
Architecture for Platform- and Hardware-independent Mesh Networks

How to unify the channels

Sebastian Damm, Michael Rahier, Thomas Ritz, Thomas Schäfer

Mobile Media and Communication Lab, FH Aachen

Aachen, Germany

s.damm@fh-aachen.de

rahier@fh-aachen.de

ritz@fh-aachen.de

thomas.schaefer@alumni.fh-aachen.de

Abstract—This paper will prove that mesh networks among

different platforms and hardware channels can help to channel

valuable information even if public telecommunication

infrastructure is not available due to arbitrary reasons.

Therefore, results of a simulation for mesh networks on mass

events will be provided, followed by the developed architecture

and an outlook on future research. The developed architecture

is currently being implemented and field tested on mass events.

Keywords-mesh networks; platform independence; mobile

software.

I. INTRODUCTION

On mass events like music festivals, the cellular
reception is often insufficient because Global System for
Mobile Communications (GSM) cells tend to be overloaded.
Especially in terms of security, this is a serious issue, as
people might not be able to communicate with rescue forces.
This can lead to catastrophes like the mass panic on the
German Love Parade in 2010 where 21 people died. During
investigation of this event, crowd scientist G. K. Still pointed
out that missing communication was one of the key factors
for what happened [1].

Nowadays, we are dealing with plenty of mobile hard-
and software platforms like iOS, Android, Windows Phone
and others. These platforms use all different kinds of
connection channels such as Bluetooth, WiFi(-Direct), NFC,
etc. That means that there are several possibilities to
compensate the mentioned lack of connectivity. Mesh
networks can be a solution where people keep connected on
such mass events, without having any connection to a
cellular network. With support of some well-placed
infrastructure like access points, relevant data could be
pushed into the crowd and then be routed or broadcasted to
other persons from device to device (Fig. 1).

Figure 1: Illustration of information flow in the crowd

Unfortunately, there is no or just few integration of the
different communication channels, even within single
platforms, and there are even more difficulties when trying
to interconnect different platforms. To negotiate these
obstacles, this paper presents a platform and hardware-
independent architecture that integrates all different network
types into an abstract layer. This architecture is currently
being implemented as a java base library, which is used on
Android. There is also an implementation for Windows
Phone. Further research on the possibility of an iOS
implementation is ongoing. The main goal is to enable
automatic interconnectivity between different mobile
platforms without the need of user interaction and regardless
to the used communication technology. This will provide
better ways for promoters of mass events to reach their
guests in case of emergency.

Following to this introduction, the paper will show related
work in the field of mesh networks. In section three, a
simulation will be presented, showing the possibility of
creating a mesh network in the scenario of a mass event.
After the general possibility is proven, an architecture for
hardware- and software-independent mesh networks will be
introduced in section four, followed by a conclusion and
outlook to future research.

II. RELATED WORK

The research project “iWave” (information waves on
mass events) addresses the problem of missing or poor
connectivity on mass events. No connection means no ability
to communicate in security related issues like mass panic,
severe weather or just injuries. The architecture proposed in
this article is part of ongoing research, where a reusable
communicator component to span mesh networks will be
implemented on different mobile platforms.

One project providing similar functionality is the
middleware “Beddernet” [2]. It is capable of spanning mesh
networks using Bluetooth. Unfortunately, there are several
downsides of Beddernet. First, it is limited to Android and
not available for other platforms. Second, it is using
Bluetooth as the only channel, leaving out WiFi and such.
The third problem is that the last change to the project was
committed in August 2012 (and before that in July 2010); so,
it can be assumed the project is not maintained anymore.

131Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

Another project dealing with the mentioned issues is the
MANET project [3]. It uses sensor nodes based on the
ZigBee standard (based on IEEE 802.15.4) [4]. A huge
disadvantage is the use of special sensor nodes instead of the
built in hardware in smartphones that people already carry
around.

The University of Darmstadt proposed an approach to use
WiFi routers in emergency cases to span ad-hoc networks
[5]. This is suitable for communication within cities, but not
transferrable to mass events, as the area is quite limited but
crowded with lots of people with not as many routers as in
an urban environment.

