by Google’s distributed
publish/subscribe system GooPS for use in MOM
deployments in real world applications [1]. Our design
targets enhancements to the Head-Edge Broker model
(Section III.A) by providing delay sensitive load
management supported with management agents (Section
III.B).

A. Head-Edge Broker Model

The Head-Edge broker model (H-E model) organizes the
brokers into a hierarchy structure, as shown in Figure 2.

Figure 2. PEER Head-Edge Broker Model

A broker with more than one neighbour broker is referred
to as a cluster-head broker (Bh), while a broker with only one
neighbour broker is referred to as a cluster-edge broker (Be).
A cluster-head broker together with its connected edge
brokers form a cluster. In the H-E model, publishers are only
served by Bh, and subscribers are only served by Be, so that,
in a cluster, messages are always routed from the Bh to Be.
Inter-cluster message dissemination is achieved by having a
Bh forwarding publication messages to the Bh of all matching
clusters.

B. Management Agent

To manage the workload for H-E model, a Management
Agent (MA) is allocated for each broker. The MA belonging
to the head broker is called HMA, while the one belonging to

the edge broker is named EMA. Both HMA and EMA
consist of an Overlay Manager (HOM and EOM
respectively), a Load Detector (HLD and ELD), and a Load
Analyser (HLA and ELA).

HOM receives the broker allocation request from all the
clients in the cluster and assigns brokers to the clients
according to the client’s source (a publisher or a subscriber),
the availability of the broker, and the distribution status of
existing clients. In addition, when load balancing is
triggered, HOM notifies selected clients to migrate from
original brokers to the new load-accepting brokers. What’s
more, HOM interacts with EMA to update the load
information of edge brokers, and interacts with HOM of
other clusters to share the cluster-based load information.
EOM updates the load status of the edge broker to HOM and
receives the load status of other edge brokers in the same
cluster from HOM. In addition, when load balancing is
triggered, EOM updates the available selected subscriptions
to the HOM. Both HOM and EOM work with its relevant
load analysers to generate an offloading client list that
contains the clients to be migrated from the overloaded
broker to the load-accepting broker when load balancing is
required.

HLD and ELD detect the load status, e.g., as a set of
fuzzy states, LOW, HIGH, and OVERLOAD, of the relevant
broker, i.e., HLD monitors the head broker and ELD
monitors edge brokers. Although the authors in [1] claim that
the head broker is less likely to be overloaded since it does
no matching work for subscribers, the head broker can
become overloaded when it reaches its maximum network
capacity whilst exchanging messages. So, HLD monitors the
network bandwidth used by the head broker and reports its
status to HOM when its load state changes. ELD does similar
work but it needs to monitor all the load metrics (see section
IV.B) and report this to the EOM. In addition, to get the
dynamic threshold, ELD periodically detects the
transmission latency between the edge broker and head
broker, between subscribers and edge brokers, and request
HLD to detect the transmission latency between publishers
and head brokers.

HLA and ELA analyse the load distribution for clients,
e.g., the Internet usage of individual client, store the
observations into a table and pass this to the relevant OM. In
addition, the clients in the overloaded broker are prioritized
for offloading when its load metric exceeds its threshold
otherwise making the broker become overloaded.

IV. LOAD MANAGEMENT FRAMEWORK

In this design, the workload management framework
consists of a workload distribution phase, a load detection
phase, and a load-balancing phase. In the workload
distribution phase, HOM allocates brokers to each new
subscriber based on the load status of the edge brokers and
the distribution of existing subscribers. In the load detection
phase, the load of the broker is periodically detected and the
change of the load status is updated and sent to its OM.
During the load balancing phase, a three step offloading
strategy is adopted, i.e., locating the load-accepting
broker(s), selecting subscriptions, and migrating the selected

167Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

subscriptions from the overloaded broker to the load-
accepting broker(s).

A. Workload Distribution

In practice, it is very important to avoid the OVERLOAD
problem by optimizing the workload distribution beforehand.
In this workload management framework, the workload
distribution process is designed using the following
principles:

 First, subscribers of the same topic are allocated to the
same broker to avoid extra network bandwidth usage, as
same messages are no longer routed to different edge
brokers.

