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Abstract— The automated and timely conversion of 
cybersecurity information from unstructured online sources, 
such as blogs and articles to more formal representations has 
become a necessity for many applications in the domain 
nowadays. Named Entity Recognition (NER) is one of the early 
phases towards this goal. It involves the detection of the relevant 
domain entities, such as product, version, attack name, etc. in 
technical documents. Although generally considered a simple 
task in the information extraction field, it is quite challenging in 
some domains like cybersecurity because of the complex 
structure of its entities. The state of the art methods require 
time-consuming and labor intensive feature engineering that 
describes the properties of the entities, their context, domain 
knowledge, and linguistic characteristics. The model 
demonstrated in this paper is domain independent and does not 
rely on any features specific to the entities in the cybersecurity 
domain, hence does not require expert knowledge to perform 
feature engineering. The method used relies on a type of 
recurrent neural networks called Long Short-Term Memory 
(LSTM) and the Conditional Random Fields (CRFs) method. 
The results we obtained showed that this method outperforms 
the state of the art methods given an annotated corpus of a 
decent size. 

Keywords- Information Extraction; Named Entity 
Recognition; Cybersecurity; LSTM; CRF. 

I.  INTRODUCTION 

Timely extraction of cybersecurity information from 
diverse online web sources, such as news, vendor bulletins, 
blogs, forums, and online databases is vital for many types of 
applications. One important application is the conversion of 
unstructured cybersecurity information to a more structured 
form like ontologies. Knowledge modeling of cyber-attacks  
for instance simplifies the work of auditors and analysts [1]. 
At the heart of the information extraction tasks is the 
recognition of named entities of the domain, such as vendors, 
products, versions, or programming languages. The current 
NER tools that give the best performance in the field are 
based on feature engineering.  These tools rely on the specific 
characterizing features of the entities in the field, for 
example, a decimal number that follows a product is very 
likely to be the version of that product and not quantities of 

it. A sequence of words starting with capital letters is likely 
to be a product name rather than a company name and so on.  

Feature engineering has many issues and limitations. 
Firstly, it relies heavily on the experience of the person and 
the lengthy trial and error process that accompanies that. 
Secondly, feature engineering relies on look-ups or 
dictionaries to identify known entities [2]. These dictionaries 
are hard to build and harder to maintain especially with 
highly dynamic fields, such as cybersecurity. These activities 
constitute the majority of the time needed to construct these 
NER tools. The results could be satisfactory despite requiring 
considerable maintenance efforts to keep them up to date as 
more products are released and written about online. 
However, these tools are domain specific and do not achieve 
good accuracy when applied to other domains. For instance, 
a tool that is designed to recognize entities in the 
biochemistry field will perform very poorly in the domain of 
cybersecurity [3].  

CRFs emerged in recent years as the most successful and 
de facto standard method for entity extraction. In this paper, 
we show that a domain agnostic method that is based on the 
recent advances in the deep learning field and word 
embeddings outperforms traditional methods, such as the 
CRFs. The first advancement, which is the word2vec word 
embedding method was introduced by Mikolov et al. [4] . It 
represents each word in the corpora by a low dimensional 
vector. Besides the gain in space, one of the main advantages 
of this representation compared to the traditional one-hot 
vectors [5] is the ability of these vectors to reflect the 
semantic relationship between the words. For instance, the 
difference between the vectors representing the words ‘king’ 
and ‘queen’ is similar to the difference between the vectors 
representing the words ‘man’ and ‘woman’. These 
relationships result in the clustering of semantically similar 
words in the vector space. For instance, the words ‘IBM’ and 
‘Microsoft’ will be in the same cluster, while words of 
products like ‘Ubuntu’ and ‘Web Sphere Server’ appear 
together in a different cluster.  
     The second advancement is the recent breakthroughs in 
the deep learning field. It became feasible and practical 
because of the increase in the hardware processing power 
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especially GPUs and the surge in the data available for 
training. Deep neural networks can automatically learn non-
linear combinations of features with enough training data. 
Hence, they alleviate the user from the time-consuming 
feature engineering [6]. Besides requiring feature 
engineering, traditional methods such as CRFs can only learn 
linear combinations of the defined features. The specific deep 
learning method we used is LSTM, which is a type of 
Recurrent Neural Networks (RNNs) that are particularly 
suitable for processing sequences of data, such as time series 
and natural language text [7].  