All these projects just address one communication
channel; they are not updated anymore and/or need specific
hardware. Currently, there is no project that abstracts from
the hardware and unifies all different kinds of channels
provided by modern smartphone hardware to create a
communication layer that is transparent to the user. This fact
raises the question, if it is possible to form a mesh network in
such environments in general.

III. SIMULATION OF MESH NETWORKS

To answer the question raised in the previous paragraph, the

following simulation was implemented.

A. Simulation set-up

To evaluate if spanning a mesh network in an environment

like a music festival is possible, a simulation of the scenario

was conducted using the following steps:

1. Creating a model of the area

2. Generating and distributing nodes

3. Generating edges

4. Analysis

In the first step, a model of the whole area is created. It is

divided into sub-areas with varying priorities for the density

of people. For example, the area in front of a stage tends to

be more crowded than a tent with merchandising. An

example for an area with different priorities can be found in

Figure 2. The upper left corner will have two times as much

people in it and the lower right six times more than the rest

of the area.

Figure 2: Example for an area model

Second step is to generate nodes which is equivalent to an

amount of people. To achieve uniform distribution of the

nodes in each subarea, X- and Y- coordinates of a node are

represented by random numbers between zero and

Xmax/Ymax.

Now, the priorities of each area are used as the

probabilities for a Bernouilli experiment [6]. The result of

this experiment determines whether or not a randomly

generated node is added to the subarea.

Figure 3: Example plot of distributed nodes

In Fig. 3, the distribution of nodes in an area where the

priority on the left is four times as big as in the right half is

shown.

After that, the generation of edges between the nodes

takes place in the third step. Target of this step is to find out,

how many mesh networks could possibly exist within the

whole area. To create a mesh network, specific parameters

of a communication interface need to be taken into

consideration, such as maximum range and maximum

number of connections per interface. The range can either

be set to a fixed value like the maximum range in the device

specification or vary within a certain codomain. The first

will create optimistic and the latter pessimistic results. It

turns out that the pessimistic results are more realistic, as

first tests for Bluetooth pointed out, that with only few

people the maximum range of 100m can be reached, but

within a huge crowd with lots of devices interfering, it can

only be a few meters. Using these values, the approach is as

follows:

Starting from a random node, it first will be checked, if

this node has reached its maximum connection count. When

there are still connections available, the node will be

compared to its neighbors. If a neighbor is within the

interfaces range and also has connections available, an edge

between the two nodes will be created. This will be repeated

until there is either no node with free connections left, or all

nodes are processed. Output of the third step is an

undirected graph.

The final step is to analyze the resulting graph. Using

repeated breadth first search until all nodes are marked, it

can be determined of how many connected components the

graph consists of. This represents the number of possible

mesh networks in the modelled area depending on the

number of people and specified device parameters.

To receive meaningful results, 22 iterations from 400 to

1500 nodes with increments of 50 were realized. Due to the

fact that nodes are placed randomly within the areas, each

iteration was executed 10000 times to get good average

values. We considered a connection count of seven (active)

connections for Bluetooth and an optimistic range of 50m

132Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

(half of the specified maximum). The results for a model

area of the German music festival “Das Fest” [7] will follow

in the next section.

B. Results and Discussion

The probability of connecting all nodes to one single

mesh network raises with the number of nodes. Above 1000

nodes, the chance is higher than 90% and gets close to

100% for more than 1300 nodes. Even with only 400 nodes,

there are not much more than two separated networks and

just around one node without any connection. These

numbers lower drastically with more nodes added to the

area. A reason, why a full connection of all nodes is not

possible is, that the maximum number of connections for

each node will be reached at some point.

The values of the optimistic simulation changed

drastically if the range is changed to dynamic values

between 5m to 100m, depending on the density of

people/devices in an area:

Figure 4: Probability of a single mesh network / Number of networks

As Fig. 4 shows, after a raising (but in comparison still

low) probability, it decreases significant for more than 500

nodes and almost reaches 0 for 1200. The number of mesh

networks will raise up to 9.5 for a number of 1500 nodes.

