
 

 

GMAP: A Generic Methodology for Agile Product Line Engineering 

Farima Farmahini Farahani, Raman Ramsin 

Department of Computer Engineering 

Sharif University of Technology 

Tehran, Iran 

e-mail: farimafarahani@ce.sharif.edu, ramsin@sharif.edu 

 
 

Abstract—Agile Product Line Engineering (APLE) is a 

relatively novel approach that has emerged as the result of the 

combination of two successful software development 

approaches: Software Product Line Engineering and Agile 

Software Development. The main goal of this combined 

approach is to cover the weaknesses of each of these two 

approaches while maximizing the advantages of both. We 

propose the Generic Methodology for Agile Product Line 

Engineering (GMAP), which can be instantiated to produce a 

bespoke, concrete methodology for any specific project 

situation. GMAP is generic in that its process covers the main 

activities of existing APLE methodologies, while refraining from 

enforcing any specific and concrete method or technique for 

performing the activities. GMAP has been produced by 

studying existing APLE methodologies, identifying their 

strengths and weaknesses, abstracting them into a high-level 

framework, and finally instantiating this abstract framework so 

as to address the shortcomings of existing methodologies.  

Keywords—Software Development Methodology; Software 

Product Line; Agile Method; Agile Product Line Engineering. 

I. INTRODUCTION 

Product Line Engineering (PLE) and Agile Software 
Development are two successful approaches in the software 
industry. Both approaches focus on developing high-quality 
software systems, reducing development costs, managing 
changes in requirements, and reducing time to market. These 
common goals have motivated researchers to investigate ways 
for merging them. This new combined approach, called Agile 
Product Line Engineering (APLE) [1], would help us use the 
positive features of the individual approaches while 
maximizing their benefits. Another potential advantage is 
synergy: each approach can cover the other’s weaknesses.  

Several methods have so far been introduced in the APLE 
context. From among these methods, those that have proposed 
a distinct process for this combined approach can be referred 
to as APLE methodologies. We have previously studied and 
analyzed existing APLE methodologies by using a criteria-
based approach [2]. The results of this evaluation showed that 
despite the benefits that they provide, they are all afflicted 
with certain problems; for instance, none of them has 
prescribed a full-lifecycle approach that explains the details of 
the activities, work-products, and roles. Hence, developing a 
new APLE methodology that addresses the deficiencies of 
existing methodologies, while preserving their positive 
features, is of great potential value. We therefore propose the 

Generic Methodology for Agile PLE (GMAP) as a high-level 
full-lifecycle APLE methodology that provides these features 
and can be instantiated to yield concrete APLE methodologies 
for different project situations. To this aim, we first evaluated 
existing methodologies using a criteria-based approach to 
identify their positive and negative traits. The evaluation 
criteria and the results of evaluation have been extensively 
discussed in [2]. We have used the criteria defined in [2] as 
the requirements for constructing GMAP; this ensures that 
GMAP possesses the main characteristics of PLE and Agile 
Development, makes use of the positive features of previous 
APLE methodologies, and addresses their weaknesses.  

GMAP was developed in two steps: We first produced a 
high-level APLE process framework through applying 
abstraction to existing methodologies; GMAP was then 
defined by instantiating this abstract framework and 
improving the resulting instance to satisfy the requirements of 
the target methodology. GMAP satisfies the high-level 
requirements, but is kept independent of specific techniques 
and practices so that it can be instantiated based on the finer-
grained requirements of a specific project. GMAP was 
evaluated in two ways: 1) by instantiation to a concrete 
methodology in order to demonstrate that it has the potential 
to be instantiated into a concrete and applicable methodology, 
and 2) by applying a subset of the criteria presented in [2] in 
order to show that GMAP can indeed be considered an 
improvement to the status quo; the reason for using a subset 
of the criteria is that some of the criteria are not applicable due 
to the abstractness of GMAP. The evaluation results show that 
GMAP does indeed address the weaknesses of existing 
methodologies; for example, the need for a full-lifecycle 
APLE process, providing specifications for activities, work-
products, and roles, has been adequately addressed in GMAP.  

The rest of this paper is structured as follows: Section II 
discusses the related research; Section III presents the 
proposed abstract framework for APLE methods; Section IV 
describes GMAP; Section V presents the evaluation results; 
and Section VI discusses the conclusions and suggests ways 
for furthering this research. 

II. RELATED RESEARCH 

Prominent APLE methodologies and their important 
features are depicted in Table I; this table has been adapted 
from our previous research, reported in [2], which presents an 
extensive review of these methodologies.  

157Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances



 

 

TABLE I.  PROMINENT APLE METHODOLOGIES (ADAPTED FROM [2]) 

                      Feature 

 

 

Methodology 

Brief introduction Year Basis 

(Agile 

or 

PLE) 

Reuse approach PLE process 

coverage (DE, 

AE) 

CDD [4] Uses FDD [5] to combine PLE and agility. 2005 Agile N/A DE (Partially) 

de Souza & Vilain [6] Merging the generic PLE process with the Framework of Agile Practices. 2013 PLE Proactive, Reactive DE (Partially), AE 

RiPLE-SC [7] An agile process for PL Scoping in RiPLE methodology. 2011 PLE N/A DE (Partially) 

Diaz et al. [3] Utilizes Scrum [5] to define an APLE method. 2011 Agile Reflexive DE (Partially), AE 

EPLSP [8] A full-lifecycle methodology that utilizes AUP [9] for product development; 

thus, agility is limited to this particular activity. 

2011 PLE Reactive DE, AE 

A-Pro-PD [10] A generic agile framework for product derivation. 2012 PLE Proactive, Reactive AE 

Ghanam & Maurer 
2008 [11] 

Aims at agile organizations building several similar systems in a domain. Core 
assets are derived from the products in a bottom-up fashion. 

2008 Agile Reactive DE (Partially), AE 
(Partially) 

Ghanam et al. [12] An agile approach for variability management in which variability analysis is 

only performed when a new requirement arises. 

2010 Agile Reactive DE (Partially) 

Ghanam & Maurer 
2009 [13] 

An acceptance-test-based approach for product derivation in PLE; core assets 
are retrieved (from a repository) based on acceptance tests. 

2009 Agile Reactive AE 

da Silva [14] An agile process for PL scoping. 2012 PLE N/A DE (Partially) 

Carbon et al. [15] The result of incorporating agile practices into PULSE’s product-instantiation. 2006 PLE Reactive AE 

Noor et al. [16] An agile method for PL scoping that utilizes Collaboration Engineering 
patterns to promote collaboration among stakeholders. 

2008 PLE N/A DE (Partially) 

SPLICE [17] Incorporates Scrum [5] practices with core activities of PLE. 2014 PLE Reactive DE, AE (Partially) 

The review reported in [2] shows that none of the 
methodologies possess all the features expected in an APLE 
methodology, including: full coverage of the PLE lifecycle, 
definition of work-units, roles, and work-products, attention 
to umbrella activities, management of expected/unexpected 
changes, configurability, support for learning, active user 
involvement, and team management. Three reuse approaches 
have been observed in these methodologies: Proactive 
(predicting and building the core assets at the beginning of the 
development process), Reactive (extracting the core assets 
from previously built products), and Reflexive (predicting the 
core assets at the beginning of each iteration) [3]. 

III. PROPOSED ABSTRACT FRAMEWORK FOR APLE 

METHODOLOGIES 

The first step in building the target methodology is to 
produce an abstract framework for APLE methodologies, 
which is the result of applying abstraction to the activities 
prescribed in the methodologies reviewed (listed in Table I); 
this framework will be introduced in this section. 

A. Description 

Figure 1 shows the proposed framework. As it covers the 
activities of the reviewed methodologies in an abstract 
manner, these methodologies can be regarded as its instances. 
The white block arrows between DE and AE indicate that any 
transition between the internal stages of these sub-processes is 
possible; however, the transitions allowed in existing 
methodologies are shown with ordinary black arrows. The 
liberal attitude of the framework towards transitions promotes 
abstractness and allows the framework to be instantiated into 
any desired APLE methodology. The white arrow from DE to 
AE denotes the Proactive approach of reuse, the white arrow 
from AE to DE denotes the Reactive approach, and the 
combination of these arrows denotes the Reflexive approach. 
The activities that belong to some (but not all) of the reviewed 
methodologies will be referred to as “non-common”. 

1) Domain Engineering (DE) Sub-process 
DE consists of Scoping and Core Assets Development. 

a) Scoping 

The PL’s scope is determined in the following stages: 

 Pre-Scoping: Business goals are identified; non-
common activities are: understanding the operational 
and organizational context of the organization, 
analyzing stakeholders and target markets, and 
building a business case. 

 Domains Selection: PL domains are selected from 
among the candidate domains.  

 Products and Requirements Selection: The domains’ 
requirements and products are identified. 

 Prioritization: Requirements and products are 
prioritized and selected. 

b) Core Assets Development (CAD) 

Core assets are built through the following stages: 

 Requirements Analysis: The requirements of the PL 
products are defined in a more fine-grained form, with 
the commonalities and variabilities specified.  

 Core Assets Design: Components and PL architecture 
are designed. Non-common activities are: Detailed 
design, and documentation of design decisions. 

 Planning: Implementation units are prioritized and 
assigned to iterations.  

 Core Assets Implementation: Implementation units 
are built, and the required tests are developed. 

 Core Assets Validation and Incorporation in the 
Repository: Implemented units are integrated with 
other parts, and are incorporated in the repository. 

2) Application Engineering (AE) Sub-process 
PL products are built and deployed in two phases: Product 

Development and Transition. 

a) Product Development 

This phase is the pivotal part of AE. Its stages are: 

158Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances



 

 

 Requirements Definition: The product requirements 
document is produced, and the core assets are elicited. 

