
Rifidi Toolkit: Virtuality for Testing RFID Systems
Andreas Huebner∗, Christian Facchi∗ and Helge Janicke†

∗Institute of Applied Research, University of Applied Sciences Ingolstadt, Germany
{andreas.huebner, christian.facchi}@haw-ingolstadt.de

†Software Technology Research Laboratory, De Montfort University, Leicester, United Kingdom
heljanic@dmu.ac.uk

Abstract—The Rifidi Toolkit is an open source framework for
virtual Radio Frequency Identification (RFID) environments. It
allows to emulate RFID devices and can be used as a basis for
testing RFID applications. The concept behind the Rifidi Toolkit
is already widely adopted in industry and has been accepted
in science. This paper gives an introduction on the the toolkit’s
architecture and design. It further points out how to use the
toolkit for testing RFID applications and proposes new features
and functionality needed for robust RFID application testing with
the Rifidi Toolkit.

Keywords-RFID; test-data generation; software testing; virtual-
isation; Rifidi

I. INTRODUCTION

RFID [1] is gaining momentum in industry as an increasing
number of RFID applications are deployed. The trend towards
automatic identification of objects also increases the demand
for qualitative and fail proof RFID applications. Therefore
research on testing RFID systems speeds up and methodical
approaches on testing RFID systems are needed. Even though
most publications on testing RFID focus on performance eval-
uation, a commonly encountered problem with all approaches
on testing RFID, is that it is very expensive to fund the
physical RFID test environment. To address this problem
the Rifidi Toolkit [2] was developed. The toolkit allows to
virtualise the RFID environment, therefore, drastically reduce
the test costs and in consequence also reducing the overall
project costs.

This paper gives an introduction into the open source frame-
work Rifidi and shows the design ideas behind the software.
It points out what features are required to use the toolkit for
testing RFID applications. Furthermore, it exposes additional
improvements to the Rifidi Toolkit, so it can be applied as a
basis for functional testing of RFID applications.

The remainder of the paper is structured as follows: In
Section II, an overview of the tools included in the Rifidi
Toolkit is given. The Emulator Engine, the central part of
the toolkit, is explained in detail in Section III. Then, the ar-
chitecture of the different modules is explained in Section IV.
An introduction to requirements for testing RFID is given in
Section V. Section VI presents the related work and shows
the acceptance of the Rifidi Toolkit and the principles behind
it. Drawbacks and proposed enhancements can be found
inSection VII. Finally, a conclusion and a future perspective
are given in Section VIII.

II. RIFIDI TOOLKIT OVERVIEW

The Rifidi Toolkit enables the virtualisation of RFID readers
of various vendors for flexible and improved testing of RFID
applications. Utilizing virtual RFID readers in this context
means less physical readers need to be available for testing.
Therefore, it lowers the barrier to enter the RFID world and al-
lows to save resources and time. The Rifidi Toolkit is available
since 2006 as open source software on SourceForge.net [3] and
already established on the market as a valuable resource for
many users, which can be seen on the number of downloads
(over 50,000 since 2006 [4]).

The Rifidi Toolkit consists of three software tools; namely
the Emulator, the Designer and the TagStreamer [5]. All these
are based on the Emulator Engine, the central part of the Rifidi
tool-suite which is capable of emulating virtual RFID devices.

Emulator - The Rifidi Emulator is a graphical interface for
controlling and interacting with virtual readers. It allows the
emulation of readers and tags as well as read and write events.
Additionally, it provides access to the virtual readers like their
physical counterparts.

Designer - The Rifidi Designer is a tool to build custom
3D production environments, that can be used for visually
simulating the RFID data flow. It is also based on the Emulator
Engine and allows the emulation of RFID readers and the
interaction with them. It is not actively maintained anymore
but can still be accessed on the SourceForge.net website.

Tag Streamer - The Rifidi Tag Streamer is a performance
testing tool that allows to generate large numbers of virtual
readers and tags to evaluate the RFID system.