We applied the LSTM-CRF architecture suggested by 
Lampal et al. [8] to the domain of cybersecurity NER. This 
architecture combines LSTM, word2vec models, and CRFs. 
The main characteristic of this method is that it is domain and 
entity type agnostic and can be applied to any domain. All it 
needs as input is an annotated corpus in the same format as 
the CoNLL-2000 dataset [9]. We compared the performance 
of LSTM-CRF with one of the fastest and most accurate CRF 
implementations, which is CRFSuite [10]. Unlike domains 
such as the biomedical domain, annotated corpora in the field 
of cybersecurity are not widely available. The corpora used 
to train the model were generated as part of the work of 
Bridges et al [1]. LSTM-CRF achieved 2% better overall item 
accuracy than the CRF tool. 

The paper is organized as follows: Section II reviews the 
related work in the field. Section III provides an overview of 
the LSTM-CRF model. The next Section describes our 
evaluation method and the data pre-processing steps. Section 
V outlines and discusses the results. Finally, Section VI 
concludes the paper.   

II. RELATED WORK 

Approaches to NER are mainly either rule-based or 
machine learning/statistical-based [11], although quite often 
the two techniques are mixed [12]. Rule-based methods 
typically are a combination of Gazette-based lookups and 
pattern matching rules that are hand-coded by a domain 
expert. These rules use the contextual information of the 
entity to determine whether candidate entities from the 
Gazette are valid or not. Statistical based NER approaches 
use a variety of models, such as Maximum Entropy Models 
[13], Hidden Markov Models (HMMs) [14],Support Vector 
Machines (SVMs) [15], Perceptrons [16], Conditional 
Random Fields (CRFs) [17], or neural networks [18]. The 
most successful NER approaches include those based on 
CRFs. CRFs address the NER problem using a sequence-
labeling model. In this model, the label of an entity is 
modeled as dependent on the labels of the preceding and 
following entities in a specified window. Examples of 
frameworks that are available for CRF-based NER are 
Stanford NER and CRFSuite. 

More recently, deep neural networks have been considered 
as a potential alternative to the traditional statistical methods 
as they address many of their shortcomings [19]. One of the 
main obstacles that prevent the adoption of the methods 

mentioned above is feature engineering. Neural networks 
essentially allow the features to be learned automatically. In 
practice, this can significantly decrease the amount of human 
effort required in various applications. More importantly, 
empirical results across a broad set of domains have shown 
that the learned features in neural networks can give very 
significant improvements in accuracy over hand-engineered 
features. RNNs, a class of neural networks have been studied 
and proved that they can process input with variable lengths 
as they have a long time memory. This property resulted in 
notable successes with several NLP tasks like speech 
recognition and machine translation [20]. LSTM further 
improved the performance of RNNs and allowed the learning 
between arbitrary long-distance dependencies [21].  

Various methods have been applied to extract entities and 
their relations in the cybersecurity domain. Jones et al. [22] 
implemented a bootstrapping algorithm that requires little 
input data to extract security entities and the relationship 
between them from the text.  An SVM classifier has been 
used by Mulwad et al. [23] to separate cybersecurity 
vulnerability descriptions from non-relevant ones. The 
classifier uses Wikitology and a computer security taxonomy 
to identify and classify domain entities. The two previously 
mentioned works relied on standard NER tools to recognize 
the domain concepts. While these NER tools obtained 
satisfactory results in general texts, such as news, they 
performed poorly when applied to more technical domains, 
such as cybersecurity because these tools are not trained on 
domain-specific concept identification. For instance, the 
Stanford NER tool is trained using a training corpus 
consisting mainly of news documents that are largely 
annotated with general entity types, such as names of people, 
locations, organizations, etc. 

