
Towards Automating Mobile Cloud Computing
Offloading Decisions: An Experimental Approach

Roberto Beraldi, Khalil Massri
Computer and System Science Department

La Sapienza University of Rome
Rome, Italy

{beraldi, massri}@dis.uniroma1.it

Abderrahmen Mtibaa, Hussein Alnuweiri
Department of Electrical and Computer Engineering

Texas A&M University
Doha, Qatar

{amtibaa, alnuweiri}@tamu.edu

Abstract—Mobile applications require more and more re-
sources to be able to execute tasks on a single device, despite the
fact that mobile devices are getting better capabilities. This has
been addressed through several proposals for efficient computa-
tion offloading from mobile devices to remote cloud resources or
closely located computing resources known as cloudlets. In this
paper we adopt a experimental driven approach to highlight the
offloading tradeoffs. We show that rather than always offloading
tasks to a remote machine, running particular tasks locally can
be more advantageous. We propose a novel generic architecture
that can be integrated to any mobile cloud computing application
in order to automate the offloading decision and help these
applications to improve their response time while minimizing
the overall energy consumed by the mobile device.

Index Terms—Mobile Cloud Computing, Chess Game, Android
Experimentation.

I. INTRODUCTION

Mobile devices are increasingly utilized beyond simple
connectivity for services that require more complex processing
and capabilities. These include pattern recognition to aid in
identifying snippets of audio or recognizing images, reality
augmentation to enhance our daily lives, collaborative appli-
cations that enhance distributed decision making, planning and
coordination. These applications are already in ubiquitous use
today, others are still prototypes awaiting the next generational
change in device capability and connectivity.

Cloud computing, in general, is reshaping the design and
implementation of today’s software applications. These appli-
cations are designed originally for desktops that are always
connected to the Internet. While traditional cloud applications
has been quite successful, to-date it suffers from a number
of shortcomings especially with the presence of wireless
communication at the edge. Shortcomings include the high
latency and energy consumption caused by the intermittent
aspect of wireless networks, which makes executing tasks
locally more advantageous in certain circumstances.

In this paper, we adopt an experimental based approach
in order to highlight the need of an automated offloading
mechanism which decide whether a given task should run
locally or remotely at the cloud. We propose a generic middle-
ware architecture that can be plugged into any mobile cloud
computing (MCC) application. For a specific task, based on
the task characteristics and device capabilities, our architecture

decides whether the task should be offloaded to a distant cloud
or run locally on the device itself. We then implement a chess
game as prototyping mobile application in order to identify
under which circumstances would migrating be advantageous.
We used the chess game as a real testbed environment to
identify all the factors that help make an efficient offloading
decision with respect to users’ preferences or minimizing the
overall resources usage.

The rest of this paper is organized as follows. Section
2 briefly discusses work related to our research. In Section
3 we describe the design of our generic architecture for
mobile cloud computing applications. Section 4 describes our
experimental platform. Section 5 presents the results from an
experimental evaluation. Section 6 summarizes our findings
and discusses our future work agenda in this area.

II. RELATED WORK

Leveraging mobile networking and cloud computing attracts
many researchers nowadays [4]. [6] was one of the earliest
solutions for dynamic partitioning among mobile computers
and a fixed infrastructure. There are a number of offloading
frameworks that can support the development of offloadable
applications. Offloading can be achieved at the level of ser-
vices, methods and system. Service offloading intercepts those
parts of the code that a software developer has manually
set up for offloading. Cuckoo [5] integrates into Android
applications by creating a proxy inside the application for
the interfaces that the application developer has defined. The
proxy then decides whether to invoke its corresponding local
method or to migrate the computation to the surrogate. Method
offloading, however, uses per-method annotations and wraps
methods directly for proxying. This approach is less intrusive
from application developer’s viewpoint in the sense that it
does not conceptually require strict separation of offloadable
code parts. MAUI [3] implements this ideology. It inves-
tigates the energy consumption challenge when offloading
computationally heavy tasks to a cloud rather than executing
locally. MAUI relies on developer effort to convert mobile
applications to support such decision making, and secondly,
it only considers the possibility of offloading to different
types of infrastructures. CloneCloud [2] presents a solution
which decides whether to execute a task on a remote cloud

121Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

service versus executing it locally based on static analysis and
dynamic profiling information of a task. CloneCloud, on the
other hand, uses a modified virtual machine implementation
of Android to intercept running threads at byte-code level and
to migrate them for distributed concurrency. As a side effect
in reducing burden to the application developer, image-level
offloading frameworks are required to be more sophisticated.