III. THE RIFIDI EMULATOR ENGINE

The Emulator Engine is the core part of the Rifidi Toolkit.
It is responsible for managing and controlling the emulation of
the RFID devices. One Instance of the Emulator Engine can
control multiple virtual readers of various vendors at the same
time. All parts of the Rifidi Toolkit are implemented in Java
and use different technologies around the Eclipse Framework,
e.g Equinox, JFace and SWT.

The basic tasks of the Emulator Engine are:
• Handle communication between RFID reader and client
• Execute commands issued to the virtual reader
• Management of the antennas and the related field of sight
• Control the reader specific components, like signals on

the general purpose input/output ports (GPIO ports)

1Copyright (c) IARIA, 2012. ISBN: 978-1-61208-231-8

ICSNC 2012 : The Seventh International Conference on Systems and Networks Communications

Because of a Service Oriented Architecture (SOA) [6] ap-
proach, the functionality of the Emulator Engine is distributed
in two core services. These services can be obtained through
the ServiceRegistry and used to manage virtual readers, virtual
tags and keep track of the tags in the Rifidi Environment.

ReaderManager - This service is responsible to manage
the devices and offers of the following actions:

• Create a virtual reader
• Delete a virtual reader
• Start a virtual reader (power on)
• Stop a virtual reader (power off)
• Add a virtual tag to a reader’s field of sight
• Remove a virtual tag from a reader’s field of sight
• Get a list of virtual tags currently in the readers field of

sight

IRifidiTagService - This service is used to create and
handle virtual tags. It consists of the following functionality:

• Create a virtual tag
• Delete a virtual tag
• Track virtual tag data changes
All existing Rifidi tools are based on the Emulator Engine

and allow an intuitive, graphical access to the presented
functionality. However, the Rifidi Toolkit can also be used
as a basis for other tools, which rely on the emulation of
virtual RFID devices, e.g., test data generators. But, to use
the capabilities of the tool-suite for improved testing of RFID
applications, a better insight on the framework is necessary.

IV. EMULATOR ENGINE ARCHITECTURE

This section gives more insight on the architecture of the
Rifidi tool-suite and describes how to use this architectural
model as a basis for virtual readers. It concludes with an
overview of the command flow through the Emulator Engine.

A concrete implementation of a virtual reader is called
reader module. To seamlessly integrate into the framework
each reader module implements interfaces of the components,
presented below.

The architecture of the Emulator Engine is based on the
structure of a physical RFID reading device. The idea was
to develop the virtual readers similar to their physical coun-
terparts and therefore to use the same logical components.
Figure 1 gives an overview of the different components of the
Emulator Engine. Each box represents a logical counterpart of
a physical reader and can be seen as a generally valid abstract
component of all virtual readers.

A. Emulator Engine Components

The components of the Emulator Engine are Commu-
nication, Command Processor, Radio, General Purpose In-
put/Output and Shared Resources. The different tasks and
functionalities of the virtual reader’s components are explained
in the following:

Communication - Even though most modern RFID devices
use an Internet Protocol (IP) connection for communication,

Protocol

Parser

Incoming

Buffer

Outgoing

Buffer

TagMemory GPIO

Controller

Incoming

Formatter

Outgoing

Formatter

Controller

Exception

Handler

XML Handler

Handler

Handler

Handler

Antennas

Incoming

Buffer

Outgoing

Buffer

Figure 1. Emulator Engine Architecture Overview [5]

there are still some vendors using other interfaces like serial
link, e.g., RS232, or other proprietary ones. To map these
diverse ways of communication to the framework a generic
communication part for each virtual reader needs to be con-
sidered. In the Rifidi environment this is realized through the
communication component. It enables receiving and sending
of messages as well as forwarding the encoded messages to or
respectively from the command processor. The communication
is divided into two parts:

Protocol Parser: The protocol parser converts the messages
received in binary format to a message the command handler
can deal with. This can be either a reader specific message
format or an plain Java object. The Protocol Parser is also
used this way when it converts a message from the command
handler to a binary message, which can be sent through
the reader specific communication. With respect to IP-based
communication, especially regarding fragmented packets, the
parser is also responsible to determine if a messages was
received completely.