 Planning: Implementation units are assigned to 
iterations. 

 Design and Implementation: The PL architecture is 
instantiated and the product architecture is developed; 
detailed design is then performed for the product-
specific parts (as a non-common activity). Next, 
product-specific parts are developed and integrated 
with instantiated core assets to form the final product. 

 Increment Validation: The implemented increment is 
validated against the iteration requirements. 

b) Transition 

System Validation and Installation is performed. As a non-
common activity, training material is produced and a short 
document of the system is developed for the user. 

3) Maintenance Sub-process 
In the Support phase, bug fixes and new requirements are 

supplied to the AE team (and to the DE team, if necessary). 

B. Realization of the framework in APLE methodologies 

Table II shows how the framework’s constituent activities 
correspond to the activities of existing APLE methodologies, 
thus validating the proposed framework as to its coverage of 
existing APLE methodologies. 

IV. PROPOSED GENERIC APLE METHODOLOGY (GMAP) 

As discussed in [17], the criteria for evaluating 
methodologies in a given context can serve as the 
requirements for constructing a target methodology in that 
context; we have therefore used the criteria defined in [2] as 
the requirements for constructing GMAP. GMAP is an 
instance of the proposed APLE framework, and its activities 
and tasks are abstractions of the activities and tasks prescribed 
in existing APLE methodologies, composed so that the 
requirements of the target APLE methodology are satisfied; 
also, certain activities have been added from existing Agile 
and PLE methodologies. As GMAP is generic and abstract, it 
only provides general guidelines and does not enforce any 
concrete methods or techniques. Thus, it has a high degree of 
configurability and should be instantiated prior to application; 
typically, the instantiation process includes the following 
activities: Decision as to optional activities; addition of 
project-specific tasks; removing, merging, or decomposing 
the tasks; determination of concrete methods, practices, and 
guidelines for performing the tasks; selection from among the 
methods available for performing the tasks; and changing the 
roles involved in an activity or task. The process of GMAP 
and its roles are presented throughout the rest of this section. 

A. Roles 

GMAP roles have been determined through integrating the 
roles typically found in agile methodologies with the generic 
PLE roles defined in [18] and the roles observed in the APLE 
methodologies reviewed in [2]. The roles are explained below: 

 Senior Manager: Responsibilities include managing 
the APLE project, and providing expertise on 
organizational/business goals and the market. 

 Product Manager: Responsibilities are: managing PL 
products and planning for the development of current 
and future systems, providing expertise on business 
goals and the PL’s target market, and maintaining the 
PL Scope Document [18]. 

 Core Assets Manager: Duties include performing 
maintenance and configuration management on the 
core assets, and helping with their extraction [18]. 

 Senior Developer: This role is performed by 
experienced developers familiar with the 
organization’s products. Responsibilities include 
conducting project management, leading teams, and 
carrying out analysis and design activities during 
CAD and AE; scoping and code development will 
also be included if necessary. Responsibilities are 
equivalent to the collective responsibilities of 
Domain/Application (D/A) Requirements Engineer, 
D/A Architect, and D/A Developer roles of [18].  

 Developer: Responsibilities are working in CAD and 
AE teams, and performing analysis, design, 
implementation, and test under the supervision of 
Senior Developers. Responsibilities are equivalent to 
the combined responsibilities of D/A Requirements 
Engineer, D/A Architect, D/A Developer, and D/A 
Tester of [18]. We recommend that the people in 
charge of this role be moved between CAD and AE 
so that their knowledge is shared (akin to the “Move 
People Around” practice of XP [5]). A number of 
Developers are also involved in Scoping. 

 Customer: This role is performed by representatives 
of the customer organizations who know the system’s 
requirements and act as domain experts.  

 Support Team Member: This role performs support 
and maintenance activities on instances of the PL. 

B. Process 

The process of GMAP is shown in Figure 2. It consists of 
three sub-processes: DE (consisting of Scoping and CAD), 
AE, and Maintenance. AE and the two internal phases of DE 
are run in an iterative-incremental manner. This methodology 
is applicable under two scenarios: Scenario-1 aims at 
organizations that have previously developed a number of 
similar systems. In this case, Scoping is first performed, 
followed by CAD and AE; after the first run of the CAD phase 
(so that the CAD team is formed and the reference architecture 
is built), CAD and AE can be run in tandem. Scenario-2 is 
aimed at organizations that have not built any similar systems, 
but are planning to build a PL while the products are being 
developed. In this case, the organization first develops a 
predefined number of systems (at least two [11]) using the AE 
sub-process of GMAP; Scoping is then performed for these 
systems, followed by CAD and AE. The two scenarios show 
that the methodology can cover the proactive approach of 
reuse as well as the reactive approach based on the target 
organization’s needs. In both scenarios, if a new product is to 
be built in an available domain, core assets are retrieved from 
the product by requesting for PL extension, and the PL Scope 
is updated accordingly. If a new product in a new domain is to 
be built, scoping should precede CAD.  

159Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances



 

 

 
Figure 1. Proposed Abstract Framework for APLE Methodologies 

TABLE II.   REALIZATION OF PROPOSED FRAMEWORK IN REVIEWED APLE METHODOLOGIES 

Stage in Framework Corresponding phases in APLE methodologies 

D
o
m

a
in

 E
n

g
in

ee
ri

n
g

 

S
co

p
in

g
 

Pre-Scoping 
Pre-scoping in RiPLE-SC [7]; Define pre-scoping (Partially) in da Silva [14], Select business goals and marketing strategies in 

SPLICE [17]. 

Domains 

Selection 

Identify and agree on relevant domains in Noor et al. [16]; Define pre-scoping (Partially) in da Silva [14]; Domain scoping in RiPLE-

SC [7]. 

Products & 
Requirements 

Selection 

Define features for each domain, Discuss, analyze, and agree on products, Define products in terms of features in Noor et al. [16]; 
Product scoping in RiPLE-SC [7]; Define features, Define pre-scoping (partially) in da Silva [14], Identify products, Identify major 

features, Build initial product map in SPLICE [17]. 

Prioritization 
Release scope in da Silva [14]; Prioritize product map in Noor et al. [16]; Assets scoping in RiPLE-SC [7], Prioritize major features 

in SPLICE [17]. 

C
o
re

 A
ss

et
s 

D
ev

el
o
p
m

en
t

 

Requirements 

Analysis 

Develop an overall model (Partially), Build a features list in CDD [4]; Domain analysis in de Souza & Vilain [6]; Pregame (Partially) 

in Diaz et al. [3]; Evaluation and extraction (Partially) in Ghanam & Maurer 2008 [11]; Eliciting new requirements (Partially), 

Variability analysis, Updating the variability profile in Ghanam et al [12]; Analyze commonality and variability in da Silva [14]; 
Core assets development (Partially) in EPLSP [8], Sub-features definition, Commonality and variability analysis in SPLICE [17]. 

Core Assets 

Design 

Develop an overall model (Partially), Design SPL architecture, Build a components list, Design by components in CDD [4]; Domain 

design, Develop system increment (DE) (Partially)  in de Souza & Vilain [6]; Architecture evolution in Ghanam & Maurer 2008 [11]; 

Sprint-domain engineering (Partially) in Diaz et al. [3]; Refactoring the architecture in Ghanam et al [12]; Core assets development 
(Partially) in EPLSP [8]. 

Planning 

Plan by components in CDD [4]; Iteration definition in de Souza & Vilain [6]; SPL release definition (Partially); Sprint planning 

(Partially) in Diaz et al. [3]; Select features for implementation (Partially) in da Silva [14]; Eliciting new requirements (Partially) in 
Ghanam et al [12], Release planning, Sprint planning in SPLICE [17]. 

Core Assets 

Implementation 

Build by components (Partially) in CDD [4]; Develop system increment (DE) (Partially) in de Souza & Vilain [6]; Refactoring in 

Ghanam & Maurer 2008  [11]; Select features for implementation (Partially) in da Silva [14]; Sprint-domain engineering (Partially) 

in Diaz et al. [3]; Realizing the new requirements in Ghanam et al [12]; Core assets development (Partially) in EPLSP [8], Sub-
features implementation, Sub-features testing (Partially) in SPLICE [17]. 

Core Assets 

Validation & 

Incorporation in 
the Repository 

Running the tests in Ghanam et al [12]; Build by components (Partially) in CDD [4]; Develop system increment (DE) (Partially), 

Validate increment in de Souza & Vilain [6]; Managing core assets in Ghanam & Maurer 2008  [11]; Review and retrospective 
(Partially) in Diaz et al. [3]; Core assets development (Partially) in EPLSP [8], Sub-features testing (Partially), Sprint review and 

retrospective  in SPLICE [17]. 

A
p

p
li

ca
ti

o
n

 E
n

g
in

ee
ri

n
g

 

P
ro

d
u

ct
 D

ev
el

o
p
m

en
t

 

Requirements 

Definition 

Definition of requirements in de Souza & Vilain [6]; Preparing for derivation (Partially) in A-Pro-PD [10]; Select acceptance tests, 
Execute acceptance tests, Extract code (Partially) in Ghanam & Maurer 2009 [13]; Plan for a product line instance, Instantiate and 

validate product line model in Carbon et al. [15]; Pregame (Partially), SPL release definition (Partially) in Diaz et al. [3]; Evaluation 

and extraction (Partially) in Ghanam & Maurer 2008 [11]; Product Development (Partially) in EPLSP [8]. 

Planning Assign requirements to iterations in de Souza & Vilain [6]; Preparing for derivation (Partially) in A-Pro-PD [10]; SPL release 
definition (Partially), Sprint planning (Partially) in Diaz et al. [3]. 