To overcome the limitations of NER tools in technical 
domains and identify mentions of domain-specific entities, 
Goldberg [5] adopted an approach that trains the CRF 
classifier of the Stanford NER framework on a hand-labeled 
training data. He achieved acceptable results that are much 
better than the two previous efforts.  Although they produced 
good results, the effort involved in painstakingly annotating 
even a small corpus prohibits the practical implementation of 
this approach. To address this problem, Joshi et al. [3] 
developed a method to automate the labeling of training data 
when there is no domain-specific training data available. The 
labeling process leverages several data sources by combining 
several related domain-specific structured data to infer 
entities in the text.  Next, a Maximum Entropy Markov 
Model has been trained on a corpus of nearly 750,000 words 
and achieved precisions above 90%. This type of training 
relies on external sources for corpus annotation. These 
resources need to be regularly maintained and updated to 
maintain the quality and precision of the text labeling.  

Given the benefits of neural networks, this paper aims to 
apply the LSTM method on the problem of NER in the 
cybersecurity domain using the corpora made available by 

2Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances



Joshi et al. [3]. We analyzed the results achieved and 
compared them with the CRF method. 

III. LSTM-CRF MODEL 

In this Section, we will provide an overview of the LSTM-
CRF architecture as presented by Lample et al. [8].  

A. LSTM-CRF Model 

      RNNs are neural networks that have the capability to 
detect and learn patterns in data sequences. These sequences 
could be natural language text, spoken words, genomes, stock 
market time series, etc. Recurrent networks combine the 
current input (e.g., current word) with the previous perceived 
input (earlier words in the text). However, RNNs are not good 
at handling long-term dependencies. When the previous input 
becomes large, RNNs suffer from the vanishing or exploding 
gradient problems. They can also be challenging to training 
and very unlikely to converge when the number of parameters 
becomes large. 
      LSTMs were first introduced by Hochreiter et al. [7] They 
are an improvement on RNNs and can learn arbitrary long-
term dependencies, hence can be used for a variety of 
applications such as natural language processing and stock 
market analysis.  LSTMs have a similar chain structure as 
RNNs, but the structure of the repeating nodes is different. 
LSTMs have multiple layers that communicate with each 
other in a particular way. A typical LSTM consists of an input 
gate, an output gate, a memory cell, and a forget gate. Briefly, 
these gates control which input to pass to the memory cell to 
remember it in the future and which earlier state to forget. 
The implementation used is as follows  [8]: 
 

 
 
      The sigma sign σ is the elementwise sigmoid function and 

⊙ is the elementwise product. 
      Assuming we have a sequence of n words X = (x1, x2,…, 
xn) and each word is represented by a vector of dimension d. 
LSTM computes the left context lht which represents all the 
words that precede the word t. A right context rht is also 
computed using another LSTM that reads the same text 
sequence in reverse order by starting from the end and go 
backward. This technique proved very useful and the 
resulting architecture, which consists of a forward LSTM and 
a backward LSTM, is called a Bidirectional LSTM.  The 
resulting representation of a word is obtained by 
concatenating the left and right contexts to get the 

representation ht = [lht;rht]. This representation is useful for 
various tagging applications, such as the NER problem at 
hand in this paper.  
      Figure 1 shows the architecture of the Bidirectional 
LSTM-CRF model. It consists of three layers.  

 
Figure 1. Bidirectional LSTM Architecture 

 
From the bottom, the first layer is the embedding layer. 

This layer takes as input the sequence S of words w1, w2, …, wt. 

and emits a dense vector representation (embedding) xt for 
each of the words in the sequence.  The sequence of 
embeddings x1, x2,… , xt is then passed to the bi-directional 
LSTM layer which refines the input and feeds it to the final 
CRF layer. In the last layer, the Viterbi algorithm is applied 
to generate the output of the neural network, which represents 
the most probable tag for the word. 

IV. EVALUATION 

      In this section, we will introduce the benchmark tool, the 
preprocessing performed on the gold standard corpora, and 
the metrics we used for evaluation. 

A. Competitor System 

      We compare the performance of the LSTM-CRF 
architecture against a CRF tool that uses a generic feature set 
for NER with word embeddings. These features were 
designed for domain-independent NER and defined by the 
tool writer. Using word embeddings in both systems will help 
us compare only the CRF method with the suggested LSTM-
CRF architecture and negate the effect of word embeddings. 
We used the CRFSuite to train a CRF model using the default 
settings of the tool.  

