
GEMOM Middleware Self-healing and Fault-tolerance: a Highway Tolling Case
Study

Federica Paganelli, Gianluca Vannuccini, David
Parlanti,

National Interuniversity Consortium for
Telecommunications

Firenze, Italy
Federica.paganelli@unifi.it

Dino Giuli1, Paolo Cianchi2
1Dept. of Electronics and Telecommunications

Via S. Marta 3, Firenze, Italy
 dino.giuli@unifi.it

2 Negentis srl, Firenze, Italy
pcianchi@negentis.com

Abstract—Application of message-oriented communication in
business critical systems has to cope with requirements for
end-to-end intelligence, security, scalability, self-adaptation
and fault-tolerance. To this extent, the Genetic Message-
Oriented Middleware (GEMOM) European Research Project
focused on the design and development of a fast-forwarding
message oriented middleware, endowed with robustness,
resilience, self-adaptability, and scalability capabilities. This
paper reports on the design, development and testing results of
a case study for the GEMOM middleware on highway toll data
management and collection. The case study has a twofold
objective: first, it offers a reference scenario that poses
requirements challenging a specific set of self-healing and
fault-tolerance GEMOM features and thus providing an
application scenario suitable for features validation; second, it
aims at representing a real-world application scenario and
consequently at providing valuable insights on GEMOM
exploitability in a specific market sector.

Keywords-message-oriented middleware; self-healing; fault
tolerance; toll data management.

I. INTRODUCTION
Message-Oriented Middleware (MOM) systems are

considered as promising assets for supporting current
challenges in the enterprise computing landscape [1]. These
challenges are: the need for increasing support of sense-and-
respond applications (i.e., applications endowed with
massive sensing, analytics and control capabilities); the
growing interconnection of enterprise systems over
geographically distributed wide areas; the need to
differentiate message traffic according to QoS-aware
policies. Such challenges stress requirements for end-to-end
intelligence, security, scalability, self-adaptation and fault-
tolerance.

One of the most widely adopted approaches to support
scalability and resilience in messaging infrastructures is
based on hot standby brokers with instant switch over and no
data loss. However, once switch-over is performed, usually
these systems have no means to compensate for the
reliability loss by automatically finding another source of
redundancy. Also, they are relatively prone to the incidence
of feed failures as they often do not take redundant feeds into
account. It is often said that the existing state-of-the-art
achieves arbitrary resilience by a brute-force approach. The

state of the art is often outside of the reach of Small Medium
Enterprises) (SMEs) and even of large companies. Moreover,
self-healing is either rudimentary or non-existent, and when
it is available, it requires high-level skills to be configured
and managed [2].

The European Project for a Genetic Message Oriented
Middleware (GEMOM [3]) was aimed at addressing the
above issues, by researching, developing and deploying a
prototype of a messaging platform endowed with robustness,
resilience, self-adaptability and scalability capabilities.

According to their experience in messaging-systems and
business areas of interest, the GEMOM partners were
involved in the development of five case studies, with a
twofold objective: first, each case study offers a reference
scenario that poses requirements challenging a specific set of
GEMOM features and thus providing an application scenario
suitable for GEMOM key features validation; second, each
case study represents a real-world application scenario and
consequently provides valuable insights on GEMOM
exploitability across a wide set of market sectors.

This paper reports on preliminary results in the design,
development and testing of a GEMOM case study on a
highway toll data management and collection scenario. The
proposed case study aims at validating GEMOM capability
in guaranteeing reliable message exchange across highway
infrastructure nodes against different fault simulation
scenarios.

The paper is structured as follows: Section II outlines the
GEMOM middleware requirements definition, the
corresponding GEMOM key features and system
architecture. Section III describes the GEMOM
experimentation in a toll collection management case study.
Finally, Section IV sums up conclusions and future research
directions.

