
A Framework for Robust, Low-Overhead Binary Instrumentation

Amir Majlesi-Kupaei
University of Maryland

Collge Park, USA
email: majlesi@umd.edu

Aparna Kotha
SecondWrite LLC
Collge Park, USA

email: akotha@secondwrite.com

Danny Kim
University of Maryland

Collge Park, USA
email: dannykim32@gmail.com

Khaled Elwazeer
Google Inc.

Mountain View, USA
email: kelwazeer@gmail.com

Kapil Anand
Google Inc.

Mountain View, USA
email: kapilanand2@gmail.com

Rajeev Barua
University of Maryland

Collge Park, USA
email: barua@umd.edu

Abstract—We have designed and implemented a binary rewriter
called RL-Bin, which can rewrite binaries correctly with low
overhead. Existing binary rewriters have their challenges: static
rewriters do not reliably work for stripped binaries (i.e., those
without relocation information), and dynamic rewriters suffer
from high base overhead. Because of this high overhead, existing
dynamic rewriters are limited to off-line testing, and cannot be
used in deployment. RL-Bin differentiates itself from other binary
rewriters by having the capability to robustly rewrite stripped
binaries with very low overhead (averaging 1.05x for SPECrate
2017, not including the instrumentation cost, compared to 1.16x
overhead for DynamoRIO). The overhead added by RL-Bin itself
is negligible and it is proportional to the added instrumentation.
Hence, lightweight instrumentation can be added to applications
that are deployed in live systems for monitoring and analysis
purposes.

Keywords–Program Analysis; Binary Instrumentation; Static
and Dynamic Analysis; Testing and Verification; Program Trans-
formation.

I. INTRODUCTION

There are several reasons why it is desirable to instrument
or modify the code that is directly executed in deployment.
The applications of instrumentation range from resource mon-
itoring, application performance monitoring, security policy
enforcement, vulnerability patching, dynamic information flow
tracking, and performance optimization. The code modification
can be applied either at the level of source code or binary code.

Binary code is the code that executes directly on the
hardware using machine code instructions. Binary code can
theoretically be produced from any language, but is typically
produced not only from older languages like C, C++, Fortran,
and COBOL, but is also often produced from popular modern
languages, such as Go, Erlang, Visual Basic, Swift, and
Objective C.

Binary code is widespread because it offers significant
advantages for two types of code: IP-protected code and high-
performance code. First, IP-protected code is code that is sold
by companies to outside parties. Second, high-performance
programs, such as those in the domains of image processing,
financial transactions, machine learning, and scientific codes
are often deployed in binary code to ensure the highest
execution speed. For the aforementioned application areas, it
is often needed to be able to instrument or modify the binary

code when the source code is unavailable, such as for third-
party binaries. To do so, we need a tool named binary rewriter.

A. Criteria and Trade-Offs in Building a Binary Rewriter
There are two equally important and necessary criteria

that a binary rewriter must have: it must be robust, and it
must incur low overhead. First, a binary rewriter must work
for different types of binaries, including those produced by
commercial compilers from a wide variety of languages, and
possibly modified by obfuscation tools. Second, the binary
rewriter must be low overhead. Although the off-line use of
programs, such as in testing and profiling, can tolerate large
overheads, the use of binary rewriters in deployed programs
must not introduce significant overheads; typically, it should
not be more than a few percents [1].

Unfortunately, existing methods cannot modify binary code
in a manner that is both robust and low overhead. To un-
derstand the reason, let us consider that there are two types
of binary rewriters: static vs. dynamic. Static rewriting refers
to approaches which take an executable binary program as
input, and without running it, produce another (rewritten)
binary program as output that has the same functionality as
the input program, but is enhanced in some way, for example
in improving its run-time, memory use, or security. Dynamic
rewriters change the binary code during its execution and
modify the binary code in memory, either in-place or in a
copy of the code memory.

Static rewriters are not robust. Static rewriters can have
very low overhead, but are not robust, meaning that they often
do not work for certain types of binaries. As our related work
section details, 24% of commercial benign programs had dy-
namically generated code and 1% had obfuscated code, which
are the features that static rewriters cannot handle. Several
schemes do not even work for simpler programs with indirect
branches whose targets cannot be statically determined.

Dynamic rewriters have high overhead. In contrast,
dynamic rewriters are robust but have high overhead, usually
ranging from 20% to several hundred percents. Dynamic
rewriters are robust because they discover all code at run-time.
However, they incur high overhead since most of them main-
tain a code cache, where rewritten copies of code blocks are
stored and executed from. As a result of the above drawbacks,
binary rewriters are generally not used in deployment today

on third-party programs, since for those programs, usually no
guarantees can be made on how they were compiled.

Dynamic rewriters, such as DynamoRIO [2], copy all the
code that executes into another memory region called a code
cache. The code cache is useful because it ensures robustness;
the program still works if a piece of data is mistakenly assumed
to be code and rewritten. The reason is that the code cache
was changed and the original copy of the code segment is still
unchanged.

The overhead of dynamic rewriters is caused by two
factors. First, copying the code into the code cache is expensive
at run-time. Second, and more seriously, the target addresses
of an indirect Control Transfer Instruction (CTI) must be trans-
lated at run-time because the locations of code have changed
to be in the code cache instead. Such indirect jumps or calls
are very common – they mostly arise from return instructions,
function pointer calls, and calls to virtual functions in object-
oriented languages, such as C++. This translation process
is inevitable for DynamoRIO since the original destination
address in the program is different from the address of the
rewritten code inside the code cache.

B. Robust, Low-Overhead Binary Instrumentation
Consequent to the needs above, we developed RL-Bin. It

supports several types of obfuscation, as well as dynamically
generated and self-modifying code. As a result, it is robust
enough to be used for benign third-party applications. Also,
we have designed and implemented several optimizations, so it
has very low overhead. We present the following contributions.
– Design and development of the first low overhead dynamic

binary rewriter that can handle stripped binaries without
relocation or debug information, containing self-modifying
or dynamically-generated code or obfuscation.

– An innovative method that tracks the execution of code
dynamically by anticipating future control-flow to the new
code, and adding instrumentation and breakpoints to process
such new code when discovered.