B. Gold standard corpora 

      We performed our evaluation on around 40 entity types 
defined in three corpora and also analyzed the performance 
of the model on a subset of the seven most significant entities 
of the domain. Each word in these corpora is auto-annotated 
with an entity type. The corpus is an auto-labeled cyber 
security domain text that was generated for use in the Stucco 
project. It includes all descriptions from CVE/NVD entries 
starting in 2010, in addition to entries from MS Bulletins and 
Metasploit. As stated in [1]: “While labelling these 
descriptions may be useful in itself, the intended purpose of 
this corpus is to serve as training data for a supervised 
learning algorithm that accurately labels other text 

3Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances



documents in this domain, such as blogs, news articles, and 
tweets.”. 

C. Text Preprocessing 

      In its original form as provided by Bridges et al [1], all 
the corpora were stored in a single JSON file with each 
corpus represented by a high-level JSON element. To 
facilitate further processing, we converted the file to the 
CoNLL2000 format as the input for the LSTM-CRF model. 
In the newly single annotated corpus, we removed the 
separation between each of the three corpora and annotated 
every word in a separate line. Each line contains the word 
mentioned in the text and its entity type as show in the 
following example: 
… 
Apple B-vendor 
QuickTime B-application 
before B-version 
7.7 I-version 
allows B-relevant_term 
remote B-relevant_term 
attackers I-relevant_term 
to O 
…  
      As for the CRF model, the CRFSuite requires the training 
data to be in the CoNLL2003 format that includes the Part of 
Speech (POS) and chunking information with the NER tag 
appearing first as shown below: 
… 
B-vendor Apple NNP O 
B-application QuickTime NNP O 
B-version before IN O 
I-version 7.7 CD O 
B-relevant_term allows NNS O 
B-relevant_term remote VBP O 
I-relevant_term attackers NNS O 
O to TO O 
…  
      As the original corpus did not contain the POS and 
chunking information, the training corpus had to be 
reprocessed. We started by converting it to its original form 
(i.e., a set of paragraphs). Then, we used the python NLTK 
library to extract  the necessary information for each word in 
the corpus. Finally, we converted the text back to the 
expected format shown above. 

D. Evaluation Metrics 

      We divided the annotated corpus into 3 disjoint subsets. 
70% was allocated for the training of the model, 10% for the 
holdout cross-validation set (or development), and 20% for 
the evaluation of the model. We compared the two models 
(LSTM-CRF and CRF) in terms of accuracy, precision, 
recall, and F1-score for the full set of tags and for a subset of 
the most relevant tags of the domain. In our experiments, the 
hyperparameters of the LSTM-CRF model were set to the 
default values used by Lample et al. [8]. 

V. RESULTS AND DISCUSSION 

      We evaluated the performance of the NER method that is 
based on the LSTM-CRF architecture against a traditional 
state of the art CRF tool that uses standard NER features. The 
evaluation was performed on three different sets covering 
over 40 entity types from the cybersecurity domain. For 
evaluation purposes, we will analyze the average 
performance of models across all the entity types, then we 
will consider the most popular entities that appear frequently 
in the cybersecurity vulnerability descriptions and evaluate 
the performance on these entities only. The entities 
considered are vendor, application, version, file, operating 
system (os), hardware, and edition.  The reason for this is that 
we are usually not interested in extracting all entity types but 
only a subset of them that are most relevant to the application 
at hand. 

A. Performance of LSTM-CRF and CRF 

      Starting with the global item accuracy of both models, 
Figure 2 shows the accuracy values measured on the test set 
at each iteration of the training stage for 100 iterations. 
LSTM-CRF achieved an accuracy of 95.8% after the first 
iteration and increased gradually to reach values between 
98.2% and 98.3% starting from iteration 23 until the end of 
the training. On the other hand, the CRF method started 
slowly at accuracies of 65% and increased rapidly to reach 
accuracies of 96% where it leveled off to reach eventually 
96.35% at the end of the training.