II. THE GEMOM MIDDLEWARE
This section briefly introduces the GEMOM middleware

by first presenting the adopted risk analysis methodology
and design requirements, and then by describing main
characteristics of the GEMOM architecture.

A. Risk Analysis and Requirement Definition
Risk analysis for the GEMOM infrastructure was derived

by taking into account the assets of a MOM, the threats that
may hang over such assets, the vulnerabilities that may be

136

ICSNC 2011 : The Sixth International Conference on Systems and Networks Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-166-3

exploited by the attacker and, finally, the impact of a specific
attack on each asset.

The main assets under consideration were: end user
(using an application that exploits the middleware), agent
(such as applications, probes, effectors), agents acting as
message publisher and/or subscriber, message sender and
receiver, brokers, links (primary and backup), paths
composed of multiple links and, finally, messages and
message topics defined in the MOM. Such assets were
assigned a risk level depending on the specific case study
under consideration within the GEMOM project.

Other assets were considered as extremely relevant and
highly-risky for the GEMOM system, being them the
management layer (hereafter named “Managerial Nodes”) of
the overall GEMOM infrastructure.

 Afterwards, the threats that could affect those assets
were assessed. The value of a threat was estimated by
considering how often an attacker could perform its attack,
or how easily it could access the asset.

Examples of threats that were considered for the
GEMOM project are message flooding or publishing from
non-existent or un-authorised brokers, agent nodes
registration/deregistration via spoofing, and replay attacks
from malicious nodes. Also threats related to confidentiality
and integrity corruption in the messaging path were
considered. Examples of specific threats, that might be more
relevant for the highway tolling messaging system, could be
toll-gate power-supply interruptions (due, for instance, to
flooding or other natural phenomena), as they are likely to
affect the capability to exchange messages with the central
toll collection station. Other threats, even if less likely to
happen, being the network a totally dedicated infrastructure,
could be related to tolling message tampering and sniffing.

Vulnerability analysis in the GEMOM infrastructure was
conceived as a continuous run-time assessment process,
addressed with a specific tool that can be activated in the
GEMOM messaging layer. Vulnerability detection and the

consequent adaptive security policies are out of the scope of
this paper (details may be found in [2]). Nevertheless,
common vulnerabilities derived from the OWASP [4] and
SANS [5] top lists were considered as a first step.

Once the main assets, threats and vulnerabilities were
considered for the GEMOM infrastructure, a further step was
done in order to extend the concept of security risk,
including also performance and QoS degradation that, as
much as a security attack, affect the overall system
performance and, as a consequence, the final quality of the
delivered service. This wide-sense approach is
conceptualised in GEMOM in the extended notion of “fault”.

A fault may be seen as a status-change of a GEMOM
asset between two different security risk-levels, and/or
between two different SLAs. For instance, if a message,
belonging to a guaranteed class-of-service, encounters a path
with compromised QoS capabilities, which will only offer
unreliable class-of-service, a corresponding fault may be
triggered.

The capability of the GEMOM system to react to (and to
prevent) these faults is referred to as Fault Tolerance.

Fault tolerance requirements specify the prevention
actions that GEMOM should perform in order to avoid the
fault, as well as the actions that the GEMOM infrastructure
should launch in order to mitigate the impact of the occurred
fault, and to establish a new reliable and performing steady
state.

The GEMOM requirements gathering process was driven
also by case study analysis. Table I shows a resume of the
requirements that were selected for the Highway Tolling
Data Collection and Management case study with the help of
the highway operator representatives and their corresponding
priority level for validation.

B. Gemom Key Features
According to the above-mentioned risk analysis and

requirements definition, the GEMOM infrastructure was

TABLE I. GEMOM REQUIREMENTS FOR THE TARGET CASE STUDY

Requirement Detailed description Priority

1. Tolerance to
Connectivity
failures

GEMOM shall use traffic engineering techniques at networking layer to be tolerant to links failures. In case
of detection of compromised connectivity to consumers, GEMOM routing algorithm shall select another
alternate path (or more, for redundancy and load sharing) to message consumers.