– Using a novel dynamic method to eliminate the overhead
of breakpoints, once the new code is discovered.

– Using Just-In-Time (JIT) dynamic analysis of the discov-
ered code and traditional data flow analysis concepts, to
find ”Safe” functions and further reduce the overhead by
eliminating redundant checks.

– The above design is unlike other dynamic rewriters that
translate indirect control transfer addresses to their copies
in a code cache.

– The result is the first In-Place dynamic binary rewriter –
which does not use a code cache – that combines the
robustness and coverage of a dynamic rewriter with the low
overhead of a static rewriter.

– Extensive testing and performance comparison with Dy-
namoRIO for SPEC CPU2017 benchmark with over 7
million lines of code in C, C++, and Fortran, compiled with
Microsoft Visual Studio, GCC, and ICC compilers.

– Design and implementation of a ”Debugging System in
Deployment” as a use case of RL-Bin, which enables the
developer to find and patch the errors during execution
without sharing debug information with the end-user.
RL-Bin will find use in implementing a variety of applica-

tions of binary rewriting. For example, researchers have pro-
posed binary rewriting-based methods for securing untrusted

code [3], enforcing control flow integrity [4], implementing
software transactional memory [5], self-randomizing instruc-
tion addresses [6], profiling tools [7], and taint tracking to
prevent sensitive data leaks [8].

The paper is structured as follows: Section II discusses the
capabilities and limitations of RL-Bin. Sections III and IV de-
scribe the base design of RL-Bin and the optimization methods
designed to reduce the overhead. In Section V, we demonstrate
the results of our evaluation of RL-Bin and compare them to
DynamoRIO. Section VI looks into a debugging and patching
system as a use-case of RL-Bin. Section VII describes related
work. Finally, Section VIII looks ahead at future work and
concludes the paper.

II. RL-BIN CAPABILITIES AND LIMITATIONS

In this section, first, we list some of the troublesome
features that may occur in benign programs. These must be
handled correctly since our goal is robust binary rewriting.
Additionally, we briefly go over binaries with features for
which RL-Bin might fail to instrument properly, most of which
are found in malicious applications.

A. Handling Complicating Features
Obfuscation is a technique used to mislead attempts to

reverse-engineer the code. Here, we are primarily concerned
about control-flow obfuscation, which makes it appear that data
is code, or vice-versa. There are publicly available applications
and research methods which will control-flow-obfuscate a bi-
nary application to protect the binary from reverse-engineering,
such as the Binary obfuscation project tool [9], and the work
by Popov et. al [10].

RL-Bin supports two types of obfuscation techniques that
are problematic for binary rewriters: (i) unconditional to con-
ditional branch flow obfuscation, (ii) exception-based obfus-
cation. In the unconditional to conditional branch obfuscation,
an unconditional branch is replaced by a conditional branch,
one of its targets is never taken. Instead, the never-taken path
contains data, rewriting which will break the program. Another
technique is exception-based obfuscation. In this method, a
change of control flow is achieved without a CTI, using
exceptions instead. For example, the program can deliberately
trigger a divide-by-zero exception by using a zero value in
the denominator. The program may also register a custom
exception handler, which can redirect to any arbitrary location
in the program.

Dynamically-Generated Code is common in binary ap-
plications. It is mostly used when executing user scripts or
any script coming from external sources. Another instance of
dynamically-generated code is packed code. Unlike dynamic
rewriters, static rewriters cannot disassemble such dynamically
generated code.

Self-Modifying Code is similar to dynamically generated
code with an important difference: the addresses into which
dynamically generated code are stored may already contain
instructions that have been executed during the program. This
modifies the program’s code at run-time.

B. Limitations of RL-Bin
RL-Bin is capable of analyzing and instrumenting most

of the common commercial binary files which do not have

relocation information, and may have obfuscated, dynamically-
generated or self-modifying code. However, RL-Bin is not
designed to support adversarial binaries, which can deliberately
use methods to prevent their examination by a binary rewriter
or a debugger. We will go over certain types of behavior in
adversarial binaries that can cause problems for the binary
rewriter.

(i) Verifying the memory image by using a checksum.
Some adversarial binaries compare the checksum on their
memory image against a previously calculated checksum to
make sure that the program is not altered by debuggers. The
goal is not ensuring integrity, but defeating debuggers. In
most commercial binaries, developers know that many users
may use debuggers on the software which will not work with
such binaries. (ii) Disabling the debugger. Binaries can check
the presence of a debugger and can try to disable it. As
mentioned before, commercial binary applications are intended
to support debuggers and binary rewriter can handle them
properly. (iii) Modifying breakpoints inserted by the debugger.
Adversarial binaries attempt to remove breakpoints inserted by
debuggers, which can interfere with the operation of rewriters
and debuggers. This behavior is limited to only adversarial
binaries.

III. BASE DESIGN

In this section, we describe the base unoptimized algorithm
that is used by RL-Bin. This algorithm has very high overhead
(approximately 5x to 10x the run-time of the un-instrumented
program for SPEC CPU2017 benchmarks) but demonstrates
the correctness of the method.

Application

Unexpected
Control Transfer

New
Code

Instrumentation Unit

Trampoline Unit

RL-Bin

Control
Unit

Instrumentation
Routines

Analyzer &
Optimizer Unit

Disassembler
Unit

Figure 1. RL-Bin System Overview

The components of RL-Bin are shown in Figure 1. The
Control Unit keeps the state of the application and manages
other units. The Instrumentation Unit creates and manages
instrumentation routines. The Trampoline Unit is responsible
for efficiently placing trampolines in the original code to
redirect execution to the instrumentation routines.

A. RL-Bin Baseline Algorithm
The main intuition behind RL-Bin is to add instrumentation

at run-time that monitors the discovery of the new code. To
discover code, our method assumes that a block of memory is
code only if we discover an actual control transfer to it during
run-time. Our purely dynamic disassembly method will begin
at the start of a memory block (whose address we call START)
once it is proven to be code and follows non-control-transfer
instructions one after another, which are all discovered to be

code until it reaches a control transfer instruction. Whenever
the method reaches a CTI, if that CTI can have more than one
possible target, the method ensures that some instrumentation
is triggered when the actual target becomes known later during
the same run.