 Second, topics that are highly correlated are allocated to
different brokers [5], as they may introduce a sudden
increase in broker load.

 Third, new subscriber clients are allocated to brokers
that have the least utilized load capacity that is
computed from all the load metrics (Section IV.B).

B. Load Detection

To accurately detect the load status of a broker, the load
metric and related thresholds need to be clarified. In the H-E
broker model, brokers are classified into a cluster-head
broker and cluster-edge broker, and different load metrics
and thresholds are allocated to the different types of brokers.

1) Load Metrics for Head Broker and Edge Broker
The main tasks of a Bh are: to route messages from

publishers and Bh of other clusters to the Be that serves
matched subscribers; to route messages from publishers to
the Bh of another clusters that serve matched subscribers. As
claimed in [1], a Bh is less likely to be overloaded for doing
the matching work as no subscribers connect to it. Therefore,
the load status of a Bh is mainly affected by the network
bandwidth usage. Table I lists the load metrics used for
cluster-head broker.

TABLE I. LOAD METRICS FOR THE HEAD BROKER

Metric Expression

Downlink Utilization Input-Rate / Downlink-Bandwidth

Uplink Utilization Output-Rate / Uplink-Bandwidth

Be serves all subscribers, and therefore does a lot more

matching work. So, the load matching costs need to be
monitored. In addition, since a guaranteed end-to-end
transmission delay is required, a Queue Depth metric that
measures the number of messages waiting in the output
queue and reflects the message waiting time in a broker is
introduced. Table II lists the load metrics used for cluster
edge broker.

TABLE II. LOAD METRICS FOR EDGE BROKER

Metric Expression

Downlink Utilization Input-Rate / Downlink-Bandwidth

Matching Utilization Input-Rate / Matching-Rate

Uplink Utilization Output-Rate / Uplink-Bandwidth

Queue Depth No. of Messages waiting in each Output Queue

2) Threshold Determination
We introduce two thresholds for each metric to describe

the load status of a broker. A lower threshold (THlow)
indicates whether or not a broker is available to accept more
loads, while a higher threshold (THhigh) indicates whether or
not load shifting is required. Based on the two thresholds, the
load status of a broker is divided into LOW LOAD, HIGH
LOAD, and OVERLOAD. The relationship between the
threshold and the load status is defined in Table III.

TABLE III. LOAD STATE & THRESHOLD

Condition Status

(All the metrics) < THlow LOW LOAD

THlow < (Any metric) & (All the metrics) < THhigh HIGH LOAD

THhigh < (Any metric) OVERLOAD

The higher value the HIGH LOAD threshold is set to

(e.g., 99% CPU Utilization), the more the system resources
can be used. However, a broker can become overloaded
before it can do any offloading. The magnitude of the
difference between the lower and higher threshold controls
the efficiency of load balancing and the level of the load
imbalance between brokers. For example, a small difference,
e.g., 1%, reduces the load imbalance between brokers but
makes brokers more likely to enter OVERLOAD from
HIGH LOAD, which may result in endless load balancing
cycles [1]. In addition, based on whether or not the load
metrics are affected by the delay sensitivity of the messages,
the load metrics are divided into two groups and assigned
with different thresholds.

Both uplink usage and downlink usage for Bh are set with
static thresholds, i.e., THlow = 0.9 and THhigh = 0.95. The
same thresholds are applied to the downlink utilization and
the matching utilization for the edge broker. These values are
retrieved from the threshold defined for PEER [1]. The
uplink usage and the Queue Depth metric of a Be are
considered separately as they affect the time of messages
waiting in the broker. In this design, only THlow is assigned
to the uplink utilization metric of the edge broker as it is only
used to indicate whether or not the broker is available for
more loads, and only THhigh is set for the Queue Depth metric
that is used to trigger load balancing with latency guarantees.
The value of THlow for the uplink utilization of the edge
broker is set the same as others, e.g., 0.9, while the value of
THhigh for Queue Depth of edge broker is calculated based on
the end-to-end latency requirements for different topics of
individual subscribers, the transmission delays, and the time
a message spent in brokers. The following procedure shows
the steps of determining the dynamic THhigh for Queue Depth
metric.