LOW

2. Tolerance to
hardware/software
faults in nodes

GEMOM shall keep an updated topology database of the network of brokers, in order to be tolerant to
failures in one specific node and to be able to fast-switch to other nodes in case of failure.

HIGH

3. Self-Healing The system should be able to automatically create new redundancy in case of node faults. If one broker or
namespace fails and redundant one takes over the function, system’s resilience capabilities are diminished.
GEMOM should be capable of restoring its resilience and security profiles if resources are available.

HIGH

4. No single-point of
failure

The communication highway shall not introduce a single point of failure in node to node communication LOW

5. Sudden
reconfiguration

The system should allow for sudden re-configurations of the available resources (such as the allocation of
more messaging paths to deal with peak traffic rates and resources required under emergency situations)

LOW

6. Self-protection GEMOM shall implement load balancing, topic mirroring, and shall be able to implement switchover to
redundant components, and to spawn new hot standby components

LOW

7. JMS API support GEMOM shall offer messaging services to JMS-based client application via proper bridging components HIGH

8. Plug&play rule
assisted semantics

“Plug-and-play rule assisted semantics” refer to the system capability of altering message delivery according
to application-specific needs. GEMOM shall allow to attach plug and play rules to the exchange of various
individual topics or groups, and so enhance its handling of exchange of messages with content
transformation rules, routing or security semantics.

HIGH

9. Multiple bindings
support

GEMOM shall prove bindings for Java HIGH

137

ICSNC 2011 : The Sixth International Conference on Systems and Networks Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-166-3

designed to implement a fast-forwarding message-oriented
middleware endowed with end-to-end resilience, security,
scalability and self-adaptation capabilities.

GEMOM key features, and related research challenges,
may be listed as follows [2]: a) system scalability in handling
variable messaging volumes and clients cardinality; b)
context-aware adaptive security via policy-based
authorization, authentication and confidentiality techniques;
c) new techniques and tools for pre-emptive and automated
checking vulnerabilities to faults, oversights and attacks; d)
message delivery reliability to message broker mirroring and
workload distribution techniques; e) extensibility for
accommodating application-specific requirements (e.g.,
content-based message filtering, JMS API support, message
traceability).

Features d) and e) are particularly relevant to this paper,
as discussed in the following section. For an extensive
description of the other features, and the discussion of
GEMOM contribution with respect to the state of the art, for
the sake of brevity, we refer the reader to [2].

Above mentioned GEMOM key features are supported
by the following specific research contributions:

• the architecture of an externalized system to support
resilience and anomaly detection for MOM
resilience and protection [2] [6].

• The design and implementation of a resource
allocation mechanism for balancing brokers’
workload [6].

• The integration of a mechanism for anomaly
detection. Examples of target anomalies are high
message rates, degradation of broker performance in
the context of Denial of Service (DoS) and
anomalous message content [7].

• Design of adaptive security mechanisms and security
metrics for a distributed messaging system based on
threat and vulnerability analysis and security
requirements [8].

C. GEMOM Architecture
The GEMOM system architecture was modelled as a set

of communicating nodes, distinguished into operational and
managerial nodes.

The Operational nodes are those responsible for
executing basic operational tasks according to a specific
behaviour, and message exchange. Examples include
Message Brokers and Clients (either message publisher or
subscribers) and modules providing security and fault
detection capabilities, i.e., the Authentication and
Authorization Modules.

 Managerial nodes are modules that, based on the system
context awareness, take decisions about possible run-time
adjustments of Operational nodes behaviour. Examples
include modules responsible for elaborating adjustments for
the broker topology and workload (Overlay and Resilience
Managers) and modules responsible for adapting security
policies (Adaptive Security Managers).