Buffer: The buffer is used to store messages and enable
asynchronous communication from the communication chan-
nels. There is one buffer for incoming and outgoing messages.

Command Processor - The interaction with common RFID
readers is based on command/response protocols. Subse-
quently the issued commands need to be parsed, executed,
and finally, responded. In the Rifidi environment, the command
processor can be seen as the central processing unit and is used
for this purpose. For each command it invokes the appropriate
methods of the virtual reader. A list of commands and the
corresponding actions, implementing the functionality of the
command, are defined in a XML file called reader.xml.
The Rifidi framework utilizes Java Reflections [7] to execute
the classes and methods specified in this XML file. The
command processing layer is consisting of three parts:

Formatter: As for the buffers, there are formatters for
each direction of communication. The incoming formatter is
used to strip and decompose the commands. Usually, the
first parts of a command determine the command type, all

2Copyright (c) IARIA, 2012. ISBN: 978-1-61208-231-8

ICSNC 2012 : The Seventh International Conference on Systems and Networks Communications

additional information are arguments and parameters. The
outgoing formatter assembles outgoing messages for further
processing in the communication layer.

Controller: The controller, also called command handler,
is the central processing unit for commands. Each command
issued to the virtual reader is executed here. The Handler-
Methods are invoked through reflection.

Exception Handler: The exception handler is a special
HandlerMethod, which takes care of unknown, undefined or
misspelled commands. Usually, error descriptions are send
back to provide feedback.

Radio - The radio component represents the air interaction
capabilities of the virtual RFID device and allows to interact
with virtual tags. In the Rifidi Emulator, for example, a user
can control when a tag is added to an antenna or when a tag is
removed. Additionally, to the users interaction the reader can
also, depending on the reader capabilities, write or read the tag.
Furthermore, it is vendor specific how ”tag events” are stored
and handled in a reader, therefore each virtual reader has its
own radio component and memory structure. As an example,
the Alien 9800 (Alien Technology Corporation) RFID reader
allows either to list all read events since the last poll or to list
just the currently available tags in the field of sight.

Tag Buffer: The tag buffer implements the memory structure
and the over-the-air interaction capabilities of the virtual
reader. The Tag Buffer is associated to the virtual antennas of a
reader. The antennas represent the interfaces for the Emulator
Engine to simulate RFID tag operation events. It has to be
distinguished between read and write operations. Reading tags
means a tag’s information was read by the reader and writing
tags means the tag was modified during time the tag was
available in the field of sight. An Event is either a tag appears
on the antenna or disappears. In more detail, this means a list
of virtual tags is either added to the antenna or removed from
the antenna.

General Purpose Input/Output - Some RFID devices
allow additional sensors to be connected to it. This is widely
known as General Purpose Input/Output (GPIO) and realised
as small electrical connectors on the RFID reader. The pres-
ence of GPIO ports is also reader specific and the virtual
functionality is provided by this part. Currently, only the Low
Level Reader Protocol (LLRP) Reader and the Alien 9800
Reader leverage this functionality in the Rifidi Framework,
yet.

Shared Resources - The shared resources are used as
a housekeeping component for each virtual reader. It is a
central instance holding together the different components and
allowing to transfer data objects from the above described
layers in this section.

B. Overview of the Command Flow

Concluding with the different components of an virtual
reader, Figure 2 gives an overview of the command flow
through the different parts of the Emulator Engine. It shows
a schematic view of the data exchange and interactions of the

different components. The dotted lines around the components
indicate implementation specific parts, which can be different
in each virtual reader module. All incoming commands are

Figure 2. Rifidi Command Flow Overview [5]

received by the IncomingBuffer, encoded in a binary format.
Once all bytes of the message are read, it is forwarded to
the Protocol. The Protocol decodes the binary messages to a
processable format and hands it further to the IncomingMes-
sageBuffer. The IncomingMessageBuffer stores the Message
until the CommandProcessor is available for processing. The
CommandProcessor, consisting of the CommandFormatter,
the CommandSearcher and CommandAdapter, is parsing the
message and looking up the corresponding HandlerMethod.
Finally the located method is executed and the intended
actions are performed. If there is a response or a result of
the previously executed command the data is going through
all components again in reverse order. Following the dotted
arrows, the reply first goes through the CommandFormatter
again. Afterwards, it is given to the OutgoingMessageBuffer,
then encoded by the Protocol, and finally, sent to the Outgo-
ingBuffer.