a) Transmission Time

The end-to-end latency requirement for subscriber “s” on
topic “T” is denoted as ts,T. The practical end-to-end latency
is calculated as the sum of the total transmission time
(ts,T_trans) and the total time spent in broker (ts,T_broker). With
the H-E model, the total transmission time is obtained based
on the transmission time from publishers to Bh (ts,T_p-h), from
Bh to Bh of matching clusters (ts,T_h-h), from Bh to Be of the

168Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

matched subscribers (ts,T_h-e), and from Be to subscribers
(ts,T_h-s), i.e., ts,T_trans = ts,T_p-h + ts,T_h-h + ts,T_h-e + ts,T_e-s. For the
case that publisher clients on the same topic are served by
different clusters, the transmission time obtained for different
publishers may have different values since the time cost from
publishers to Bh and from Bh to Bh may be different. In our
design, the maximum transmission time from all the obtained
transmission time is selected, denoted as ts,T_trans-sel.

b) Time in Broker

The total time spent in broker (ts,T_broker) consists of the
time spent in Bh that serves the publisher (ts,T_h), the time
spent in the remote Bh belonging to the matched clusters
(ts,T_remote-h), the Be that serves the matched subscribers (ts,T-e),
i.e., ts,T_broker = ts,T_h + ts,T_remote-h + ts,T_e. For each broker,
the time cost is the sum of the arrival time (ts,T_arrival),
departure time (ts,T_departure), the matching time (ts,T_matching)
and the time waiting in the queue (ts,T_waiting). Each of the
arrival and departure time is determined by the size of the
message and the uplink/downlink bandwidth, and the
matching time is mainly affected by the number of filters in
the matching process. The waiting time in a broker is
determined by the number of messages waiting in the queue
and the message output rate.

c) Dynamic Threshold

With the end-to-end transmission delay, the maximum
time that a message can spend in the output queue of broker
Be (ts,T-e) can be determined as ts,T – ts,T_trans-sel – ts,T_h –
ts,T_remote-h – ts,T_arrival-e – ts,T_matching-e – ts,T_departure-e. This
maximum-allowed time a message can spend in the output
queue varies due to the change of transmission time,
matching time and arrival/departure time. This maximum
waiting time in the message broker is used to compute the
higher threshold for Queue Depth metric for subscriber “s”
on topic “T”, i.e., the value of Queue Depth at a time ti
(QDs,T(ti)) must follow the condition defined in (1), where
λs.T(ti+1) and µs,T(ti+1) are the predicted message input rate and
output rate in message/s for time ti+1, and tLB is the average
time cost for load balancing that is mainly affected by the
notification message transmission time from HOM to
subscribers, e.g., from milliseconds to seconds, and the
analysis time, e.g., in milliseconds.

, , 1 , 1

,

, 1

() [() ()]

()

s T i s T i s T i

s T e LB

s T i

QD t t t
t t

t

 



 





 
  (1)

Therefore, the higher threshold for Queue Depth at time ti
(THs,T(ti)) is found with (2).

TH
s,T

(t
i
) = t

s,T-e
- t

LB()*m
s,T

(t
i+1

)

 - [l
s,T

(t
i+1

) - m
s,T

(t
i+1

)]
 (2)

C. Load Analysis

Load analysis is invoked when a broker is overloaded. A
load analyser aims to estimate and profile the load
distribution for individual clients served by the broker, and
prioritizes the offloading clients according to their
overloaded load metrics.

1) Load Estimation
Both ELA and HLA compute the network bandwidth

usage for individual clients based on the message exchange
rate and the bandwidth, e.g., the uplink usage of edge broker
for subscriber “s” on topic “T” is computed as the message
output rate (µs,T) / uplink bandwidth. In addition, ELA
estimates the matching utilization and records the Queue
Depth for each subscriber on each topic.