Therefore, GEMOM infrastructure can be devised as a
network of GEMOM brokers (Gbroker) configured,

protected, monitored and optimised by an overlay of
Managerial nodes, as sketched in Fig.1.

A GEMOM Broker is designed in order to keep the
message routing process as simple and fast as possible. To
this extent, topic names follow schemes similar to those used
in variables or class definitions in programming languages,
while topic values are simply key-value pairs. Message
brokers and API then add metadata to the stream of routed
topics.

Overlay Manager Adaptive Security
Manager

Resilience
Manager

Adaptation
schemes

Adaptation
schemes Managerial

Nodes

GEMOM broker

Operational
Nodes

Context
Information

Context
Information

Control
Information

GEMOM broker

GEMOM broker

Figure 1. GEMOM Architecture

In addition to this simple messaging layer, the Overlay
Manager is responsible for a range of functions to improve
performance and resilience. It is external to the message
forwarding system and receives data pertaining to security
and QoS from a range of sensors that monitor the core
messaging system. It then evaluates such data and performs
the consequent actions using effectors deployed within the
Operational Nodes, and the contextual information gathered
by multiple nodes both at the Managerial and Operational
Layers (e.g., Adaptive Security Manager, Vulnerability
assessment tools, Monitoring Tools, Gbrokers collecting
internal data, etc.).

In other words, the above actions are triggered by «fault»
events that are detected by active and passive monitoring the
QoS and Security parameters, according to specific SLAs.
When a violation in the committed service guarantees
occurs, GEMOM must react by executing a suitable series of
actions.

Examples of actions suggested by the Overlay Manager
to the Operational Nodes layer, that are also specifically
relevant to the requirements described in the previous section
for the Toll Collection scenario, are: rebalancing existing
load, adding new GBrokers to the system and re-routing the
traffic on some namespaces or individual topics. These
actions are the basic mechanisms for realizing Gemom
Broker Mirroring and Self-Healing capabilities.

Operationally, if there is a severe failure in the primary
Gbroker, then message handling is passed to the mirror,
which is re-labelled as primary (broker mirroring), and a new
mirror for the primary found. This mechanism allows to
automatically re-establish the required resource redundancy
also after a fault occurrence (self-healing). The same
happens if the failure is related to a link between two
Gbrokers, or during a path between publishers and
subscribers. Note that a failure could also concern the chosen
QoS SLA profile. The following figure shows how the

138

ICSNC 2011 : The Sixth International Conference on Systems and Networks Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-166-3

GEMOM system reacts to a fault through broker switchover
and how the self-healing capability is achieved by spawning
a new broker acting as a mirror (Fig.2).

Subscriber

Switchover

XFailure

Spawn New
Mirror

New Broker
Mirror

BrokerPublisher

Broker
Mirror

Replicate

Replicate

Figure 2. Broker Mirroring and Self ealing through new broker spawning
acting as mirror

III. GEMOM EXPERIMENTATION IN A TOLL COLLECTION
AND MANAGEMENT SCENARIO

The GEMOM middleware was conceived, developed,
deployed and tested within the project lifetime by GEMOM
partners.

The research challenges addressed and documented
within the GEMOM project were experimented by carrying
out suitable testcases in different real-life scenarios, each
related to the major expertise of the corresponding GEMOM
partner.

In particular, the case study reported in this paper had the
twofold objective of: a) evaluating how GEMOM message-
oriented infrastructure could be conveniently applied to cope
with information distribution needs of highway operators b)
validating a subset of GEMOM features, which were chosen
according to the case study application requirements. The
case study was designed with the collaboration of an Italian
highway operator. More specifically, requirements were
collected through face-to-face unstructured interviews with
the operator representatives.

From these interviews it emerged that Toll collection
management is an application scenario that is strategically
relevant to the highway operator’s purposes as well as
potentially challenging for GEMOM validation. As a matter
of fact, as already argued by Clark et al. [4], a wide-scale
tolling system should cope with several requirements,
including system reliability and availability, which are
strongly required as money is involved.