Design and 

Implementation 

Instantiate & validate reference architecture, Construct product in Carbon et al. [15]; Develop system increment (AE) in de Souza 

& Vilain [6]; Product configuration, Product development & testing (Partially) in A-Pro-PD [10]; Core asset incorporation in 
Ghanam & Maurer 2008 [11]; Extract code (Partially), Verify & build (Partially) in Ghanam & Maurer 2009 [13]; Sprint-application 

engineering in Diaz et al. [3]; Product Development (Partially) in EPLSP [8], Products derivation (Partially) in SPLICE [17]. 

Increment 

Validation 

Validate increment, Integrate increment in de Souza & Vilain [6]; Review and retrospective (Partially) in Diaz et al. [3]; Verify and 

build (Partially) in Ghanam & Maurer 2009 [13]; Product development and testing (Partially) in A-Pro-PD [10]. 

T
ra

n
si

ti
o
n

 

System 

Validation & 

Installation 

Validate system in de Souza & Vilain [6]; Product development and testing (Partially) in A-Pro-PD [10]; Deliver system in Carbon 

et al. [15]. 

Maintenance Support Product release in EPLSP [8]. 

Scoping Core Assets Development

Pre-Scoping

Products and 

Requirements Selection
Prioritization

Requirements Analysis

Core Assets Design Planning

Core Assets 

Implementation

Core Assets Validation   &

Incorporation in the 

Repository

DE

Domains Selection

Requirements Definition Planning

Design & Implementation Increment Validation

System Validation & 

Installation

Transition

Product Development

Maintenance

Support

AE

160Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances



 

 

 
Figure 2. Process of GMAP

GMAP is described throughout the rest of this section by 
using a process-centered approach [5]: the focus is on 
describing the high-level phases, intermediate-level stages, 
and bottom-level tasks of the methodology; the roles involved 
and the work-products produced are seen as secondary to 
these process constituents. 

1) Domain Engineering (DE) Sub-process 
DE aims at building the PL infrastructure. AE team 

members are the main customers of DE, as they use the core 
assets developed in DE. 

a) Scoping 

The PL scope is defined in this phase. It continues in an 
iterative-incremental manner until the PL scope becomes 
stable enough for the core assets to be built based on it. The 
PL scope is then completed while new PL products are being 
developed. The constituent stages are explained below. 

1) Initiation 
The preliminary activities for identifying the PL scope are 

performed in three sub-stages: 
Forming Scoping Team: The Scoping Team is formed by 

analyzing the experiences and skills required; team members 
include the product manager, a number of senior developers 
and developers, and selected customer representatives [7]. 

Feasibility Analysis: This stage is performed by the senior 
manager, product manager and senior developers of the 
scoping team. The results of analyzing the risks and 
constraints and estimating the required resources are recorded 
in the PL Vision. Finally, feasibility study is performed based 
on the PL Vision, and a Go/No-Go decision is made. 

Identification and Planning: Organizational factors are 
identified by the senior manager, product manager, and senior 

developers of the scoping team; the organization’s structure 
and its processes are explored and documented in the PL 
Vision. The product manager and the senior developers then 
determine an overall plan for the scoping phase. 

2) Pre-Scoping 
This stage, performed by the senior manager, product 

manager, and senior developers of the scoping team, consists 
of three sub-stages: 

Planning: The iteration plan is elicited based on the 
overall plan. 

Identifying Goals: Business and organizational goals are 
recorded in the PL Vision. 

Analyzing the Market: The PL Vision is completed by 
studying the markets related to the candidate domains (as to 
their characteristics and success factors).  

3) Domain Selection 
The scoping team determines the target domains of the PL 

in two sub-stages, which are typically performed in tandem: 
Studying Relevant Domains: The relevant domains are 

explored by the team members. 
Selecting Domains: Domains are analyzed based on 

certain parameters that verify the potential of each domain for 
inclusion in the PL; domains are then selected based on this 
analysis and the parameters important to the organization. 

4) Selecting Requirements and Products 
The scoping team selects the PL products and 

requirements; sub-stages are as follows: 
Defining Domains Requirements: The requirements of the 

selected domains are elicited. Requirements are then reviewed 
in order to resolve redundancies and ambiguities. 

Feasibility 
Analysis

Studying Relevant 
Domains

Selecting Domains

Selecting 
Products

Defining Domains 
Requirements

Building PL 
Scope

Prioritizing PL 
Scope

Initiation Domain Selection Selecting Requirements and Products
Scoping
Domain Engineering

Initializing

Core Assets Development

Planning

Pre-Iteration

Designing Building

Implementation

Reviewing

Post-Iteration

Application Engineering
Maintenance

Death

Support

Pre-Scoping

Planning

Identifying Goals

Analyzing the 
Market

AssigningPlanningForming CAD Team(s(

Defining RequirementsFounding

Feasibility AnalysisPre-

Implementation

Preparation for Build

Overall Planning

Pre-Construction

AssigningPlanning

Pre-Iteration

Designing

Implementation

Post-Iteration

Building

Construction

Pre-Construction

Modeling the Requirements

Acquiring Knowledge 

Identification 
and Planning

Preparing for the Build

Forming Scoping Team

Addition to 

Repository

Transitioning
Reviewing and 

Revising

161Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances



 

 

Selecting Products: Candidate products are defined for 
each domain based on domain requirements. Candidate 
products are then prioritized based on the parameters defined 
in the instantiated methodology, and PL products are selected. 