2) Priorities Offloading Client
In our design, the clients of the same topic are recognized

as a bundle in the offloading process, i.e., they are either
migrated together to the load-accepting broker or kept
together in the overloaded broker. Only if the load-accepting
broker cannot accept any bundle of clients, these clients are
dealt with separately.

In the head broker, the publishers of different topics can
be categorized into four groups: the publishers that only have
remote subscribers (Pr), the publishers that have both local
and remote subscribers (Pr-l), the publishers that only have
local subscribers (Pl), and the publishers that have no
subscribers (Pn). So, if the broker is in a downlink overload
state, the priority of all the publishers are Pn > Pr > Pr-l > Pl,
while if it is an uplink overload state, the priority relationship
becomes Pr > Pr-l > Pl > Pn. The difference between the two is
the location of Pn, because migrating publishers with no
subscribers cannot reduce the uplink utilization but only
reduce the downlink utilization.

In each edge broker, similar to the equivalent situation
with head brokers, the subscribers on different topics can be
categorized into Sr, Sr-l, Sl and Sn. In addition, for the Queue
Depth metric, as it does not relate to the locations of the
publishers, the subscribers are categorized into three groups:
subscribers without message waiting in the queue (Sempty),
subscribers with message waiting in the queue but not
overloaded (Sw-no), and subscribers of which the Queue
Depth metric is overloaded (Soverload). In all the groups above,
the subscribers are ordered based on its allowed waiting
time, i.e., the larger the waiting time, the higher the priority.
The relationship between subscribers is defined in Table IV.

TABLE IV. PRORITIES SUBSCRIBERS IN EDGE BROKER

Overload Metric Priority

Downlink Utilization
Sr > Sr-l > Sl > Sn.

Uplink Utilization

Matching Utilization Sn > Sr = Sr-l = Sl

Queue Depth Sempty > Sw-no > Soverload

D. Load Balancing

After the load analysis process, load balancing takes
place. As described in PEER, if a head broker becomes
overloaded, load balancing happens between head brokers in
different clusters by migrating publishers from an overloaded
head broker to head brokers with lesser loads. If instead, the
edge broker becomes overloaded, the load balancing first
takes place within a local cluster. Only if there is no
available load-accepting broker in the local cluster, i.e., no
broker is in the LOW LOAD state, or the available load-
accepting brokers have less load capacity than that required

169Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

by the overloaded broker to recover from OVERLOAD state,
is inter-domain load balancing invoked. All the load
balancing processes follow a similar three-step offloading
strategy, i.e., Load-Accepting Broker Locating, Client
Selection, and Client Migration. In this paper, intra-domain
load balancing between edge brokers is described below as
an example.

1) Load-Accepting Broker Locating
The EOM of an overloaded broker checks the load state

of brokers in the same domain to locate brokers in a LOW
LOAD state and sends a load balancing request to a HOM
with the candidate broker ID(s). The HOM records whenever
a broker is in a load-balancing phase and sends requests to
all candidate brokers. The EOMs of these candidate brokers
report the values of all the load metrics to the HOM. And
when HOM receives this information, it will in turn forward
to the requesting EOM.

2) Client Selection
Based on the results of step 1, EOM of the overloaded

broker prioritizes the candidate brokers based on the value of
the overloaded load metric of the broker, i.e., the broker with
the lowest value of the load metric has the highest priority to
accept the load. In addition, from the prioritized client list,
EOM retrieves the clients and estimates the load influence to
the load-accepting broker for all the load metrics, e.g., for the
uplink bandwidth usage, the influence is estimated as the
(input rate of the client / the uplink bandwidth of the load-
accepting broker), which means that if the clients are
migrated to the load-accepting broker, the uplink usage will
be increased by this amount. So, in the case that the client
does not overload the load-accepting broker, it is selected
and put in an offloading list. The selection process continues
until the estimated load status of the overload broker is not
OVERLOAD any more. The offloading list is then sent to
the HOM. HOM notifies the EOMs of the selected edge
brokers to be in a load-balancing phase.