Toll collection and management deals with the tools,
techniques and processes involved in collecting revenue

from a vehicle user for the use of road-space through road-
use pricing [9].

Toll messages represent a significant volume of data
exchanged within the target highway operator network as
well as with external information systems of neighbour
highway operators.

These issues motivate the need for a uniform, reliable,
self-optimising, well-structured, extensible architecture for
application-level communication and integration. Moreover,
a uniform approach for data exchange based on message-
oriented paradigm may facilitate the adoption of efficient and
cost-effective system maintenance strategies.

A basic representation of a toll data collection system
includes the following entities:

Highway Toll Central System. This system collects toll
data from the infrastructure and performs toll data archiving,
validation and processing for end users’ accounting and
monetary compensation with external operators.

Station Systems. Highway Stations may group lanes of
both types: manual (i.e., with on-site payment) and
electronic lanes.

Electronic Lanes. Electronic Lanes are equipped with
RFID readers and sensing devices. This infrastructure is used
to detect the transit of a vehicle equipped with an RFID
transponder. The transit event (both in entrance and in exit)
triggers the generation of a message (Electronic Toll
message) which is sent to the Highway Toll Central System.

Manual Lanes. Entrance manual lanes provide drivers
with a paper-based token registering the vehicle transit
details. At destination, the driver shows the token at the exit
lane. The lane system calculates the road fare, depending on
the adopted pricing models, and the driver pays on-site. For
each entrance and exit event, a message is created by the lane
system and sent to the Highway toll central system. Updates
on tolling policies are notified to Lanes via messages
delivered by the Highway Toll Central System.

External toll systems. A target Highway Toll Central
System should interact also with Toll Systems of external
operators (e.g., for monetary compensation). Exchanged data
include aggregated electronic toll messages and tolling
policies update.

The case study scenario focuses on the distribution of
two message types:

a) automatic toll payment data, which are data collected
at toll lanes and transmitted periodically to the central
control room for performing billing operations. Message size
is limited. Data loss is not tolerated, while timing constraints
are not hard real-time (Many-to-One message delivery).

b) tolling policy update records: update of tolling policy
is performed once in a while and have to be communicated
to all the peripheral nodes (i.e., toll lanes and stations) within
a limited time interval. The system does not tolerate data
loss. As regards timing constraints, the system is not
specifically sensitive to single message delays. (One-to-
Many message delivery)

139

ICSNC 2011 : The Sixth International Conference on Systems and Networks Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-166-3

These data represent a strategic and relevant information

asset for a highway operator and no information loss is
tolerated.

This case study is thus particularly significant for testing
GEMOM messaging service’s continuous availability and
robustness achieved via mirroring and self-healing features.
As a matter of fact, GEMOM structural replication
capabilities (self-healing) should assure robustness of the
messaging infrastructure even under high volumes of traffic.

Moreover, in order to enable the interoperation of the
GEMOM capabilities in the target operator technological
environment, where Java-based standard and enterprise
technologies are widely adopted, the case study exploits also
the developed full-fledged java bindings to GEMOM C++
native interfaces. In order to facilitate interoperation with
widely-diffused commercial messaging platforms, the case
study architecture is based on the adoption of a component
providing GEMOM-to-JMS bridging capabilities, as Java
Message Service (JMS) [10] is a wide adopted specification
for messaging services API.

A. Case Study Architecture
The case study architecture is composed of the following

functional components:
• Application clients that publish/subscribe for toll and

tolling policies data. Clients have been developed against
JMS messaging interfaces.

• a JMS-GEMOM bridge, interfacing a JMS bus with
GEMOM. The JMS-GEMOM bridge is responsible for
transmission/receipt of messages over GEMOM.
Bridging has been realized by mapping JMS topics onto
GEMOM ones.

• A network of GEMOM brokers responsible for message
exchange.