The results of both simulations show, that it is possible to

create mesh networks within mass events. Even though it is

likely to get more than one network, it should be possible to

compensate this using only little, well placed infrastructure

to connect the different subnets.

This first simulation focused on Bluetooth, but it can be

easily adapted to WiFi(-Direct) by changing number of

connections and range. Further results are expected within a

short timeframe.

IV. A PLATFORM- AND HARDWARE-INDEPENDENT

ARCHITECTURE

As shown in related work, there is no real treat to the current

issues, but as seen above, the possibility to reach many

people on a mass event using mesh networks is given.

Therefore, a new architecture for the implementation of

mobile mesh networks will be introduced. After pointing out

the requirements for such architecture, the different layers

will be explained following by an overview of the complete

architecture.

A. Claims to the architecture

Goal for the architecture is to abstract hardware and
software-platform of mobile devices and enable automatic
connection and routing between these. All higher layers
should just know, there is a way to communicate, regardless,
which specific one it is.

Each component of the architecture should be
encapsulated and separated strictly from other components
so that the architecture keeps being flexible and
customizable without high efforts. The routing e.g. should
not correlate with any hardware specific implementations so
that a new routing algorithm can be integrated, without
touching other code but the router itself.

Finally, the whole architecture and its implementations
should be easy to integrate into mobile apps by providing a
well-defined interface with just few methods and events.

B. Architecture Layers

The architecture consists of four layers that are
independent from each other and only communicate via
messages/events and it provides an interface which
encapsulates all layers. Thus, each layer can be implemented
separately and exchanged by different implementations.

The bottom layer is the datalink layer. It contains all
hardware specific code and manages the connections for the
different channels. The connector components for each
datalink automatically search for available peers and try to
connect to them. Once a connection is established, the IO-
Stream will be passed to the next layer - the Local Peer
Manager.

This layer holds all used datalinks and names for the
peers. From here on, the system only deals with names and
does not care about which hardware channel is used
anymore. Instead it just receives the given streams and
forwards them to the Message Broker.

The Message Broker is responsible for parsing incoming
byte streams and distinguishing between routing messages
and text messages. Routing messages will be deserialized
and handed to the routing layer to control the message flow.
Text messages will be handed to the router without being
touched.

Currently Ad-hoc On-Demand Distance Vector (AODV)
[8] routing is used; but, due to the independence of the
layers, it could easily be exchanged with Destination-
Sequenced Distance Vector (DSDV) [9] or any other routing
protocol.

The iWave Communicator surrounds the layers of the
whole architecture as a façade. It provides simple
functionality to control and reuse the architecture, such as
events for new connections and disconnections, listing all
available peers as well as methods to send messages or
broadcast them to the whole network.

After introducing all layers and components, the

following Fig. 5 will provide an overview over the complete

architecture and coherences.

133Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

Figure 5: Architecture overview

The given architecture is currently under evaluation and first

implementations will be tested soon.

V. CONCLUSIONS

After introducing the need for a hard- and software

independent architecture and taking a look at existing

approaches it was proven in a simulation, that it is possible

to create mesh networks in environments of mass events.

Finally, this paper introduced a hard- and software

independent architecture to be used on all mobile platforms

for this purpose.
First implementations of this architecture on Android and

Windows Phone have shown that current mobile platforms
are all more or less restricted when it comes to
interconnectivity. This makes it hard to achieve the goal of
the architecture being totally independent of the platforms.

Android seems to have the fewest restrictions right now.

It is able to initiate outgoing as well as accepting incoming

connections. Using “InsecureBluetooth” it is even possible

to connect two devices without the need of manually pairing

the devices, if they are running the same app. For WiFi-

Direct there are workarounds to avoid the need for user

interaction via hidden API calls and there is also an ongoing

discussion of providing an official API call to do so [10].