3) Client Migration
In the last step, HOM sends messages to all the clients

that are in the offloading list, asking them to start a message
exchange via the load-accepting broker(s). All the clients
then set up connection(s) to the load-accepting broker(s) and
drop the connection to the offloading broker except for
subscribers that have messages waiting in the queue. In this
case, the subscribers will drop the connections only when all
the messages waiting in the overloaded broker are received.
In addition, a message is sent by each client to HOM to
confirm the completion of the migration process. HOM
counts the number of clients that have completed the
migration away from the overloaded broker. There is also a
default timeout for the migration so that the load-balancing
phase can stop even if some clients stop the message
exchange during the migration. When all the clients
complete the migration or the waiting time has timed out, the
HOM notifies all the EOMs involved in the load-balancing
phase that the load balancing is complete.

V. VALIDATION

We validate our framework by comparing our load
balancing mechanism to that designed for the PEER
framework. In this paper, a local load balancing triggered by
Queue Depth metric is given as an example. The setup used
for the local load balancing experiment involves four edge
brokers (B0, B1, B2, and B3) connected to one cluster-head
broker (Bh) to form a star topology, which forms a
messaging bus to exchange information in an EWS. The
simulation environment specification is listed in Table V.
For each broker, the uplink bandwidth and downlink
bandwidth is the same and is static during the experiment so
that the broker-to-broker transmission latency will not
change, e.g., is set at 0.1s. In addition, we assume that the
client to broker transmission latency is also constant during
the experiment, e.g., 0.2s.

TABLE V. SIMULATION EXPERIMENT SPECIFICATION

Broker

ID

Specifications

CPU (MHz) Memory (MB) Bandwidth (Mbps)

Bh 2000 64 20

B0 800 32 6.5

B1 1500 32 8

B2 1300 64 5

B3 1000 64 8

Messages for 15 topics are published, i.e., in the EWS
system, 15 types of data are exchanged through the
messaging bus. The number of publishers for each topic is a
random number, e.g., 1-5. Each publisher publishes
messages in an average rate of 50 message/s. The number of
subscribers for each topic is a random number, e.g., 1-8. In
the experiment, we assume that subscribers of different
topics have different end-to-end latency requirements but the
subscribers of the same topic have the same requirement.
The average message size changes for different topics, e.g.,
from 200 Byte to 1KB. Table VI gives an example of how
topics are specified in one experiment.

TABLE VI. TOPIC SPECIFICATIONS IN ONE EXPERIMENT

Topic
ID

No. of
Pubs

No. of
Subs

Latency
Requirement (s)

Msg Size
(Byte)

1 1 8 1.8 200

2 2 2 1.7 800

3 5 1 1.6 1000

4 4 2 1.5 400

5 3 3 1.4 200

6 1 1 1.3 400

7 2 5 1.2 300

8 2 7 1.1 400

9 5 2 1.0 500

10 4 4 0.9 200

11 1 5 30 600

12 3 2 60 400

13 1 6 40 200

14 2 3 50 300

15 4 5 100 200

The reason to use a random number is to allow the broker
loads to be varied in different experiments to improve the
validation. On the other hand, the reason to have such a

170Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

range, e.g., 1-5 for publisher, is to lower the chance that all
the brokers become overloaded since in that case load
balancing is not useful - more brokers are required.

According to the end-to-end transmission latency
requirements and the assumptions for the static client-to-
broker and broker-to-broker transmission delay, the
maximum time of a message can be held in a broker can be
determined, e.g., for topic 1, ttopic1-broker = 1.8 – 0.2 – 0.1 =
1.5s. These values are used in experiment to determine
higher threshold for the Queue Depth metric.