Some terminology: All instructions that change the control-
flow behavior of a program, such as branches, jumps, and calls,
are called Control-Transfer Instructions (CTIs). A direct CTI is
a CTI whose target is specified by an immediate constant in the
instruction. Direct CTIs can be unconditional or conditional.
An indirect CTI is a CTI whose target is specified in a register
or memory location and hence is usually unknown statically.

Here are the steps in RL-Bin’s Disassembly Routine:
1) Add entry point to the list of instructions to be discovered,
let us name it D.
2) Pick an instruction I from list D.
3) Mark the address of instruction I as discovered in the
disassembly table.
4) If instruction I is a non-control-transfer instruction,

4.1. The next instruction must be code as well, so we add
it to list D if has not been disassembled before.

5) If instruction I is an unconditional direct CTI,
5.1. It has only one possible constant target (i.e., it is a direct

jump), so we can infer that the target is code as well, so
we add the target to list D and disassembly continues from
there.

6) If instruction I is a conditional direct branch, (see Figure
2 as an example)

6.1. We cannot assume that its target (T) and fall-through
(F) addresses are both code. As discussed before in Sec-
tion II-A, because of conditional branch obfuscation, only
one of the target or the fall through might be code, but not
necessarily both. Hence we insert hardware breakpoints at
both the target and fall-through addresses (T and F).

6.2. Register a custom exception handler for handling these
hardware breakpoints. Particularly, when either one of them
is executed (say T),
i) It will register that memory location as code in the

disassembly table.
ii) Then it removes hardware breakpoints at both T and

F. (The reason that hardware breakpoints are removed
from a block after it is executed is that in most
ISAs, only a small number of hardware breakpoints are
allowed at a time. In the case of x86, there is a limit
of four hardware breakpoints that can be set at a time.)

iii) Adds trampoline at START (see trampoline (1) in
Figure 2), which will transfer to instrumentation routine
that adds back the hardware breakpoint at the non-
executed address among T and F (say F) (If the code
is executed from START again, we do not need to
disassemble the code from START again, but just insert
the hardware breakpoint at F when at START.)
Note: In the case of x86, if there are more than four
non-executed addresses in the function, extra trampo-
line(s) will be placed in the middle of the function to
remove hardware breakpoints from previous addresses
and insert them on the following addresses.

6.3. Later, as an optimization, if the handler at F also
executes, remove the hardware breakpoint, as well as the
instrumentation at START. This leads to zero overhead in

jmp L

. . .

cmp eax, 0x01

jne T

sub ebx, 0x04

mov eax, ebx

ret

START:

L:

F:

T:

Trampoline(1)

Direct CTI

Conditional CTI

HW Breakpoint

HW Breakpoint

Trampoline(2)

Indirect CTI

Figure 2. Disassembling a Memory Block

the steady-state after T and F are both proven to be code.
7) If instruction I is an indirect CTI,

7.1. Insert trampolines to an instrumentation routine (see
trampoline (2) in Figure 2), just before the indirect CTI
to the instrumentation routine which,
i) Computes the target upon reaching that point.

ii) Add it to the list D, if it is not disassembled before.
(The target of indirect CTIs needs to be checked every
time because it can change every time the instruction is
executed; hence, our trampoline and instrumentation will
remain in place to check the target of indirect CTIs to
discover new code and handle unexpected control flows.)

8) If D is empty, then exit, otherwise go to Step 2.

The above method works for dynamically-generated code
without a special case, since it tracks the CTI into the
dynamically-generated code just like any other CTI. It also
handles unconditional to conditional branch obfuscation as
described above. However, the method needs additional com-
ponents to handle self-modifying code and exception-based
obfuscation. These will be described in the subsections below.

B. Handling Self-Modifying Code
Self-modifying code is handled as follows.

1) To check whether the code has modified itself, write-protect
the pages that contain code, so any write to these pages will
cause an exception.
2) Register the exception handler to:

2.1. Check the addresses which are being written.
2.2. If they have previously been discovered as code, remove

those entries from the disassembly table. (As a result, the
newly written code will be treated the same as the code
which has never been seen before.)

The above method is very high overhead and it needs to
be optimized. The main overhead comes from the fact that
every write to the code segment will cause an exception. Such
writes will happen if data is stored in the code segment and
is written to by the program. To reduce the overhead, we use
the following scheme. We add instrumentation code around
memory store instructions that trigger the exception for the
first time. The instrumentation will turn off write protection,

check the addresses being written to, and turn back on write
protection after the memory store. In this way, stores to data
locations in the code segment will never trigger an exception
more than once. As a result, only a small portion of memory
store instructions (those that write to the code segment) will
be surrounded by our added instrumentation.

C. Handling Exception-Based Obfuscation
This obfuscation happens when an instruction that is not a

CTI is used to transfer control of the program. As an example,
a divide instruction that deliberately triggers an exception can
be used as a CTI. As a result, the memory location following
the divide instruction may never be executed. It may contain
data and not code. To handle exception-based obfuscation, we
follow the following method.

1) Create a stub for every exception handler that is registered.
When an instruction triggers the exception it will execute our
instrumentation before the actual exception handler.
2) Disassembly routine must stop disassembly at every in-
struction that can cause an exception that has been registered so
far. (In the common case no such exceptions will be registered,
thus the overhead will be minimal.)

2.1. If such an exception causing instruction is found (in
Step 4 of the baseline algorithm), put a hardware breakpoint
on the instruction that immediately follows it.

2.2. After hitting the breakpoint, remove it and start discov-
ering code from that location. (This method ensures that
no data is mistakenly assumed to be code.)
Using the algorithm in this section, more and more code

is discovered during run-time. This method will ensure that
not a single instruction can be executed without first being
observed by our binary rewriter, even if the instruction has
been generated dynamically or through self-modification. Also,
in case there is obfuscation, we would never instrument data
inside the code segment since we instrument only the locations
that contain code that has been executed during run-time.