Applications clients are configured in order to simulate
the behaviour of toll stations and the Service Centre. Toll
station clients are spread on a set of virtual machines to
resemble the highway operator physical wide area network.
They may be configured in order to act as message producers
(to simulate the delivery of electronic toll message) and as
message consumers (to simulate the reception of tolling
policy updates). Analogously, the Service Centre has been
modelled as a JMS client capable of listening for toll data
coming as JMS messages transferred by GEMOM and
sending tolling policy updates.

Toll station clients simulate the production of Electronic
Lane messages over a target time period and deliver the
produced messages to the messaging system. Each toll
station client may be configured in order to simulate
different message traffic scenarios, resembling real-life
message passing statistics during ordinary days. Toll gate
working time is divided into time intervals whose starting
time and duration can be configured; toll gate data are
generated for each time interval according to Poisson
distributions with different average values in order to
simulate traffic flow at different hours over a day. It is
possible to configure on each host the number of gates that
have to be simulated and the desired message distribution
over a target time interval.

The Service Centre simulates the generation of tolling
policy updates. According to real practices, this event may
be modelled as a one-shot event. Analogously to Toll station
clients, the message generation process may be defined in a
configuration file.

Figure 3 shows the proposed case study configuration for
simulating the behaviour of the Highway Infrastructure toll
stations network.

Figure 3. Case Study Architecture

140

ICSNC 2011 : The Sixth International Conference on Systems and Networks Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-166-3

The toll station clients are grouped in set of toll stations
clouds. Each toll station cloud represents the traffic to/from
toll stations covering a specific geographical area. According
to the characteristics of the target highway operator network,
the case study will include at least three toll station clouds,
one for each of devised geographical areas (north-, central,
south Italy). To each area we can assign a given number of
toll gates and/or toll stations, in order to reach an order of
magnitude comparable to that of the real highway operator
network.

As depicted in the figure, the application clients deliver
and consume messages to/from a JMS MOM (i.e., Apache
ActiveMQ). Messages are transferred to GEMOM network
via the GEMOMtoJMS Bridge.

The GEMOM Broker Network is composed of a variable
set of GEMOM Broker Agents and an Overlay Manager
component is responsible for the overall network
management and adaptation, as described in Section II.C.

B. Testing activities and results
The scenario analysis was carried out in collaboration

with the Highway Infrastructure representatives. Details
provided by the Highway Infrastructure on the current
approach for message transfer handling and on typical
message volumes have driven the design of the case study
architecture and the configuration of the overall system for
the demonstration activities.

Given the above-mentioned flexible configuration
capabilities of the implemented case study, we were able to
simulate different traffic scenarios by varying message size
and number of toll gates involved, according to statistics data
and requirements gathered during the meetings with the
Highway Infrastructure representatives.

According to the risk and requirement analysis derived in
Section III and to the architecture specification described
above, the case study had the objective of functionally
validating the following GEMOM capabilities:
1. offering a reliable messaging service via broker

mirroring techniques (see req. 2 in Table I).
2. readjusting the structure of running nodes in order create

new redundancy in response to failure-type events (req.
3 in Table I), as depicted in Fig. 2.

3. allowing clients to subscribe to topics and specify
transformation rules (e.g., encoded in an XSLT file) in
order to receive filtered/aggregated data (see req. 8 in
Table I).

4. offering messaging services to JMS-compliant Java-
based clients via proper bridging components (req. 7 and
8 in Table I).

For each toll station cloud, 150 toll lane clients were
instantiated. We deployed a network of three brokers, as it is
the minimum number of broker required to support GEMOM
mirroring and self-healing features. Each machine was
deployed on a separate host. All components were on the
same LAN network.

We defined a set of test cases in order to test the system
in different working conditions. Test cases are defined by

varying the toll station clients configuration in order to
resemble real-life road traffic scenarios.