V. REQUIREMENTS FOR TESTING RFID

In this section, an overview of a generic RFID system
is given. Based on the description of the sketched system,
a transformation into a virtual system is performed, while
both systems are used to demonstrate the testing capabilities.
Finally, constraints as well as requirements to be fulfilled for
testing with the virtual system are listed.

A. Structure of a simplified RFID system

A simple RFID system is composed of one or more RFID
readers, a RFID middleware and an application. The RFID tags
are usually attached to objects the RFID system is interested
in. Once an object with an attached RFID tag gets close to a
reader’s antenna the tag will be read. This is often referred to
as a tag read event. As long as the tag stays in the field it can
also be written, which is then referred as write event.

3Copyright (c) IARIA, 2012. ISBN: 978-1-61208-231-8

ICSNC 2012 : The Seventh International Conference on Systems and Networks Communications

Application

RFID Middleware

RFID

Reader

RFID

Reader

RFID

Reader

Figure 3. RFID System

Application

RFID Middleware

RFID

Reader

RFID

Reader

RFID

Reader

Virtual RFID

Figure 4. Virtual RFID System

Figure 3 shows a schematic RFID system and the inter-
action between the components. RFID Tags are read on the
antennas of the reader and reported to the middleware. This
middleware filters redundant data, applies logical evaluations
and generates business events for the RFID application.

To test a system like this, certain RFID events, usually
read events, need to be generated. These events will then be
processed by the middleware and finally handed to the RFID
application. Depending on the business logic of the application
a specific result is produced.

In today’s practical testing approaches the generation of
tag read events is produced by someone walking through the
readers field of sight. The resulting effects in the application
are then evaluated.

B. Virtuality for testing RFID

To improve the manual test process the real world devices
can be substituted by virtualised RFID, with virtual readers
from the Rifidi Toolkit, with an otherwise unchanged tool
chain. From the perspective of the RFID middleware and
application the simulated system cannot be distinguished from
a real system. This ”virtuality”-system can even be a sys-
tem composed of randomly mixed real and virtual devices.
Figure 4 shows the changed RFID system. In this case, all
RFID devices have been substituted by virtual readers. A tester
can now place virtual tags on the virtual readers, and therefore,
generate the same input as with the previously described real
environment.

C. Testing with Rifidi

To enhance testing with this ”virtuality”-system and enable
automatic testing, the newly created virtual environment needs
to be instrumented. For the instrumentation of the virtual
environment a new test controller can be used. In the Rifidi
Toolkit this functionality could be provided by a new tool
using the Emulator Engine to map the movements of tags in
the real world. However, to test RFID applications a missing
part is still the automatic evaluation of the RFID middleware
respectively the application. This is a challenging task because
of the diverse variety of RFID applications. Compared to
middleware systems, where the Application Level Event (ALE)
[8] standard can be used to communicate and evaluate the
test results, for each application an evaluation adapter needs
to be implemented. Additionally, to the missing interface, to
evaluate the test results in applications, even more complexity

is introduced by the attributes of RFID data. According to
[9] RFID data consists of a data stream with the following
attributes:

• Redundant Data
• Grouped Data
• Moving Route
• Noisy Data

These parameters need to be considered during the generation
of test data. Rifidi supports most of the requirements in its
virtualisation of RFID readers, however, it is notably lacking
support to model events that occur due to physical effects
such as interference and timing delays. As part of our ongoing
research, we are investigating realistic interference models and
also work on real-time aspects of RFID testing.