D. Handling Multi-Threaded Applications
By the advent of multi-core processors, multi-threaded ap-

plications have become very common. As a result, every binary
rewriter must handle such applications. The main issue in
multi-threading is to make sure that the data structures that are
shared between threads are being used correctly. Specifically,
they should not be used by a thread while simultaneously being
updated by another thread. To avoid the problems regarding
concurrent access to RL-Bin data structures, each thread must
acquire the lock before being able to modify RL-Bin internal
data structures. During this modification, no other threads are
allowed to access the same data structure.

IV. OPTIMIZATIONS

This section presents the optimization techniques used in
RL-Bin to reduce the overhead. The effectiveness of each
optimization will be discussed in Subsection V-C.

OP1. Conditional Branches
As was described in Step 6.3 of the baseline algorithm, if at

any point both outcomes of a conditional branch are registered
as code, then the instrumentation and hardware breakpoints
at that branch can both be removed. In the steady-state, the
checks before most direct conditional branches are removed.

OP2. Predicting the Target of Indirect CTIs
The baseline algorithm in Step 7, instruments every indirect

CTI to compute its target at run-time and register it as
code. This overhead can be reduced by optimization with the
following intuition: indirect CTIs usually transfer the control
to one of a few constant targets. We will replace this check
with a check which takes less time.

As an example, let us assume that function foo() is being
called from three different call sites. So, the return instruction
of the function will return to the instruction after one of these
call sites. First, the target will be checked against the most
frequent call site. If it matched, the indirect CTI can safely
transfer the control flow back to the call site. The same idea
would be done for second and third call sites. In the end, if
none of the previous checks were true, we would refer to the
disassembly table to check whether the target of indirect CTI
has been discovered as code before.

There is a trade-off between overhead and the number of
frequent call sites that need to be checked before referring to
the disassembly table. We use heuristics on the frequency of
each target to determine the optimal number of checks.

OP3. Function Cloning

It is often the case in programs that a small function is
being called frequently from a call site. The intuition is to
remove the check needed before the return instruction (indirect
CTI) to the call site. During Step 7 of the baseline algorithm,
we selectively clone functions to reduce the overhead and
remove the checks needed before their return instructions.

In this method, the function is cloned so that no check is
needed if called from that specific call site. First, the function
is copied to a new location. The call instruction is modified to
a direct jump to the new location. As a result, no return address
will be pushed on the stack. Also, the return instructions in the
function are replaced by direct jumps to the instruction after
the call site.

Again, we face a trade-off here. If we clone every function,
it would lead to excessive code bloat. Thus, we must clone
functions selectively only for the call sites when doing so will
reduce the overhead significantly.

Set I = Instructions in the function

Set C = Set of Safety Conditions(Called Functions)

1 bool Is_Safe(Address Entry_Point)

2 Set W={Entry_Point} //Insts waiting to be checked

3 While(𝑊 ≠ ∅)

4 pick inst from W

5 if(inst ∈ 𝑃) return false

6 if(inst ∈ Call_Instructions)

7 add Dests(inst) to C

8 add Next(inst) to W if(Next(inst) ∉ 𝐼)

9 else add Dests(inst) to W if(Dests(inst) ∉ 𝐼)

10 if(stack_height ≠ value assigned before)

11 return false

12 else

13 assign stack_height of Dests(inst)

14 if (inst is an indirect write)

15 if(Write_Address(inst) = Return_Address)

16 return false

17 remove inst from W and add it to I

18 Let c ∈ 𝐶 , if(Is_Safe(c) = false) return false

19 return true

P1 = Set of indirect branch instructions

jmp dword ptr [eax*4 + 0x0c]

P2 = Set of instructions that modify the
stack pointer to a value that is statically
unknown.

add esp, eax

mov esp, dword ptr [ecx]

Not including

add esp, 0x4

(Added value is constant)

P3 = Set of instructions that write to an
indirect address which may or may not
be the return address of the function

i.e. mov dword ptr [eax], 0x3c

mov dword ptr [esp + ebp*4], eax

Not including

mov dword ptr [esp + 0x4], eax

(Check whether esp+0x4 points to return address)

𝑷 =ራ

𝒊=𝟏

𝟑

𝑷𝒊

Figure 3. The Algorithm to Determine Safety of a Given Function. (None of the instructions in the set P that is defined on the right side, are allowed in a
”Safe” function. Dests(inst) returns the targets of CTIs and for non-CTIs, returns the next instruction.)

OP4. Optimizing White-Listed Modules
It often happens that applications load dynamically shared

libraries during their execution and then execute functions from
them. In most cases, these DLLs are part of the kernel or they
are part of the standard library provided by the programming
language. It is possible to optimize away the checks needed
for some of these DLLs.

The interaction between the main module of the program
and the shared libraries happens by calling a function exported
by the library. The control will be sent back to the main module
after the execution of the function. The only exception is when
the library performs a callback and calls a function from the
main module. DLLs are analyzed and their callback functions
are discovered. If the behavior of the functions and the callback
values can be determined before execution, then the analyzed
DLL will be white-listed and checks in that module will be
optimized away.

OP5. Detecting ”Safe” Functions
The most common indirect CTIs are return instructions.

The overhead of the checks before return instructions, checks
added during Step 7 of the baseline algorithm, can be further
eliminated when the function has certain properties. A ”Safe”
function, can be proven that it cannot modify its return address,
hence the return instruction always returns to the instruction
after the call site.

We outline in Figure 3 our Just-In-Time (JIT) analysis
algorithms, by which the safety of many functions can be
established before their execution. For such safe functions, the
instrumentation before the return instruction can be removed.
The intuition behind the algorithm is to determine the exact
addresses of the memory locations on the stack that will be
modified by the instructions within the function. If the return
address is not modified, then the function will return to the
original call site.

”Stack Height” for every instruction, is defined to be the
difference between the value of the stack pointer at the entry
point of the function and the value of stack pointer at that
instruction. For example, a push instruction will reduce the
”Stack Height” by four. If the function does not contain any of
the instructions defined in Figure 3 as set P, the ”Stack Height”
of all instructions can be determined before the execution of
the function. If there are more than one control flow paths
from the entry point to a given address, and ”Stack Height” is
not the same between different paths, we declare that function
as not ”Safe” and do not optimize it. This rarely happens in
benign code.