Building PL Scope: The PL Scope is completed by relating 
products with requirements. Then, the customers review and 
validate the PL scope. 

Prioritizing PL Scope: Reusable parts that will be 
implemented in the CAD phase are identified. We recommend 
two methods for this purpose: 1) The method used in [7] and 
[19], in which the goals are operationalized with the aim of 
defining certain metrics (the GQM method is typically used); 
prioritization is then conducted based on the derived metrics; 
and 2) The method used in [14] and [16], in which each 
stakeholder prioritizes the products and their requirements; 
stakeholders then discuss the priorities, reach a consensus, and 
select the core asset requirements. 

b) Core Assets Development (CAD) 

Reusable core assets are developed based on the results of 
scoping. Constituent stages include the following: 

1) Initializing 
This stage sets the stage for building the core assets. Sub-

stages are as follows: 
Forming CAD Team(s): Each CAD team is led by a senior 

developer, and is made up of several experienced developers. 
Developers are selected based on the knowledge, skills, and 
experience levels required. 

Planning: Requirements prioritization is first conducted 
with the help of the product manager. Next, the overall plan is 
elicited and a subset of the requirements is selected for the 
next release. Also, a date for the next release and a duration 
for CAD iterations are determined. 

2) Pre-Construction 
The requirements of the next release are defined in a more 

detailed fashion, and the PL architecture is designed. Sub-
stages are as follows: 

Acquiring Knowledge (Optional): If the team requires 
more information on the requirements, knowledge acquisition 
is performed with the help of the product manager. 

Modeling the Requirements: Requirements are modeled 
by specifying their commonalities and variabilities; 
requirements can be modeled in several formats: use-cases 
[20], acceptance tests [11], feature diagrams [21][22], features 
(as in the FDD methodology) [4][5], and a textual feature-
based format [12]. The dependencies among the requirements 
are also identified, which can affect the selection of the 
requirements [22] and their implementation sequence.  

Preparing for the Build: The architecture is designed, and 
architecture-level variabilities are specified; the architecture is 
then evaluated [4]. A list of implementation units is then 
produced, which can be based on the requirements [3], 
components [4][6], or any other relevant concept. 

3) Pre-Iteration 
An iteration plan is developed in the following sub-stages: 
Planning: Prioritization is applied to the implementation 

units. Iteration planning is then performed, and a number of 
units are selected for the current iteration.  

Assigning: If more than one team is involved, assigning to 
teams is performed. Assigning to developers is then conducted 
inside each team; this can be done in two ways: 1) the senior 
developer in each team assigns the units to the developers [4]; 
or 2) the developers choose what they intend to implement 
(common in self-organizing teams [23][24]). 

4) Implementation 
Detailed design and implementation is performed on the 

iteration’s implementation units, in the following sub-stages: 
Designing: Documents are studied and domain experts are 

interviewed in order to enrich the team’s knowledge of the 
implementation units; these tasks are executed in tandem with 
other tasks of this stage, and may result in changes to the 
requirements model. Detailed design is then conducted, 
resulting in the design model. Finally, model notes [4] are 
added to document the design alternatives, and the reasons 
behind the design decisions.  

Building: Test design is first conducted to produce test-
cases for the current iteration’s implementation units. Coding 
and refactoring are then performed [6]. Testing is performed 
continuously throughout this stage. Code inspection is the 
final task, which can be done in two ways: 1) the senior 
developer of each team inspects the code [4], or 2) the 
developers inspect one another’s code [6].  

5) Post-Iteration 
The activities required for concluding the iteration are 

performed. Sub-stages are as follows: 
Reviewing: Testing is performed with the cooperation of 

AE team members, and acceptance tests are run on the 
implemented units. A review meeting is then held to conduct 
regular review activities. The requirements model, 
implementation units list, and architecture (and if necessary, 
the PL scope document) are updated. The team and the 
product manager then discuss the AE team’s requests for 
extending the PL scope (implementing product-specific parts 
as core assets); if they decide to implement certain parts as 
core assets, the PL models are changed as required.  

Addition to Repository: Core assets are added to the 
repository (as directed by the core assets manager) for the 
implemented units and their corresponding requirements and 
tests. 