 
Figure 2. Item Accuracy for LSTM-CRF and CFR 

 
      The average performance of the two models across all the 
entity types in the training set is shown in the table below: 

TABLE I. AVERAGE PERFORMANCE METRICS FOR ALL ENTITY TYPES 

 Precision (%) Recall (%) F1-score (%) 

LSTM-CRF 85.16 80.70 83.37 
CRF 80.26 73.55 75.97 

 
      As we can see, the performance metrics in terms of 
precision, recall, and F1-score show that the results for 
LSTM-CRF are better that their CRF counterparts.  
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      We then compared the performance of LSTM-CRF and 
CRF on the most popular seven entity types in the domain. 
The results for each method for the different entities in terms 
of F1-score, precision, and recall are shown in Tables II, III, 
and IV. LSTM-CRF achieved the best performance for all the 
entities types with the exception of the hardware, and edition 
tags, which affected the average considerably. On average 
(macro average), F1-scores are 82.8% for the generic LSTM-
CRF method and 84.4% for the generic CRF method. In 
terms of precision, the results are close at 87.2% and 89% 
respectively. As for the recall, it is 80.1% and 81.8% 
respectively. 

      TABLE II. F1-SCORES OF CRF AND LSTM-CRF                                            

FOR SEVEN ENTITY TAGS 

Entity type LSTM-CRF (%) CRF (%) 
Development Test 

Vendor 94 93 92 
Application 90 89 87 

Version 98 98 95 
Edition 80 60 80 

OS 95 95 93 
Hardware 60 46 63 

File 99 99 84 
Average 88 82.8 84.4 

TABLE III. PRECISION OF CRF AND LSTM-CRF                                                

FOR SEVEN ENTITY TAGS. 

Entity type LSTM-CRF (%) CRF (%) 
Development Test 

Vendor 95 94 94 
Application 90 89 88 

Version 98 98 95 
Edition 80 76 87 

OS 98 97 95 
Hardware 69 57 79 

File 99 1 85 
Average 89.8 87.2 89 

 
      TABLE IV. RECALL OF CRF AND LSTM-CRF FOR SEVEN ENTITY TAGS 

 
Entity type LSTM-CRF (%) CRF (%) 

Development Test 

Vendor 93 92 90 
Application 89 90 86 

Version 98 98 95 
Edition 79 50 75 

OS 95 93 91 
Hardware 54 39 52 

File 100 99 84 
Average 86.8 80.1 81.8 

 
      We can see that the overall item accuracy of the resulting 
LSTM-CRF model is higher by 2% than the CRF model. 
Likewise, the average precision, recall, and F1-score across 
all entity types are better by an average of 6.5%. As for the 
performance metrics per entity type, the LSTM-CRF model 
performed better on five entity types and poorly on the 
hardware and edition tags. The reason for this poor 
performance is related to the size of the training data. Deep 
learning algorithms such as LSTM, needs lots of data for 

better predictions. The more data we have, the better the 
prediction model can get. Upon analyzing the data set, it 
turned out that very few entities are tagged with these two 
tags compared to the other entities. There are 549 entities 
tagged as hardware and 565 tagged as edition. These 
numbers are relatively low compared to other tags, such as 
application (19093 tags) and vendor (10518 tags). Therefore, 
the first five tags overwhelmed the other poorly performing 
two tags. Increasing the size of the training data that contains 
more examples of these tags will improve the prediction of 
the model. 

VI. CONCLUSION AND FUTURE WORK 

      As this paper showed, the results demonstrate that 
LSTM-CRF improved the accuracy of NER extraction over 
the state-of-art traditional pure statistical CRF method. What 
is impressive about the LSTM-CRF method is that it does not 
require any feature engineering and is entirely entity type 
agnostic. Even the format of the training corpus is much 
simpler, thus requiring less text pre-processing. This 
alleviates the need to develop domain-specific tools and 
dictionaries for NER. In the future, our research will 
concentrate on applying the LSTM-CRF method on entity 
Relations Extraction (RE). RE is concerned with attempting 
to find occurrences of relations among domain entities in text. 
This would provide a better understanding of product 
vulnerability descriptions. For example, RE could extract 
information from a vulnerability description that would help 
us distinguish between the product or tool that is the mean of 
an attack and the product being attacked. With information 
extraction becoming more accurate, more automated, and 
easier to achieve using recent neural networks advancements, 
there is a pressing need to turn this advancement into 
applications in the domain of cybersecurity. One such 
application is the conversion of the textual descriptions of 
cybersecurity vulnerabilities that are available in the web into 
a more formal representation like ontologies. This gives 
cybersecurity professionals the necessary tools that grant 
them rapid access to the information needed for decision-
making. 
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