The algorithm will determine the ”Stack Height” of each
instruction and based on the ”Stack Height”, will determine
whether an indirect write rewrites the return address of the
function. We also create a list of functions that are called
from this function and put them in set C. Later on, after
disassembling all instructions in the function, we check the
safety of all the functions in set C. If any of the called functions
are not safe, the current function will be declared not ”Safe”. If
all the aforementioned checks showed that the return address
cannot be modified, the function will be declared ”Safe”. Note
that the algorithm above will be executed only once for each
discovered function, thus there will be no overhead in the
steady-state.

OP6. Using Data-Flow Analysis to Find ”Safe” Functions
OP5 algorithm does not cover some functions, because

writing to global or static data, which is not stored on the
stack, is frequently done through indirect addressing.

If there is a write to an indirect address, we need to make
sure it does not overwrite the return address of the function.
Most of the indirect write instructions that write to the stack
use stack-derived registers as the base register (in x86, these
are esp and ebp registers). So, if the base register is not stack-
derived or it is not a copy of these registers, then it cannot
modify any value which is previously stored on the stack. As
a result, we must ensure the base register is not derived from
the stack pointer.

We define the term PNSD, which is short for ”Provably
Not Stack Derived”. If a register value is PNSD, it means that
it can be proved during run-time analysis that the current value
in the register is not derived from the stack pointer. An indirect
write instruction which uses a PNSD register can never write
to the stack. We use traditional data-flow analysis to identify
all the different definitions that can reach the base register in
the write instruction. If all of the definitions of the base register
are PNSD, then the base register is also PNSD.

As it is demonstrated in Figure 4, we modify the algorithm
in the previous section to check for PNSD variables when there
is an instruction, which stores the value to an indirect address.
Again, note that the analysis above will be done only once for
each discovered function, thus there will be no overhead in the
steady-state.

V. EVALUATION AND RESULTS

We have completed and tested a fully optimized prototype
of the above method. Most of the code is written in C++, while
there are some functions which are written in x86 assembly,
for the sake of optimization. Our experiments are done on a

5 if(inst ∈ 𝑃) return false

5’ if(inst ∈ 𝑃3)

5” if(!Is_PNSD(base register))

5”’ return false

P3 = Set of instructions that write to an
indirect address which may or may not be the
return address of the function.

𝑷 = 𝒊=𝟏ڂ
𝟐 𝑷𝒊

i.e. mov dword ptr [eax + 0x38], 0x3c

Is_PNSD(eax) returns true if register eax is PNSD

Figure 4. Algorithm Modification to Cover Indirect Write Instructions with PNSD Base Register.

system with Intel Core i7, 3.33GHz CPU with 12 Mb cache
and 24.0 GB DDR3 memory on 64-bit Windows 10 OS. We
chose the Windows Operating System since most commercial
binaries are developed for Windows.

In our experimental setup, we used the SPECrate 2017 Inte-
ger and Floating-Point with their reference data sets. SPECrate
Integer has 10 benchmarks and all of them are included in our
testing. However, we could evaluate 10 out of 13 benchmarks
in SPECrate Floating-Point. The other three benchmarks could
not be compiled for 32-bit x86 Windows machines, thus
fotonik3d r, cactuBSSN r, and cam4 r were excluded from
the set. This is because our current implementation is for 32-
bit Windows binaries; 64-bit binaries can be supported in our
theory but are not implemented yet.

Also, we compiled the binaries with three different com-
pilers; Microsoft Visual Studio, GCC, and ICC. The overhead
reported for each benchmark is the average of the overhead
for binaries compiled with these compilers. In the case that a
benchmark could not be compiled with a particular compiler,
that compiler is not included in the average.

Comparison with DynamoRIO: Among different dynamic
rewriters available, we compared RL-Bin to DynamoRIO. The
reason is that DynamoRIO is designed for efficient binary in-
strumentation. Based on the previous studies [11] [12], Pin and
Dyninst have higher overhead in comparison to DynamoRIO.

A. Performance Without Instrumentation
The goal of RL-Bin is to perform only light instrumentation

efficiently. Although it can be used to perform heavy instru-
mentation, such as basic block counting, no binary rewriter
can deliver low overhead for such instrumentation, because
the added instrumentation itself is heavyweight. Hence such in-
strumentations are not good use-cases for RL-Bin, whose main
motivation is low run-time overhead in deployed code. As a
result, we measured the performance overhead of applications
running under binary rewriter without added instrumentation.
This overhead should be low for use-cases of RL-Bin.

As it is illustrated in Figure 5, RL-Bin outperforms Dy-
namoRIO by a huge margin. In this Figure, A run-time of 100
is the run-time of the original unmodified program without
rewriting. (The overhead shown as 107, means the overhead
added by the rewriter is 7% without any instrumentation.)
In fact, the overhead of DynamoRIO is 1.06x and 1.26x
for SPECrate 2017 Floating-Point (Figure 5 (a)) and Integer
(Figure 5 (b)) benchmarks respectively (1.16x or 16% on
average), whereas the overhead of RL-Bin is 1.015x and
1.09x for the same benchmarks (1.05x or 5% on average).
The reason for higher overhead in Integer benchmarks is the
higher number of indirect CTIs compared to Floating-Point
benchmarks.

B. Performance with Instrumentation
The next experiment measures the overhead added by

the rewriters when instrumenting the application to count
the number of external calls from the application module to
other DLLs. This particular instrumentation is used because
the number of locations that need to be instrumented is
relatively low. Hence, it is a good use-case of RL-Bin to
perform light instrumentation with very low overhead. Figure
6 shows the overhead of RL-Bin ranges from 5% to 130%,
with an average of 25% compared to DynamoRIO which

(a) SPECrate 2017 Floating-Point

1
0

1

1
0

1

1
0

3

1
0

2

1
0

1 1
0

2

1
0

1

1
0

1 1
0

2

1
0

11
0

2

1
0

1

1
0

9

1
0

8

1
0

4

1
0

7

1
0

5

1
0

8

1
0

7

1
0

9

100

105

110

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e
(%

)

RL-Bin DynamoRIO

(b) SPECrate 2017 Integer

1
2

0

1
2

8

1
0

1 1
0

7 1
1

1

1
1

0

1
0

7

1
0

3

1
0

2

1
0

3

1
4

9

1
4

5

1
1

1 1
1

6

1
3

9

1
2

6 1
3

2

1
1

7

1
1

2

1
0

8

100

110

120

130

140

150

160

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e
(%

)

RL-Bin DynamoRIO

Figure 5. Normalized Run-Time of Rewriters Without Added
Instrumentation for SPECrate 2017.

has 56% average overhead (ranging from 4% to 187%). Our
experiment demonstrates that RL-Bin can be successfully used
to add instrumentation with fairly low overhead compared to
DynamoRIO.