VI. RELATED WORK

Since 2006, when the framework was published on Source-
Forge.net, it has been downloaded over 50,000 times [4]
and used by developers, teachers and researchers. The Rifidi
Toolkit has been referred in many publications, which shows
the significance of the presented tool. Furthermore, in this
paper we presented the architectural consideration and the
requirements that underpin the current implementation of
Rifidi to enable an even more widespread adoption of the
framework in particular with the view of using Rifidi in the
Quality Assurance of RFID applications.

However, there are similar developments capable to em-
ulate virtual RFID readers. This section covers some of
the approaches and points out what the differences of the
implementations are. Additionally, it shows where the Rifidi
Toolkit was used in science, research, education and industry.

A. Comparable RFID Emulators

Currently there are two implementations of virtual RFID
emulators mentioned in scientific publications, but unfortu-
nately neither the Virtual Test Toolkit from the Pusan National
University nor the RFID Performance Test Tool from the Feng
Chia University was available for download and comparison.
Hence, the further statements are only based on information
which could be obtained from publications and not from
concrete experiments.

Pussan National University (PNU LIT) - [10], [11],
[12], [13] describe a virtual reader emulator to evaluate a
RFID Middleware mainly with the focus on performance
issues. The Toolkit is divided into three parts; the Virtual
Application Emulator, the Virtual Device Emulator and the
Toolkit Operator. Where the Virtual Device Emulator is com-
parable to the Rifidi Toolkit. It is capable to emulate one or
more virtual RFID readers and virtual RFID tags. The virtual
readers can interact with the virtual tags, which are following
the EPC Global Data Tag Standard. The Toolkit Operator
controls the virtual environment and is the central part of
the Virtual Test Toolkit. The Virtual Application Emulator
is connected to the RFID Middleware and acts as a RFID
Application. The purpose of the Virtual Application Emulator

4Copyright (c) IARIA, 2012. ISBN: 978-1-61208-231-8

ICSNC 2012 : The Seventh International Conference on Systems and Networks Communications

is to collect information regarding the performance of the
middleware under test for performance evaluation purposes.
The toolkit was firstly published in 2009 [10] and follows
the similar objectives than the Rifidi Toolkit and the RFID
Performance Test Tool. It differs to the Rifidi Toolkit mainly
in the emulation’s level of detail. For example, a fine grained
access to the virtual readers including configuring the output
format of tag events seems not to be possible. Nevertheless, it
can be used as a basis for testing, but it is not as flexible as
the Rifidi Toolkit.

Feng Chia University (FCU RFIDLab) - Jongyoung and
Naesoo [14] introduce the design and implementation of a
Performance Test Tool for RFID middleware, consisting of a
test data generator and a result data estimation part. The test
data generator supports different tag data standards and various
reader protocols, e.g. from EPC Global, Alien Technology
and Motorola (former Matrics). The result data estimation
part implements the ALE specification and connects to the
RFID middleware, which is the Software Under Test (SUT),
as a virtual application. The reader emulator, which is part
of the test generation tool, is controlled via a graphical
user interface and allows to specify how many tags will
be generated. Additionally to the amount of tag events the
simulation should generate, it allows to specify a pattern for
the encoding of the generated tag data and a timing interval
for the events. After the previously specified test data was
generated, it is accessible for the RFID Middleware through
the ”result data transmission”-part. Summarized the introduced
tool is similar to the concept of the Rifidi TagStreamer. It
is a performance test tool to test RFID Middleware and
allows the emulation of vendor specific reader protocols. But,
different to the TagStreamer, it does not allow a fine grained
access or interaction with the virtual readers. Nevertheless, the
advantage of the Performance Test Tool is the result estimation
part, which is used as the upper tester of the test suite.