In fact, with the advent of mobile device capabilities,
migrating task computation always to powerful machine is
questionable. We believe that running certain tasks locally
on mobile devices can be more advantageous and may save
both energy and time especially in the presence of intermittent
wireless connectivity. In this paper, we adopt an experimental
approach towards identifying the potential gain of mobile
computational offloading in regards of both response time
and energy consumption, and propose a design of a novel
generic architecture that help actual application to make the
best offloading decision based on these metrics.

III. MOBILE CLOUD COMPUTING ARCHITECTURE:
MIGRATE VS. RUN LOCALLY

Mobile cloud computing is indeed becoming a dominant
trend. However, current systems mainly focus on (i) offloading
all functionalities to the cloud via simple client server archi-
tectures, or (ii) implementing applications and services that
run locally on the mobile device. In this paper, we propose a
novel architecture that leverages the two previous cases and
computes, in runtime, the best offloading method with regards
to two main metrics: the total response time and the overall
energy consumed by the mobile device.

As summarized by Figure 1-(a), our architecture proposes
a generic middle-ware that can be plugged into any mobile
cloud computing application. Such architecture receives a
given task T from the mobile computing application and based
on the device capabilities (e.g., CPU usage, memory, available
energy), it computes an utility function which helps deciding
whether the task T should be offloaded to a distant cloud or
run locally on the device itself.

Task Modeling Engine: this engine is responsible of
receiving tasks from the application. It models each task T
by a combination of data, DT , taken as input to perform such
a task, and computation, CT , that the task needs to perform on
this data in order to yield a result. A given application consists
of many tasks, and the more data and computation intensive
these tasks are, the more time and energy required to perform
them.

Decision Maker: it is the main engine of our architecture.
It uses data from the device data base and cache and triggers
the estimators engines in order to make a final decision
about the offloading method of the given task T . It receives
T from the task modeling engines and computes an utility
function in order to send back the task to the application for
local execution, or forward it the task forwarder for remote
execution at the cloud.

Energy and Delay Estimators: the energy and delay
estimators are responsible of estimating (i) the approximate en-

ergy to be consumed after running the task locally or remotely
at the cloud, and (ii) the total response time tT = tendT − tbegT ,
where tendT and tendT represent respectively the time in which
the application receives the results of the task T , and the time
in which the application sent the task to the task modeling
engine. The estimators take as input, the task characteristics
which are DT , and CT in addition to historical decisions of
similar tasks (stored in the task/decision cache)

Task Forwarder: Upon receiving an order to migrate the
task to distant cloud via the decision maker, the forwarder
forwards the task to the distant cloud and keeps track about the
status of the connection. In case of intermittent connectivity
the forwarder reports an additional delay to the decision maker
which will remake the decision based on the new factors
(additional estimated delay).

Databases and Cache: the databases store the device
capabilities, the communication technologies (e.g., wireless,
3G, 4G, Bluetooth) and the task/decision cache. The cache
is implemented to avoid remaking decisions for similar or
identical tasks.

This architecture is built on the promise of computa-
tional offloading gain experienced, either in energy saving
or task completion time, by any given cloud. If no potential
gain/advantage exists, there is no point in adopting this ar-
chitecture in the first place. Consequently, we believe that the
major problem that needs to be addressed at this early stage of
research is answering the question of when should we offload a
given task. Therefore, we focus our attention in the remainder
of this paper to quantitatively verify the potential gain tradeoff
between energy and time while executing the task locally or
offloaded remotely.

IV. EXPERIMENTAL TESTBED: CHESS GAME PROTOTYPE

Our goal consists of making “good” decision about mi-
grating computation of a given task or running it locally. It
involves making a decision regarding which task is worth
offloading. In order to answer this question, we adopt an
experimental approach using a real testbed environment. Our
goal is mainly to: (i) identify the trade-off between the gain
of migrating tasks as opposed to running them locally, and
(ii) identify under which circumstances would migrating be
advantageous.

We choose to implement a chess game as it has a single task
whose complexity can be easily set according to the expertise
level, e.g., from beginner to expert.