C. Optimization Effectiveness
To show the contribution of each optimization method pro-

posed in Section IV, we measured the overhead of SPECrate
2017 Integer with different optimization levels. Figure 7 shows
the overhead with six different optimization levels. The over-
head is expectedly large (10.25x for perlbench r) without
any optimization. Optimizing conditional branches (OP1) will
bring the average overhead from 7.24x to 2.93x. Adding
target prediction for indirect CTIs will reduce the overhead
of remaining checks, thus the average overhead will be 2.02x
with OP1+OP2. White-listing modules and cloning functions
(OP4 and OP3) will remove lots of the added overhead for
checking the target of indirect CTIs and will bring down the
average overhead to 1.22x. The last set of optimizations (OP5
and OP6) detect safe functions and remove the check before
the return instruction in such functions. Thus, boosting the
overhead to just 1.09x on average for SPECrate 2017 Integer
benchmarks.

D. Instrumentation Robustness in Commercial Applications
Our last experiment is designed to demonstrate that RL-Bin

is robust enough to handle commercial multi-threaded appli-
cations that contain dynamically generated and self-modifying
code, as well as obfuscation. We aimed to show that RL-
Bin fully instruments the binary and it achieves full code
coverage, meaning that no instruction is executed without
being monitored by RL-Bin. The number of dynamically
executed instructions was measured by instrumenting every
basic block of the application to add the size of the basic
block to the total count.

We tested three popular Microsoft Office tools; Word,
PowerPoint, and Excel as well as Adobe Reader, and Apache

1
0

6

1
0

8

1
1

0

1
0

6

1
1

2

1
2

1

1
1

8

1
1

8

1
0

5

1
0

5

1
6

3

2
3

0

1
2

3

1
2

2 1
3

3

1
2

9

1
3

8

1
0

7 1
2

3

1
2

8

1
0

6

1
0

4

1
4

2

1
2

4

1
2

9

1
2

0

1
2

7

1
2

0 1
4

6

1
4

1

2
4

3 2
8

7

1
3

5 1
4

8

2
4

4

1
8

4 2
0

8

1
6

1

1
3

4

1
2

4

100
120
140
160
180
200
220
240
260
280
300

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e
(%

) RL-Bin DynamoRIO

Figure 6. Normalized Run-Time Overhead of Rewriters with Added Instrumentations to Count External Calls for SPECrate 2017

Web Server. In our experiments, in order to have dynamically
generated and self-modifying code, we opened documents
that contained VBA code in Microsoft Office and JavaScript
in Adobe Reader. Apache Web Server heavily uses multi-
threading, so this application would appropriately stress test
the multi-threading capabilities of RL-Bin.

For commercial programs, we did not measure the over-
head, since interaction with users and other uncertain factors,
make them unacceptable as benchmarks for measuring the
overhead, introduced by RL-Bin. Instead, SPEC CPU 2017
was used for measuring overhead, since they are standardized
benchmarks without user interaction, making them suitable for
run-time measurement.

The measurements on the number of dynamic instructions
were done with both RL-Bin and DynamoRIO. The results
showed that the numbers are the same for every application in
the set, thus proving that every single instruction is counted
by RL-Bin and full code coverage is achieved. As a result,
proposed optimization techniques do not result in any loss of
coverage, verifying that RL-Bin instrumentation is robust and
accurate.

VI. A USE CASE: DEBUGGING IN DEPLOYMENT

Making sure that the application is running flawlessly is
one of the most arduous tasks in the software development
process. In practice, it is often the case that programs face run-
time errors, or show unexpected behavior. The main reason
is insufficient data sets to test different scenarios. End-user
systems will have different resources, and configuration. An
error may arise only in certain execution platforms, and never

come up in development tests. As a result, debugging is needed
even after the development process.

Now, consider the following scenario. The developer has
released the software to the end-user, but there is a bug in
the software which only happens in the end-user system.
The developer cannot reproduce the error in the development
environment. There are two existing methods to solve this
problem. First, the program may be executed with the presence
of a debugger to find where the issue happens. However, almost
all commercial binaries are stripped of their debug information
to protect their code from being reverse-engineered. As a
result, this solution is impractical and the developer will not
share debugging information with the user. Another solution is
to generate an error log whenever the application crashes and
send it to the developer. The log file may contain the current
stack and the value of certain attributes of the program. This
may be useful to learn more about the issue, however, it is too
general, the developer will need extra information. In addition,
neither of the methods above would patch the code and solve
the issue. Even if the error is found, the user needs to wait
for the next release of the application which may take a long
time. If the bug is a security concern, it is crucial to patch the
program as soon as possible.

Our solution takes as input debugging information of the
program and any arbitrary instrumentation that the developer
wants to put in the program. We recompile RL-Bin to use the
information of the debug file and generate instrumentation that
will be inserted in the target application. Based on the debug
file, RL-Bin would know where to instrument. The modified

1
0

2
5

6
8

2

5
9

6 7
6

7

7
8

3

8
6

7

6
8

2

6
4

9

6
7

3

5
1

7

1
2

0

1
2

8

1
0

1

1
0

7

1
1

1

1
1

0

1
0

7

1
0

3

1
0

2

1
0

3

100

200

400

800

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e
(%

)
(L

o
ga

ri
th

m
ic

 S
ca

le
)

Not Optimized

OP1

OP1+OP2

OP1+OP2+OP4

OP1+OP2+OP3+OP4

Fully Optimized

Figure 7. The Contribution of Optimization Methods in Reducing Overhead of RL-Bin for SPECrate 2017 Integer Without Instrumentation

version of RL-Bin, the dynamic debugger, will be sent to the
end-user. Added instrumentation will monitor execution and
send requested information to the developer. Thus, enabling
the developer to pinpoint the problem and fix the issue. This
dynamic debugger does not reveal debugging information to
the end-user. Only recompiled RL-Bin is sent to the end-user
system and the debug information file never gets exposed.
Another advantage is that the code can be patched dynamically
when the binary is being executed. This is crucial for certain
service applications which need to be responsive all the time.