Hardware Emulators - Beside the software emulators,
there is also a variety of physical emulators available. The
hardware emulators are mainly used to simulate RFID readers,
in order to test new air protocols, modifications to existing
protocols and new command sets. But, some of the devices can
even simulate RFID tags. For example, CISC Semiconductors
offers the RFID Tag Emulator [15], a mobile device capable of
emulating multiple RFID tags. This tag simulator can be used
to analyse and test RFID Reader performance with certain tag
populations. But, similar to real RFID readers these simulators
come with the same limitations, regarding the high investment
costs, compared to virtual readers. This downside is especially
obvious for performance testing, where a huge number of
devices is needed.

B. Publications about Rifidi
The concepts of the Rifidi Toolkit have been discussed in

many publications. A not exhaustive list of publications around
the Rifidi Toolkit is given in this section:

Palazzi and Ceriali [16] provided a critical investigation of
the capabilities of the Rifidi Toolkit regarding RFID system

testing. For this investigation they use the toolkit in a case
study to demonstrate the current potentials. Siror et al. [17]
use Rifidi as a basis to evaluate the usability of an an automatic
evaluation of a customs verification process. In both cases
the Rifidi framework was successfully used to simulate the
RFID environment and therefore supported the fast and easy
demonstration of the case studies. Mueller et al. [18] compare
different test data generators and conclude, that the Rifidi
Toolkit is an specialized data generator which can generate
RFID events by emulating RFID readers.

C. Applications in Science, Education and Industry

The Rifidi Toolkit is not only used in research, it is also
used in many different other areas. Rifidi provides enormous
benefits especially for industry and education. The reason to
use the virtual RFID environment here is mainly because of
the reduced costs and the availability of readers. In summary,
researchers, scientists and teachers can work with RFID read-
ers without having the budget for the hardware and neither
to argue with their colleagues when the device is available.
As far as it is known to the knowledge of the authors the
University of Applied Sciences Ingolstadt and University of
Applied Sciences Regensburg are using the toolkit beside
others [19] for educational purposes.

But, the previous mentioned benefits are also valid for
industrial users. The Rifidi Toolkit is used for a wide variety
of industrial applications and helps companies to realise RFID
projects faster with less costs. Some of the users known to the
authors are BMW, HP and IBM.

VII. ENHANCEMENTS FOR RIFIDI

The Rifidi Software can be used as a basis for testing
RFID applications and its infrastructure. To truly match the
requirements for testing, some improvements to the framework
need to be made. Four categories can be distinguished:

Reader Support - To keep the virtual RFID framework up-
to-date it is necessary to map the changes in the development
of physical readers to the Rifidi framework. Even when the
Emulator Engine already supports a great variety of readers
and appropriate reader protocols the framework could be
enhanced by adding more readers to it. Integrating new virtual
readers is a lot of effort, especially because vendors usually
do not provide the necessary information. Therefore, typically,
a reader has to be reverse engineered for implementation
purposes. Not only the time it takes, but also the cost of
the hardware needs to be taken into account. As a result,
better guidelines and methodologies to enhance the software
development of the Rifidi suite have to be found.

Tag Creation - Another drawback in the Rifidi Environment
is the generation of virtual tags. Currently, the creation of tags
is based on random numbers which are grouped by the means
of the encoding, like Serialized Global Trade Identification
Number (SGTIN). According to Zhang et al. [9], one can
distinguish between Semantic Invalid Data (SID) and Semantic
Valid Data (SVD). Whether to use SID or SVD depends on the

5Copyright (c) IARIA, 2012. ISBN: 978-1-61208-231-8

ICSNC 2012 : The Seventh International Conference on Systems and Networks Communications

test objective. For example, SID is used when the performance
of an system needs to be evaluated. In this case the meaning
of the data is irrelevant for the test objective. To test functional
aspects of RFID middleware or applications the identifiers
used in the simulation need to have a semantic meaning
determined by SVD. The semantic meaning expresses the
relationship between the tag’s identifier and the actual object
the tag is attached to. Therefore, the tag’s identifiers need to
be associated with the actual serial numbers an application’s
database stores. This can either be achieved by establishing
a connection to the database, an interface to the system,
respectively an adapter, or with a manually instrumented set
of tag patterns during the creation of tags.