2) Application Engineering (AE) Sub-process 
This sub-process’s goal is to build the target products by 

reusing the core assets built in the CAD phase. An important 
undertaking in this sub-process is to send requests to the CAD 
team for extending the PL scope. Three approaches are 
recommended for this purpose: 1) Request-In-Advance: 
requests are sent prior to starting the development of the 
product [15]  (before forming the implementation units list, as 
the result may affect this list), and also at the beginning of each 
iteration (due to possible changes in requirements); the tasks 
corresponding to this approach reside in the Pre-
Implementation and Planning sub-stages; 2) Request-During-
Implementation: requests are sent when product development 
is underway in the Building sub-stage [10]; and 3) Request-In-
Retrospect: requests are sent at the end of each iteration (for 
the units implemented in the iteration); this approach is 
implemented in the Reviewing and Revising sub-stage. AE 
phases are explained throughout the rest of this subsection. 

162Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances



 

 

a) Pre-Construction 

The activities required for launching a new product 
development project are performed. The only stage of this 
phase is explained below. 

1) Preparation for Build 
This stage mainly focuses on analysis activities. Sub-

stages are as follows: 
Founding: AE teams are formed, with the same structure 

as in CAD. 
Defining Requirements: The AE team elicits the 

requirements and builds the product’s Requirements Model. 
Two methods are recommended for this task: 1) the 
requirements available in the core assets repository are 
provided to the customer, who then selects a subset of them 
according to his/her requirements [13] (we recommend 
interviewing the customer for eliciting the requirements that 
are not present in the core assets); and 2) the customer 
expresses his/her requirements from scratch [3], and the team 
matches these requirements with the core assets requirements. 
The product manager and the AE teams’ senior developers 
then compare the product’s requirements to the PL scope to 
decide whether this product is an instance of the PL; if it is, 
the product’s information is added to the PL scope, and the 
AE team and the core assets manager extract the core assets 
related to the product. 

Feasibility Analysis: This stage is only performed if the 
project requires certain resources that are not needed for other 
PL instances, or if certain risks or constraints are involved. 
The senior manager and the AE teams’ senior developers 
cooperate in this stage. Analyzing the risks and constraints is 
first performed, followed by estimating the required resources 
(based on the amount of core assets that can be used in 
developing the product); the results of both tasks are recorded 
in the Project Vision. Finally, feasibility study is performed. 

Overall Planning: The overall project plan is produced; 
again, the amount of core assets usable in developing the 
product is a crucial factor. 

Pre-Implementation: Extension of the PL is requested if 
the “Request-In-Advance” approach is selected; if the DE 
team approves the implementation of product-specific 
requirements as core assets, it develops new core assets. The 
next task is designing the product architecture: if a PL 
architecture is available, it is instantiated; if not, a product-
specific architecture is developed. Finally, a list of 
implementation units is produced. 

b) Construction 

This phase is executed in an iterative-incremental manner. 
The constituent stages are explained below. 

1) Pre-Iteration 
This stage is the starting point for development iterations. 

Sub-stages are as follows: 
Planning: The first task, requesting for PL extension, will 

be performed if “Request-In-Advance” has been chosen. After 
prioritizing the implementation units, iteration planning is 
conducted. If any bug-fixes or new requirements are received 
from the Support Team, they are checked; if they are related 
to AE, they are added to the iteration plan; if not, they are 
relegated to the CAD team. 

Assigning: Implementation units are assigned to 
developers (as in CAD). 

2) Implementation 
AE teams build the product by reusing the core assets. 

Sub-stages are as follows: 
Designing: If the team needs to complete its knowledge of 

the requirements, customer interviews are conducted. This 
task is performed in tandem with detailed design, which is 
performed by instantiating the Domain Design Model (if 
available) and adding the product-specific parts.  

Building: Test design is performed, and the tests in the 
core assets base are reused. If suitable core assets are 
available, a partial configuration of the product [10] is 
produced by assembling them. Product-specific parts are then 
built, either by adding the product-specific parts to the partial 
product configuration, or by building the product from 
scratch; if “Request-During-Implementation” is selected, 
requests for extending the PL Scope are sent to the CAD team 
during this task: if the product-specific parts are to be built as 
core assets, the CAD team designs their interfaces, based on 
which the AE team develops the product in parallel with the 
actual implementation of the assets by the CAD team [10]. 
Code refactoring is then applied [6]. Testing is performed 
continuously, and can be augmented with code inspection. 

3) Post-Iteration 
The AE team conducts review activities for finishing the 

iteration. Sub-stages are as follows: 
Reviewing and Revising: Testing is conducted and 

acceptance tests are run on the implemented units (customer 
involvement is crucial). The next task is holding a review 
meeting, in which feedback on the usage of the assets is also 
recorded and conveyed to the CAD team [15]. The 
requirements, architecture, PL scope document, and 
implementation units are then updated. For new or changed 
requirements, relevant core assets are elicited with the help of 
the core assets manager. PL extension is requested if 
“Request-In-Retrospect” is selected. Finally, if there is a 
product-specific requirement that has recently been 
implemented as a core asset (as the result of a request for PL 
extension), the product is re-instantiated so that it includes this 
requirement as a core asset. The core assets manager ensures 
that the re-instantiation is done completely. 