Our application is divided into three major software layers
as shown in Figure 1-(b). The bottom layer is the standard
OSGi’s implementation of the Apache Software foundation
community, Felix [1]. This software layer basically allows to
register and lookup for other OSGi bundles. We also imple-
ment the following four bundles; (1) The decision bundle that
encapsulates the decision logic about running an application
module locally, i.e., in the device, or remotely in the cloud.
It roughly corresponds to the Decision Maker component of
Figure 1. (2) The IGame bundle is the interface seen by the

122Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

Energy Estimator

Mobile Cloud Computing Application

Delay Estimator

Decision Maker

Device
Capabilities

Communication
Technologies

Task/decision
Cache

Task Modeling

Forwarder

TCP/IP

(a) Our high level architecture

Activity (UI Thread)

black_move

hi

IGame
B dl

Game Logic
B dl

Container
B dlLookup

white_move
…

Application
specific
bundles update

read

Decision
Bundle

Bundle Bundle BundleLookup

is_localGeneral
b dl

OSGi (Apache‐Felix)

Bundlebundle

ANDROID

(b) Prototyping implementation (c) Energy testbed
Fig. 1. System architecture and experimental testbed

android application. This bundle implements the following op-
erations: initBoard, initSearch, blackMove and whiteMove. (3)
The GameLogic bundle implements the computer move and
occupies 456 KB. This is the bundle (Task) to be uploaded into
the cloud for implementing remote calls. (4) The container
bundle is used as access point to read the data generated after
a move.

A game tree for the chess game is used to decide the best
counter move. It is composed of nodes representing the state of
the board and edges the possible moves. The tree is explored
at different levels, according to the difficulty degree, labeled
from 1 (beginner) to 4 (expert). The maximum explored level
of the tree was, respectively, 3, 7, 10, 14. The best counter
move is searched applying the alpha-beta searching algorithm.
This algorithm exploits lower and upper bounds (named alpha
and beta), to prune part of the game tree that cannot possibly
influence the final decision.

As far as the cloud technology is concerned, we have used
OpenShift, a Red Hat’s free, auto-scaling Platform as a Service
(PaaS) for applications. It allows to run different VM, called
gears. It uses the notion of cartridge, a set of predefined
technologies that can be installed and run inside gears. In
addition, Openshift allows users to exploit the powerful Do-
It-Yourself (DIY) feature that allows for running just about
any program that speaks HTTP. As the Apache felix is not
available as a cartridge we have used the DIY feature for
our experiment. Moreover, in order to allow android openshift
communication we have exploited Apache CXF, an open
source services framework that helps to build and develop
services using frontend programming APIs, like JAX-WS and
JAX-RS. In particular we have exported the service in the
cloud as RESTful HTTP endpoints . CXF allows to export
OSGi services as Web Services.

V. EXPERIMENTAL ANALYSIS

We have tested the application in three different settings,
named local, cloud and cloudlet. In the local mode, the mobile
device executes all the code, whereas in the cloud and cloudlet
modes, the device only executes the code required for UI
updating and the user moves. In the cloudlet node, the remote
task is executed in a VM hosted by a server machine located
in the same wireless LAN of the device.

The opening phase in a chess game is a very important
phase, as it may shape the way the whole match will proceed.
The reply to an opening is then a good situation game to
test the performance of our application. We have considered a
famous openings due to Anderssen, A2 in A3. Two different
mobile devices have been used in the experiments; Samsung
Galaxy Next Turbo and a Galaxy SIII. In the cloud mode,
the game logic runs in the openshift platform and Internet
is accessed either through a wi-fi or via GSM. Finally, in
the cloudlet setting, the same public cloud environment runs
locally on a PC running Windows 7 Home Premium, CPU
i7-3610QM CPU @2.30GHz with 8 GB RAM.

Response Time: The time elapsed from when the white
ends to move till the black move ends is called the response
time. To measure such a response time the same opening was
repeated three times. Figure 2 shows the average response time
for (a) local execution and (b) remote execution. Under the
local execution case, it is clear that as the complexity of the
task increases, as in level 3 and 4, the response time increases
considerably, especially, for the lower computation capability
one (Next). While, on the other hand, when the task execution
is done remotely, either on the cloud or cloudlet, the response
time is always acceptable, even when the task complexity is the
maximum. The level can thus be used both to describe the task
complexity and to drive decision maker to select the execute
mode. In addition it also affects the power consumption, as
we discuss in the following subsection.

Energy Consumed Locally: Energy saving is one of the
most important expected benefit that mobile cloud computing
should provide. Figure 2-c reports the average mAh for the
local execution mode. This plot is similar to the delay’s one.
This is due to the fact that the delay to the reply is indeed
due to the computation of the black move. In other words, if
the computation requires T s then the required charge is kT ,
where k is a constant independent from T .

Quantifying the Overhead: In the previous section, we
were assuming that the cloud implements already chess game
algorithms and maintains a state about each player of a game.
In this section, we investigate a scenario where the application
is totally implemented in the phone device itself and a remote
execution of a task requires transferring a chunk of data that
is needed to run the tasks remotely.

123Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 3 4

D
e

la
y
[s

]

Level

SIII
Next

(a) Response time for local execution

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4

D
e

la
y
[s

]

Level

Wi-Fi
Cell

Local Server

(b) Response time for remote execution

 0

 1

 2

 3

 4

 5

 1 2 3 4

m
A

h

Level

SIII - local

Next - local

(c) Energy vs. difficulty levels
Fig. 2. Response time and energy performance of local and remote execution

 0

 20

 40

 60

E
ne

rg
y

C
on

su
m

ed
 (J

)

3G-Cloud
WiFi-Cloud

WiFi-Cloudlet

Fig. 3. Energy consumed while offloading to cloud or cloudlet using SIII

We have measured the number of bytes exchanged between
the client and cloud during the initialization phase (when
bundles are emitted to the cloud) and during moves. For this
purpose we have used the wire shark sniffer. We then run a
set of experiments to quantify the energy overhead related to
communication between the mobile device and the cloud as
shown in Figure 1-(c). We remove the battery of the Samsung
SIII device and solder wires coming from a power supply
into the battery contacts of the device. The power supply that
we use comes with a built in ammeter and voltmeter. We
then provide a constant voltage according to the manufacturer
specifications and power the device on. Using the current and
voltage readings from the ammeter and voltmeter respectively,
we are able to determine the power being consumed by the
phone at any instance.

We run each experiment 5 times and compute the energy
readings while idle, and those while making wireless transfers
(sending or receiving data). Figure 3 compares the energy
consumed while transmitting the initial code to a distant cloud
or a nearby cloudlet. We consider 3G and WiFi as two wireless
technologies to communicate with a distant cloud and WiFi to
communicate with cloudlet.

Figure 3 shows that 3G consumes more than double the
energy required to communicate using WiFi. This may imply
running tasks locally if only 3G connectivity is available to
reach a distant cloud. Using WiFi, communicating with a
nearby cloudlet is 2 to 3 times less expensive than commu-
nicating to a cloud. This confirms the results showing in [7].
However, the cloudlets are less computationally powerful than
a cloud which may introduce additional delay and therefore
energy to finish executing the task.

VI. SUMMARY & DISCUSSION

We believe that there is a need for a generic and flexible
framework that can be integrated by any mobile cloud com-

puting to automatically decide based on a given characteristic
of the application or its tasks whether it is better to run
execution locally or remotely. We begin by running a set on
preliminary experiments in order to identify a tradeoff between
two conflicting metrics. Our preliminary experimental results
have shown that energy and time depend on the computation
complexity of the task and the device capabilities. On the other
hand, when offloading the task to the cloud the energy and time
consumed will highly depends on the communication technol-
ogy used. In our work, we have adopted a first step towards
automating an offloading decision maker, which measures
the task complexity, then based on the device capability and
the communication heuristic profile, it can choose the better
choice. We plan to expand our experimental and analytical
results to help identify the objection function that will be
used by our decision maker. The objection function main goal
is to quantify the gain based on user preferences or simply
minimizing the overall resource usage.

ACKNOWLEDGMENT

This research was supported by a research grant from the
Qatar National Research Fund under project NPRP 09-1116-
1172.

REFERENCES

[1] Apache felix. http://felix.apache.org/.
[2] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. Clonecloud:

elastic execution between mobile device and cloud. In Proceedings of
the sixth conference on Computer systems, EuroSys ’11, pages 301–314,
New York, NY, USA, 2011. ACM.

[3] E. Cuervo, A. Balasubramanian, D. ki Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl. Maui: making smartphones last longer with
code offload. In MobiSys’10, pages 49–62, 2010.

[4] J. Flinn. Cyber foraging: Bridging mobile and cloud computing. Synthesis
Lectures on Mobile and Pervasive Computing, 7(2):1–103, 2012.

[5] R. Kemp, N. Palmer, T. Kielmann, and H. Bal. Cuckoo: A computation
offloading framework for smartphones. pages 59–79. Springer Berlin
Heidelberg, 2012.

[6] A. Rudenko, P. Reiher, G. J. Popek, and G. H. Kuenning. Saving portable
computer battery power through remote process execution. SIGMOBILE
Mob. Comput. Commun. Rev., 2(1):19–26, Jan. 1998.

[7] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for
vm-based cloudlets in mobile computing. Pervasive Computing, IEEE,
8(4):14–23, 2009.

124Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