In experiment start-up, all brokers are instantiated
simultaneously with the MAs. After that, all publishers
register and connect to head brokers, and MAs start to
measure the load status of a broker and the broker-to-broker
transmission delays. Each experiment is divided into three
phases: 1) client distribution phase: 1s – 15s, subscribers of
each topic in EWS are registered and distributed to the
available brokers in each second; 2) equilibrium phase: 15s -
29s, both publishers and subscribers in EWS are running
without message bursts and client joining or leaving; 3)
message burst simulation and load balancing phase: at 30s, a
burst that simulates a message flood when a crisis detected is
generated by doubling the speed of publishing 7 topics (e.g.,
topic 2, 4, 5,..., 12, 14); after 31s, up to the end of the
experiment, load balancing will be triggered if any load
metric exceeds its higher threshold. The reason to set time
slots to these values is to highlight the changes in each stage
of the simulation. The experiment can be easily expanded by
1) adding more brokers, publishers and subscribers; 2)
increasing the time intervals for each phase; 3) generating
more message bursts.

Figure 3 shows the simulation results for the uplink
utilization in percent (y) against time in second (x). The
value above 100% indicates that the output queue starts to
build up.

Figure 3. Simulation Result for Uplink Utilization

After the workload distribution, broker b1 serves topics
1, 3, 8, and 14 (refer to the 4 inflection points of b1 in the
topic distribution stage). In addition, for b1, the output queue
starts to build up after a message burst (30s) as the uplink
utilization exceeds 100%; 4s after this (34s), the queue depth
value of topic 8 exceeds the THhigh, and thus load balancing
is triggered. Topic 1 in b1 is migrated to broker b0.
Therefore, broker b1 has more bandwidth to clear the
messages for topic 8 in the queue (from 34s – 62s, a
balancing stage). After 62s, the message queue for topic 8 in
broker b1 is removed. The uplink utilizations for all the
brokers are below 100%. Figure 4 shows the Queue Depth,

i.e., number of messages in the output queue, for topic 8 in
broker b1.

Figure 4. Queue Depth for Topic 8 in broker b1

When the same simulation is applied using PEER load
balancing mechanism, the results are shown in Figure 5.

0	

20	

40	

60	

80	

100	

120	

140	

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	

O
u
tp
u
t	
U

liz
a

o
n
	(
%
)

Time	(s)

Load	Balancing	With	PEER

b0	

b1	

b2	

b3	

Load	Balancing	Triggered Topic	Distribu on	

	
Equilibrium	

Burst	

Figure 5. Simulation Result for Uplink Utilization for PEER

In the topic distribution phase (1s-15s) of PEER, all the
subscribers are initially connected to broker b1 and migrated
to other brokers (e.g., b2) based on the load differences (as
there is no work distribution mechanism in their work). In
addition, after a burst (30s), as the delay requirements for
topics are ignored, unnecessary load balancing takes place
between broker b0 and b2 (at time 31s), that results in an
additional load balancing to balance the two at time 33s.
Comparing Figure 3 to Figure 5, the differences indicate that
our proposed delay-aware load balancing method is more
effective in workload distribution, and can avoid unnecessary
load balancing as the delay requirements are considered.

VI. CONCLUSION AND FUTURE WORK

In this paper, an analysis of existing load management
solutions for PSMOM was presented. Existing solutions
ignored the end-to-end delay requirements, which may
introduce unexpected delays for delay sensitive messages or
trigger unnecessary load balancing that introduces extra
overhead to the system, and therefore they were not
applicable for PSMOM in EWS. To address the above
limitations, we proposed a delay sensitive load management
solution that extends an existing state-of-the-art, PEER
framework [1]. In addition, an intra-cluster load balancing
example was presented with comparison to PEER and the
results showed that the proposed framework is aware of the
delay requirements, and has the potential to efficiently solve
the broker overload problem in a LAN-based setting.

The framework was implemented with Apache Qpid
[14], an open source AMQP based MOM product. In the

171Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

future, real sensor data from the TRIDEC project will be
adopted to evaluate the framework in a WAN-based setting.

ACKNOWLEDGMENT

This work is supported in part by the EU FP7 funded
project TRIDEC (FP7-258723-TRIDEC) and by a PhD
studentship at Queen Mary University of London.

REFERENCES

[1] A. K. Y. Cheung and H.-A. Jacobsen, “Load Balancing Content-
based Publish/Subscribe Systems”, ACM Transactions on Computer
Systems, Vol. 28, Issue 4, Article 9, 55 pages, Dec. 2010, doi:
10.1145/1880018.1880020.