A low-traffic scenario models the nightly traffic (with an
average of 100 message per hour produced by single lane
clients).

A medium-traffic scenario models the average traffic on
an ordinary working day (four millions of messages per day).

Finally, a third scenario is defined in order to stress the
system in a heavy traffic scenarios (even if unlikely to occur
in real-life scenarios) characterized by an average of 1000
messages per hour produced by each lane client.Moreover, a
set of messages related to price list updates were sent once
for each test case in the opposite direction (from the Service
Center to lane clients).

For each target GEMOM features (see list above), we ran
each test case ten times. Table II summarizes the outcomes
of the functional tests that were carried out in the testbed,
with the corresponding most relevant issues and comments,
representing the lessons learned from the experimental
validation, and, hence, a sort of todolist for the next steps of
the research activity.

Vertical and horizontal scalability were systematically
tested in other GEMOM case studies [11].

For what concerns the testcase presented in this paper,
the overall percentage of correctly received messages was
99,5%, while GEMOM highest measured throughput was
5000 msg/sec.

IV. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS
This paper reported on the design, development and

testing results of a case study aiming at validating a set of
GEMOM middleware features in a highway toll data
management and collection scenario. In order to cope with
the application scenario requirements, this work was mainly
focused on the experimentation of mirroring and self-healing
capabilities of the GEMOM system. We also tested
interoperability with JMS API and the capability of
configuring content transformation rules.

With respect to the related work on the GEMOM project,
the remaining set of GEMOM features (e.g., adaptive
security and authorization), were specifically addressed
within the project lifetime in other case studies [11][12].

With respect to the related work in evaluation
frameworks for MOM dependability and QoS [1]
[7][13][14], this paper was based on requirements gathered
from industry experts of highway infrastructures, where
secure and reliable MOMs can be effectively applied, and it
aimed at validating such requirements by means of
experimental tests. However, given the mission-critical
profile of the considered Highway operator infrastructure, it
was not feasible – during the project lifetime - to validate the
GEMOM middleware directly into the real operating
messaging network. Further investigations could be focused
on the deployment of GEMOM modules (especially those
related to reliability and self-healing) into subsets of the real
Highway Infrastructure and on testing and validation
activities in more complex scenarios.

141

ICSNC 2011 : The Sixth International Conference on Systems and Networks Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-166-3

TABLE II. CASE STUDY TESTING RESULTS

GEMOM Feature Test Description Issues/Comments
Broker mirroring At least two GEMOM brokers are running.

Broker A is a master broker and Broker B is
a mirror broker for a group of topics. After a
blocking fault in Broker A was caused, we
observed that messages have continued to
flow from publishers to subscribers with no
data loss, while the OverlayManager has
correctly reported the re-instantiation of the
Broker A

We simulated faults in a master broker by killing the corresponding
process. Future tests could include the simulation of different faults (e.g.,
Distributed DoS, faults related to performance degradation).

Self Healing through
broker spawning

The objective of the trial consisted in
verifying that in case of failure of a master
broker, the mirror broker will act as a
master broker and a new mirror broker is
spawned. We checked that messages
continued to flow from publishers to
subscribers.

This test was performed with a GEMOM network made by up to four
brokers. Future test could be performed by increasing the GEMOM broker
network size.

Plug-and-play rule assisted
semantics

Toll station clients subscribe to the Price
Listing topic and specify an XSLT
transformation script file in order to receive
transformed data. We checked that
transformed messages were correctly
received (via XML Schema validation).

Future tests could simulate the exchange of price listings with external
operators’ systems.

JMS API Support and Java
bindings

The trialling activities verified that the
message traffic is correctly handled by a
system deployment made of the Java client
applications compliant with the JMS API,
the GemomToJMS bridging component and
the GEMOM broker network (Fig. 4)

At present the GemomToJMS bridging component has been tested with the
ActiveMQ messaging system.
First testing iterations were useful to find bugs in the first releases of the
Java-binding implementation.
Future tests could include alternative JMS-compliant MOMs.