As proof of concept, we developed a simple version of
our dynamic debugger. This prototype is capable of parsing
PDB file format which stores debugging information of the
programs compiled with Microsoft Visual Studio. Our de-
bugger will instrument the program to monitor it during its
execution. As an example, instrumentation was added to report
the maximum value of the first argument passed to ten random
functions. (The purpose of our test was to measure the over-
head. The monitored functions and monitoring method depend
on the developer and may vary case by case.) Our test results
showed that the average overhead was just 6.1% for SPECrate
benchmarks, which means that added instrumentation added
little extra overhead in comparison to 5% overhead for binaries
without instrumentation according to Subsection V-A. This low
overhead makes RL-Bin practical for use in deployment.

VII. RELATED WORKS

Binary rewriting is a well-researched field of study and
during the past thirty years, there have been several major
rewriters developed to address the specific needs of the com-
munity. [13] thoroughly covers existing works in full depth.
In this section, we briefly review existing static and dynamic
binary rewriters and compare them against RL-Bin.

RL-Bin [14] represents a very early snapshot of this project
published in a non-archival workshop. The current paper
is extensively different from [14] by providing a more in-
depth analysis, formal definitions of algorithms, more thorough
evaluations and experiments that were not part of the earlier
paper. As a result of these changes, 72% (about seven out of
ten pages) of the material in the current paper is new and never
published before.

In particular, [14] presented the initial version of RL-Bin
which had high overhead, around 2.5 times the overhead of the
current version. The new version has introduced new optimiza-
tion techniques such as indirect branch target prediction, white-
listing external modules, and extending the coverage of safe
functions by defining PNSD variables, all of which have helped
to achieve overhead of less than 5% on average, indicating
that current version can practically be used in deployment. In
addition, the earlier paper did not have methods for handling
exception-based obfuscation, multi-threaded applications, and
self-modifying code. Hence, previously it was only tested
for single-threaded applications not containing self-modifying
code or exception-based obfuscation. The current version has
reached a level of maturity and robustness that can be used for
all benign stripped commercial binaries.

A. Static Binary Rewriters
Currently, lots of static rewriting solutions are available

including [15]–[19]. SecondWrite project [15] aims to recover
compilable source code from binaries, initially output as

LLVM IR, which could then further be compiled into rewritten
executable code. ATOM [16] provides a flexible interface
for code instrumentation which helps in the development
of program analysis tools. Diablo [18] aims to provide a
framework for link-time program transformation with whole
program optimization and instrumentation. Dyninst’s version
2007 [12] is an in-place static binary rewriter aiming to provide
low-overhead instrumentation capability. Pebil [19] is another
static binary rewriter focused on achieving efficient binary
instrumentation by using function-level code relocation for
inserting control structures.

Static rewriters, including all of the above, face significant
limitations due to the lack of run-time information when trying
to disassemble and instrument the binary. The first limitation
is that they cannot disassemble dynamically generated or
self-modifying code. The reason is that these codes are not
available before the execution of the program. This will lead
to incomplete code coverage.

Dynamically generated code is quite common in benign
applications. In a recent study [20], it was observed that 29
out of 120 benign applications contain dynamically generated
code, which is used for supporting the execution of user scripts.
This means that implementations of security policies that use
static binary rewriters would fail for 24% of applications.

The second limitation of static binary rewriting arises from
the fact that some benign programs contain data in their code
segment. Static disassemblers aim to understand the contents
of code segments using two types of disassembly – linear
sweep or recursive traversal. Linear sweep ensures high code
coverage. However, it cannot distinguish between real code
and data in the code segment.

To overcome the problem of data in code segments, another
method of disassembly must be used. This method is recursive
traversal, which only treats a region of the code segment as
code if it can statically prove a control-flow path to it exists.
static control flow paths are only known through direct CTIs.
For indirect CTIs, the targets are not statically known and the
target is only reachable via indirect CTIs.

A third limitation of static binary rewriting is that some
benign programs contain obfuscated code, in which case static
rewriting can break the program. The relevant kind of obfus-
cation is control-flow obfuscation whose goal is to mislead
disassemblers so that they cannot reverse-engineer binaries.

B. Dynamic Binary Rewriters
There are two main types of dynamic binary rewriters: in-

place designs, and code-cache based designs. We will go over
them briefly.

In-place designs, such as BIRD [21] have lower over-
head in comparison to code-cache based designs by avoiding
the high overhead incurred by maintaining the code cache;
however, they fail to support some of the features which
may happen relatively frequently in benign binaries such as
obfuscation, dynamically-generated and self-modifying code.
The reason BIRD does not work for obfuscated code is that it
assumes both the fall through and destination of a conditional
branch are code, which may not be true in obfuscated code.
Further, BIRD does not support self-modifying code. The
reason is that once they disassemble code from a location, they
never change the disassembly even if the code is overwritten.

Unlike static and in-place dynamic rewriters, code-cache
based dynamic rewriters are robust and can correctly rewrite
all programs. However, existing rewriters have high overhead
that is generally unacceptable for deployment on live systems.
Two of the most popular code-cache based dynamic rewriters
are DynamoRIO [2] and Pin [11] with 1.2x and 1.54x run-
time overhead, respectively, on average for the full SPEC’06
benchmark suite even without any instrumentation inserted.
Dyninst’s version 2011 [22] is another code-cache based de-
sign which has 1.2x overhead for the same benchmark. Vulcan
[23] is another dynamic binary rewriter which has a very
strong API for adding instrumentation; however, it has very
high overhead, around 2x to 3x compared to uninstrumented
binaries.