[2] I. Aekaterinidis and P. Triantafillou, “PastryStrings: A
Comprehensive Content-Based Publish/Subscribe DHT Network”,
26th IEEE International Conference on Distributed Computing
Systems (ICDCS 06), Jul. 2006, pp. 23-32,
doi:10.1109/ICDCS.2006.63.

[3] P. Tran and P. Greenfield, “Behavior and Performance of Message-
Oriented Middleware Systems”, Proc. 22nd International Conference
on Distributed Computing Systems Workshops (ICDCSW 02), Jul.
2002, pp. 645-650, doi:10.1109/ICDCSW.2002.1030842.

[4] A. K. Y. Cheung and H.-A. Jacobsen, “Dynamic Load Balancing in
Distributed Content-based Publish/Subscribe”, Proc. 7th
ACM/IFIP/USENIX International Conference on Middleware
(Middleware 06), Nov. 2006, pp. 141-161.

[5] J. Wang, J. Bigham, and J. Wu, “Enhance Resilience and QoS
Awareness in Message Oriented Middleware for Mission Critical
Applications”, 8th International Conference on Information
Technology: New Generations (ITNG 11), Apr. 2011, pp. 677-682,
doi: 10.1109/ITNG.2011.120.

[6] A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi, “Meghdoot:
Content-based Publish/Subscribe over P2P Network”, Proc. 5th

ACM/IFIP/USEaNIX International Conference on Middleware
(Middleware 04), Oct. 2004, pp. 254-273.

[7] Y. Chen and K. Schwan, “Opportunistic Overlays: Efficient Content
Delivery in Mobile Ad Hoc Networks”, Proc. 6th
ACM/IFIP/USENIX International Conference on Middleware
(Middleware 05), Nov. 2005, pp. 354-374, doi:
10.1007/11587552_18.

[8] E. Casalicchio and F. Morabito, “Distributed Subscriptions Clustering
with Limited Knowledge Sharing for Content-Based
Publish/Subscribe Systems”, 6th IEEE International Symposium on
Network Computing and Applications (NCA 07), Jul. 2007, pp. 105-
112, doi: 10.1109/NCA.2007.16.

[9] A. Riabov, Z. Liu, J. L. Wolf, P. S. Yu, and L. Zhang, “Clustering
Algorithms for Content-Based Publication-Subscription Systems”,
Proc. 22nd International Conference on Distributed Computing
Systems (ICDCS 02), May 2002, pp. 133-142,
doi:10.1109/ICDCS.2002.1022250.

[10] A. Riabov, Z. Liu, J. L. Wolf, P. S. Yu, and Li Zhang, “New
Algorithms for Content-Based Publication-Subscription Systems”,
Proc. 23rd International Conference on Distributed Computing
Systems (ICDCS 03), May 2003, pp. 678-686, doi:
10.1109/ICDCS.2003.1203519.

[11] T. Wong, R. H. Katz, and S. McCanne, “An Evaluation of Preference
Clustering in Large-scale Multicast Applications”, 9th IEEE
International Conference on Computer Communications (INFOCOM
00), Mar. 2000, pp. 451-460, doi:10.1109/INFCOM.2000.832218.

[12] Y. Zhu, “Ferry: A P2P-Based Architecture for Content-Based
Publish/Subscribe Services”, IEEE Transactions on Parallel and
Distributed Systems, Vol. 18, May 2007, pp. 672-685,
doi:10.1109/TPDS.2007.1012.

[13] F. Paganelli, G. Vannuccini, D. Parlanti, D. Giuli, and P. Cianchi,
“GEMOM Middleware Self-healing and Fault-tolerance: a Highway
Tolling Case Study,” The Sixth International Conference on Systems
and Networks Communications (ICSNC 11), Oct. 2011, pp. 136-142.

[14] Apache Qpid, Official Web Page, http://qpid.apache.org (last access
date: September 24th, 2013)

172Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

http://qpid.apache.org/