ACKNOWLEDGEMENTS
The Authors gratefully acknowledge the cooperation of

“Autostrade per l’Italia” S.P.A and Dr. Eng. Paolo Tonani
for his contribution to the requirements analysis and case
study demonstration. They also thank Mr. Luca Capannesi
for his technical support.

REFERENCES
[1] H. Yang, M. Kim, K. Karenos, F. Ye, and H. Lei, “Message-

Oriented Middleware with QoS Awareness”, in the Proceedings of
the 7th International Joint Conference on Service-Oriented
Computing (ICSOC-ServiceWave '09), Springer-Verlag,
Heidelberg, pp. 331-345, 2009.

[2] A. Habtamu, R.M. Savola,., J. Bigham, I. Dattani, D. Rotondi,G.
Da Bormida, “Self Healing and Secure Adaptive Messaging
Middleware for Business Critical Systems”, International Journal
on Advances on Security, pp. 34-51, vol. 1&2, 2010.

[3] GEMOM Research Project Web Site, http://www.gemom.eu (last
access date: July 31st, 2011)

[4] http://www.owasp.org The Open Web Application Security Project
– Top Ten Web Application Security Risks (last access date: July
31st, 2011)

[5] http://www.sans.org The SANS (SysAdmin, Audit, Network,
Security) Institute (last access date: July 31st, 2011)

[6] J. Wang, J. Bigham, B. Murciano, “Towards a Resilient Message
Oriented Middleware for Mission Critical Applications”, Proc. of
the Second International Conference on Adaptive and Self-adaptive
Systems and Applications (ADAPTIVE 2010), Lisbon, Portugal,
2010, pp. 46-51.

[7] J. Wang and J. Bigham, “Anomaly detection in the case of message

oriented middleware”, in Proc. of the 2008 Workshop on
Middleware Security (MidSec '08). ACM, New York, NY, USA,
pp. 40-42, 2008.

[8] R. Savola,H. Abie, Development of Measurable Security for a
Distributed Messaging System, International Journal on Advances
in Security, vol. 2, no. 4, 2009, pp. 358-380.

[9] C.J. Clark, P.T. Blythe, A.Rourke, “Design considerations for road-
use pricing and automatic toll-collection systems” Electronics in
Managing the Demand for Road Capacity, IEE Colloquium on, pp.
5/1-5/11, 5 Nov 1993

[10] Java Message Service (JMS), Official Web Page,
http://www.oracle.com/technetwork/java/index-jsp-142945.html
(last access date: July 31st, 2011)

[11] P. Ristau, S. Topham, F. Paganelli, L. Blasi, “GEMOM Platform
Prototype Validation through Case Studies - Main Results and
Viewpoints to Exploitation”, in the Proc. of 30th IEEE Int. Conf. on
Distributed Computing Systems Workshops (ICDCSW), pp. 290-
291, 21-25 June 2010

[12] L. Blasi, R. Savola, H. Abie, and D. Rotondi. 2010, “Applicability
of security metrics for adaptive security management in a universal
banking hub system”, in Proc. of the Fourth European Conference
on Software Architecture: Companion Volume (ECSA '10), Carlos
E. Cuesta (Ed.). ACM, New York, NY, USA, pp. 197-204, 2010.

[13] N. Looker and J. Xu, “Dependability Assessment of Grid
Middleware”, 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN'07), pp. 125-130, 2007.

[14] S. Chen, P.Greenfield, “QoS evaluation of JMS: An empirical
approach”, in: HICSS '04: Proceedings of the Proceedings of the
37th Annual Hawaii International Conference on System Sciences
HICSS'04 - Track 9, IEEE Computer Society, Washington, DC,
USA, pp. 1-10, 2004.

142

ICSNC 2011 : The Sixth International Conference on Systems and Networks Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-166-3