VIII. CONCLUSION

In this paper, we have developed a novel design for a fully
optimized, low-overhead binary rewriter which is robust like
other dynamic binary rewriters. Due to its low overhead, it
is practical to be used in real-time systems. Our experiments
show that the overhead of DynamoRIO is 1.16x, whereas the
overhead of RL-Bin is 1.05x.

In our future work, we will develop an instrumentation
API for RL-Bin that is going to be both efficient and flexible.
We aim to have a similar set of APIs to existing tools [24],
[25] so that users can adapt to RL-Bin with minimal effort. We
are also exploring other adversarial and obfuscation techniques
against binary rewriters and the methods to circumvent them.
In the near future, we will release RL-Bin’s binary for non-
commercial uses, similar to how Pin [11] is licensed.

REFERENCES

[1] D. Shackleford, “A new era in endpoint protection,” https://go.
crowdstrike.com/rs/281-OBQ-266/images/ReportSANSProductReview.
pdf, 2017, retrieved: October, 2019.

[2] D. L. Bruening, “Efficient, transparent, and comprehensive runtime code
manipulation,” Ph.D. dissertation, Massachusetts Institute of Technol-
ogy, 2004.

[3] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Securing untrusted
code via compiler-agnostic binary rewriting,” in Proceedings of the 28th
Annual Computer Security Applications Conference. ACM, 2012, pp.
299–308.

[4] C. Zhang et al., “Practical control flow integrity and randomization
for binary executables,” in Security and Privacy (SP), 2013 IEEE
Symposium on. IEEE, 2013, pp. 559–573.

[5] M. Olszewski, J. Cutler, and J. G. Steffan, “Judostm: A dynamic binary-
rewriting approach to software transactional memory,” in Proceedings
of the 16th International Conference on Parallel Architecture and
Compilation Techniques. IEEE Computer Society, 2007, pp. 365–375.

[6] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary stirring:
Self-randomizing instruction addresses of legacy x86 binary code,” in
Proceedings of the 2012 ACM conference on Computer and communi-
cations security. ACM, 2012, pp. 157–168.

[7] A. Roy, S. Hand, and T. Harris, “Hybrid binary rewriting for memory
access instrumentation,” ACM SIGPLAN Notices, vol. 46, no. 7, 2011,
pp. 227–238.

[8] D. Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall, “Tainteraser:
Protecting sensitive data leaks using application-level taint tracking,”
ACM SIGOPS Operating Systems Review, vol. 45, no. 1, 2011, pp.
142–154.

[9] “Binary obfuscation project tool,” https://www.codeproject.com/
Articles/856846/Binary-Obfuscation, retrieved: October, 2019.

[10] I. V. Popov, S. K. Debray, and G. R. Andrews, “Binary obfuscation
using signals.” in USENIX Security Symposium, 2007, pp. 275–290.

[11] C.-K. Luk et al., “Pin: building customized program analysis tools with
dynamic instrumentation,” in Acm sigplan notices, vol. 40. ACM,
2005, pp. 190–200.

[12] G. Ravipati, A. R. Bernat, N. Rosenblum, B. P. Miller, and J. K.
Hollingsworth, “Toward the deconstruction of dyninst,” Comput. Sci.
Dept., Univ. Wisconsin, Madison, Tech. Rep., 2007.

[13] M. Wenzl, G. Merzdovnik, J. Ullrich, and E. Weippl, “From hack to
elaborate technique—a survey on binary rewriting,” ACM Computing
Surveys (CSUR), vol. 52, no. 3, 2019, p. 49.

[14] A. Majlesi-Kupaei, D. Kim, K. Anand, K. ElWazeer, and R. Barua, “Rl-
bin, robust low-overhead binary rewriter,” in Proceedings of the 2017
Workshop on Forming an Ecosystem Around Software Transformation.
ACM, 2017, pp. 17–22.

[15] K. Anand et al., “A compiler-level intermediate representation based
binary analysis and rewriting system,” in Proceedings of the 8th ACM
European Conference on Computer Systems. ACM, 2013, pp. 295–
308.

[16] A. Eustace and A. Srivastava, “Atom: A flexible interface for build-
ing high performance program analysis tools,” in Proceedings of the
USENIX 1995 Technical Conference Proceedings. USENIX Associ-
ation, 1995, pp. 25–25.

[17] B. Schwarz, S. Debray, G. Andrews, and M. Legendre, “Plto: A link-
time optimizer for the intel ia-32 architecture,” in Proc. 2001 Workshop
on Binary Translation (WBT-2001). Citeseer, 2001.

[18] L. Van Put, D. Chanet, B. De Bus, B. De Sutter, and K. De Bosschere,
“Diablo: a reliable, retargetable and extensible link-time rewriting
framework,” in Signal Processing and Information Technology, 2005.
Proceedings of the Fifth IEEE International Symposium on. IEEE,
2005, pp. 7–12.

[19] M. A. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely,
“Pebil: Efficient static binary instrumentation for linux,” in Performance
Analysis of Systems & Software (ISPASS), 2010 IEEE International
Symposium on. IEEE, 2010, pp. 175–183.

[20] D. Kim et al., “Dynodet: Detecting dynamic obfuscation in malware,”
in International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment. Springer, 2017, pp. 97–118.

[21] S. Nanda, W. Li, L.-C. Lam, and T.-c. Chiueh, “Bird: Binary interpreta-
tion using runtime disassembly,” in Code Generation and Optimization,
2006. CGO 2006. International Symposium on. IEEE, 2006, pp. 12–
pp.

[22] A. R. Bernat and B. P. Miller, “Anywhere, any-time binary instrumenta-
tion,” in Proceedings of the 10th ACM SIGPLAN-SIGSOFT workshop
on Program analysis for software tools. ACM, 2011, pp. 9–16.

[23] A. Edwards, H. Vo, and A. Srivastava, “Vulcan binary transformation
in a distributed environment,” Microsoft Research, Tech. Rep., 2001.

[24] “Intel pin api,” https://software.intel.com/sites/landingpage/pintool/
docs/81205/Pin/html/group API REF.html, retrieved: October, 2019.

[25] B. Buck and J. K. Hollingsworth, “An api for runtime code patching,”
The International Journal of High Performance Computing Applica-
tions, vol. 14, no. 4, 2000, pp. 317–329.