Robustness and Stability - A necessary attribute of soft-
ware used for testing is that itself does not introduce errors
and failures. Therefore, using the Rifidi Framework as a basis
for testing RFID systems also leads to the question: Is the
software stable and reliable enough to truly be the basis for
testing? Concepts and studies concerning this issue need be
made and show that Rifidi is fulfilling these requirements.

Scripting and Automatic Execution - Currently, the Rifidi
Framework exposes its functionality through the three tools
with GUI’s. To enable more complex testing, the framework
need to be instrumented by a test manager. This could be
achieved by introducing scripting support for the automatic
execution of tag movement patterns. The scripting language
could be a domain specific language to easily match the
requirements for testing RFID applications and their function-
ality.

VIII. CONCLUSION AND FUTURE WORK

The Rifidi Toolkit is virtual framework for the simulation
of RFID devices. The architecture is based on the real layout
of physical RFID readers and allows a fine grained access
to the virtual RFID readers like their physical counterparts.
It serves as a framework for the implementation of many
different readers with its flexible and general layout. Some
of the principles behind the Rifidi architecture seem to be
already adopted in different areas of science and industrial use.
Furthermore, it is a basis for further research and allows testing
of RFID applications. The Rifidi Toolkit can be extended
to improve testing capabilities and support modern testing
techniques.

Physical Effects on the Air Interface - A drawback,
which can be a task for future work, is that none of the
presented software tools truly cover the physical constraints of
the air interface. In reality, each RFID reader is susceptible for
missing tag reads. To be able to truly test RFID environments
the physical effects in the radio frequency (RF) field have
to be taken into account. This means the RF field and its
effects also need to be simulated in the emulation of the RFID
readers. An approach could be to introduce heuristics and
statistical based reasoning functions, which need to represent
the physical constraints more closely. But, furthermore, also
the impact of missed tag readings on the RFID application
with regard to testing has to be researched.

IX. ACKNOWLEDGEMENTS

The authors would like to thank the Software Technology
Research Laboratory (STRL) and the Faculty of Technology
of the De Montfort University, especially Peter Norris and
Stephen Ison for providing the appropriate environment for
research. This research has been funded by project grants
from the German Federal Ministry of Education and Research
(BMBF). Project: ITERA, FKZ 01QE1105B.

REFERENCES

[1] K. Finkenzeller, RFID-Handbook, 3rd edition. Wiley, 2010.
[2] Pramari LLC, “Rifidi Project,” online: http://www.rifidi.org, 2006, [ac-

cessed: December 14, 2011].
[3] ——, “Rifidi - from rfidea to business reality,” online: http://sourceforge.

net/projects/rifidi/, 2011, [accessed: March 28, 2011].
[4] ——, “Rifidi Statistics,” online: http://sourceforge.net/projects/rifidi/

files/stats/timeline?dates=2005-01-05+to+2012-07-02, 2012, [accessed:
June 01, 2012].

[5] ——, “Rifidi Emulator Documentation: Developers Guide,” online:
http://wiki.rifidi.org/index.php/Engine Overview, 2008, [accessed: De-
cember 14, 2011].

[6] R. Perrey and M. Lycett, “Service-oriented architecture,” in Applications
and the Internet Workshops, 2003. Proceedings. 2003 Symposium on,
jan. 2003, pp. 116 – 119.

[7] G. McCluskey, “Using java reflection,” online: http://java.sun.com/
developer/technicalArticles/ALT/Reflection/, 1998, [accessed: June 12,
2012].

[8] EPCglobal inc., “The application level events (ale) specification, ver-
sion 1.1.1,” online: http://www.gs1.org/gsmp/kc/epcglobal/ale/ale 1 1
1-standard-core-20090313.pdf, 2009, [accessed: June 05, 2012].

[9] H. Zhang, W. Ryu, B. Hong, and C. Park, “A test data generation tool
for testing rfid middleware,” in Computers and Industrial Engineering
(CIE), 2010 40th International Conference on, july 2010, pp. 1 –6.