Windows Phone 7 does not allow to control Bluetooth

programmatically at all and WiFi-Direct connections are

just allowed outgoing. Windows Phone 8 does not allow any

incoming Bluetooth/WiFi connections from non-Windows

devices. However, the Phone 8 SDK contains a class called

PeerFinder [11] to automate search and connection between

two Windows Phone devices at least via Bluetooth. Even

though it also contains a property “AllowWifiDirect”, this is

not supported so far [12].

The possibilities for iOS are still under evaluation and

while writing this paper, Apple announced iOS7 [13] which

brings a new framework called “Multipeer Connectivity

Framework”. It is supposed to enable ad-hoc connections

between iOS devices. Unfortunately, it seems like this will

not work between iOS and other platforms.

VI. OUTLOOK

Due to the mentioned restrictions, further research has to

be done to work around these issues and provide

connectivity between all different platforms. The vendors

should open up their platforms to developers a little more

because especially for security related messaging, meshed

networks could be ideal. There is clearly the need for a

common API and a standardized message format to enable

this seamless connectivity across platforms.

After promising results in a lab environment, the first

Bluetooth implementation of the proposed architecture was

field tested in July 2013 at the music festival “Das Fest” in

Karlsruhe, Germany [7] and the collected data is currently

being analyzed.

ACKNOWLEDGMENT

Thanks to the Federal Ministry of Education and
Research for supporting the project “iWave” (program:
“Central Innovation Program SME”, ref. no.
KF2457707ED2).

REFERENCES

[1] G. K. Still, “Duisburg - 24th July 2010 Love Parade Incident -
Expert Report,” FIMA Bucks New University, Dec. 2011.

[2] R. Gohs, S. Gunnarsson, and A. Glenstrup, “Beddernet:
Application-Level Platform-Agnostic MANETs”, in LNCS,
Distributed Applications and Interoperable Systems, P. Felber
and R. Rouvoy, Eds.: Springer, 2011, pp. 165-178.

[3] Forschungszentrum Informatik, MANET Projekt. Available:
http://www.manet-projekt.de Retreived: 10.08.2013.

[4] S. Farahani, ZigBee Wireless Networks and Transceivers.
Newton, MA, USA: Newnes, 2008.

[5] K. Panitzek et al., “Can We Use Your Router, Please?:
Benefits and Implications of an Emergency Switch for
Wireless Routers,” Int. Journal of Information Systems for
Crisis Response and Management, vol. 4, 2012, pp. 59–70.

[6] J. V. Uspensky, Introduction to mathematical probability.
New York etc: McGraw-Hill, 1937.

[7] Das Fest GmbH, Das Fest - Official Website. Available:
http://www.dasfest.net. Retreived 08, 2013.

[8] C. Perkins, E. Belding-Royer, and S. Das, Ad hoc On-
Demand Distance Vector (AODV) Routing. US: RFC Editor.

[9] C. E. Perkins and P. Bhagwat, “Highly dynamic Destination-
Sequenced Distance-Vector routing (DSDV) for mobile
computers,” SIGCOMM Comput. Commun. Rev, vol. 24, no.
4, 1994, pp. 234–244.

[10] Google, Issue 30880: Wi-Fi Direct API for connection
acceptance. Available: https://code.google.com/p/android/
issues/detail?id=30880. Retreived: 10.08.2013.

[11] Microsoft, PeerFinder Class. Available: http://msdn.microsoft
.com/en-us/library/windows/apps/windows.networking.
proximity.peerfinder. Retreived: 10.08.2013.

[12] Microsoft, PeerFinder.AllowWiFiDirect. Available:
http://msdn.microsoft.com/en-
us/library/windows/apps/windows.networking.proximity.peer
finder.allowwifidirect. Retreived:10.08.2013.

[13] Apple Inc, iOS 7 beta for Developers. Available:
https://developer.apple.com/ios7/. Retreived: 10.08.2013.

134Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

http://www.manet-projekt.de/
https://code.google.com/p/android/issues/detail?id=30880
https://code.google.com/p/android/issues/detail?id=30880