[10] C. Park, W. Ryu, and B. Hong, “RFID Middleware Evaluation Toolkit
Based on a Virtual Reader Emulator,” in Emerging Databases, The 1th
International Conference on Emerging Databases 2009, 2009, pp. 154–
157.

[11] G. Lee, H. Zhang, C. Park, W. Ryu, and B. Hong, “Design and Im-
plementation of Virtual Test Toolkit for Testing RFID Middleware,” in
Intelligent Manufacturing and Logistics Systems, The 6th International
Conference on IML 2010, 2010, pp. 1–6.

[12] H. Zhang, W. Ryu, B. Hong, and C. Park, “A test data generation tool
for testing rfid middleware,” in Computers and Industrial Engineering
(CIE), 2010 40th International Conference on, 2010, pp. 1–6.

[13] J. Park, W. Ryu, B. Hong, and B. Kim, “Design of toolkit of multiple
virtual readers for scalability verification of RFID middleware,” in The
Second International Conference on Emerging Databases (EDB 2010),
2010, pp. 56–59.

[14] L. Jongyoung and K. Naesoo, “Performance test tool for rfid middle-
ware: Parameters, design, implementation, and features,” in Advanced
Communication Technology, 2006. ICACT 2006. The 8th International
Conference, vol. 1, feb. 2006, pp. 149 –152.

[15] C. Semiconductors, “Rfid tag emulator,” online: https://www.cisc.at/?id=
25, 2012, [accessed: June 05, 2012].

[16] M. D. M. C. E. Palazzi, A. Ceriali, “RFID emulation in Rifidi Environ-
ment,” in International Symposium on Ubiquitous Computing (UCS’09),
2009.

[17] J. Siror, S. Huanye, and W. Dong, “Automating customs verification pro-
cess using rfid technology,” in Digital Content, Multimedia Technology
and its Applications (IDC), 2010 6th International Conference on, aug.
2010, pp. 404 –409.

[18] J. Müller, M. Schapranow, C. Pöpke, M. Urbat, A. Zeier, and H. Plattner,
“Best practices for rigorous evaluation of rfid software components,” in
RFID Systech 2010, RFID Systech 2010 - European Workshop on Smart
Objects: Systems, Technologies and Applications, 2010.

[19] Transcends LLC (former Pramari LLC), “Academic partners,” online:
http://www.transcends.co/partners/academic, 2011, [accessed: June 03,
2012].

6Copyright (c) IARIA, 2012. ISBN: 978-1-61208-231-8

ICSNC 2012 : The Seventh International Conference on Systems and Networks Communications

http://www.rifidi.org
http://sourceforge.net/projects/rifidi/
http://sourceforge.net/projects/rifidi/
http://sourceforge.net/projects/rifidi/files/stats/timeline?dates=2005-01-05+to+2012-07-02
http://sourceforge.net/projects/rifidi/files/stats/timeline?dates=2005-01-05+to+2012-07-02
http://wiki.rifidi.org/index.php/Engine_Overview
http://java.sun.com/developer/technicalArticles/ALT/Reflection/
http://java.sun.com/developer/technicalArticles/ALT/Reflection/
http://www.gs1.org/gsmp/kc/epcglobal/ale/ale_1_1_1-standard-core-20090313.pdf
http://www.gs1.org/gsmp/kc/epcglobal/ale/ale_1_1_1-standard-core-20090313.pdf
https://www.cisc.at/?id=25
https://www.cisc.at/?id=25
http://www.transcends.co/partners/academic

	Introduction
	Rifidi Toolkit Overview
	The Rifidi Emulator Engine
	Emulator Engine Architecture
	Emulator Engine Components
	Overview of the Command Flow

	Requirements for testing RFID
	Structure of a simplified RFID system
	Virtuality for testing RFID
	Testing with Rifidi

	Related Work
	Comparable RFID Emulators
	Publications about Rifidi
	Applications in Science, Education and Industry

	Enhancements for Rifidi
	Conclusion and Future Work
	Acknowledgements
	References