Transitioning: After the support team is trained, it 
prepares the training documents. The software product is 
deployed into the user environment, and conversion is 
applied. System testing is then conducted, and users are 
trained. 

3) Maintenance Sub-Process 
This sub-process spans maintenance and post-mortem 

activities in the phases explained below. 

a) Support 

Bug-fixes and new requirements are sent to the AE team. 
The AE team sends the requests related to the core assets to 
the CAD team: after applying the changes, the products that 
include the changed assets are tested and re-instantiated so 
that the changes are committed. Maintenance is performed via 
repeating the development iterations. 

 

163Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances



 

 

b) Death 

This phase is carried out when a system is not 
maintainable anymore. Post-project activities are performed: 
the support team and the senior manager perform the legal, 
financial, and social activities related to closing the project. 
Post-mortem activities are then conducted, and the lessons 
learnt from the project are recorded for use in future projects. 

V. EVALUATION 

GMAP has been evaluated through two different 
approaches, as explained in the following subsections.  

A. Criteria-based Evaluation 

As mentioned before, we have used the criteria introduced 
in [2] as a basis for developing GMAP; in other words, these 
criteria have helped us identify the deficiencies and the 
strengths of previous APLE methodologies, which were then 
used for constructing GMAP. These criteria can also be used 
for evaluating GMAP to show that it does indeed address the 
deficiencies of previous methodologies. The results of 
evaluation based on criteria related to PLE characteristics are 
presented in Table III, the results of evaluation based on a set 
of general methodology-evaluation criteria are illustrated in 
Table IV, and the results of evaluation based on criteria related 
to agility characteristics are given in Table V. In all these 
tables, results are presented for a set of existing methodologies 
as well as GMAP, so that the results can be compared. In order 
to produce the results, we searched each methodology for 
mechanisms that satisfied each criterion. It should be noted 
that due to lack of space, we have only included the major 
criteria introduced in [2]. In these tables, “N/A” denotes “Not 
relevant to the context or properties of the methodology”. 

B. Evaluation by Instantiating the Proposed Method 

To show that GMAP has the capability to be instantiated 
into a concrete and practicable APLE methodology, we have 
built a concrete method by instantiating GMAP. The concrete 
methodology was developed through a PLE project at a major 
Iranian utilities company. The Customer Management (CM) 
system used by this company, specializing in purification and 
distribution of water throughout the country, was the target of 
this project. The first author worked for three months at this 
company to help in performing the activities of the concrete 
methodology, and also in producing its work products. The 
project served as an effective testbed for improving and 
validating the methodology in the field. 

The company’s CM system (operated in most Iranian 
cities) has certain features common to all the cities. In 
addition, each city demands its own specific features. This 
system has long been deemed suitable for development as a 
product line; however, it has not yet been implemented as 
such. The main problem is that the commonalities and 

variabilities among the systems of different cities have not 
been managed systematically; instead, a common system 
encompassing the features needed in all the cities has been 
developed. This has spawned other problems as well: 1) many 
unusable parts exist for each city; developers try to fix this 
problem at the code level, but this solution itself has resulted 
in unreadable code; and 2) a nontrivial modification in the 
system propagates throughout the whole system. These 
problems have motivated the company’s CM system 
supervisor to consider the systematic development of a 
software product line. Since the PL and its instances need to 
be developed rapidly, it was concluded that an APLE 
approach would work best for the company. At the beginning 
of this project, the first version of the concrete methodology 
was developed by instantiating GMAP based on the project’s 
initial requirements. The concrete methodology was then used 
at the company, and was gradually configured to better fit the 
company’s needs. At the end of the project, the CM system’s 
manager reported that the concrete methodology had indeed 
been capable of addressing their problems. 

VI. CONCLUSION AND FUTURE WORK 

APLE is a new paradigm that has emerged as the result of 
the need for managing changes in requirements, reducing 
time-to-market, promoting product quality, and decreasing 
development costs in software organizations. This approach 
can be applied to real projects only if adequate guidelines are 
provided on the activities, people, and work-products 
involved in the project. A software development methodology 
can satisfy this need; thus, several attempts have been made to 
propose practical APLE methodologies. After studying and 
analyzing these methodologies, we have sensed the need for 
an APLE methodology that possesses the strengths of existing 
APLE methodologies while addressing their weaknesses. To 
this aim, we have defined GMAP, a generic APLE 
methodology that spans the activities defined in all the studied 
APLE methodologies and also possesses the desirable features 
of PLE and agility. This methodology is abstract enough to be 
instantiated to produce a concrete bespoke methodology. 
Although adequately abstract, it is detailed to the task level, 
and provides suggestions as to ways for applying the tasks. 
The results of criteria-based evaluation of GMAP show that it 
satisfies the targeted APLE requirements and is indeed 
superior to existing APLE methodologies. 

We aim to continue this work by reporting on the GMAP 
instance (concrete methodology) that was mentioned in 
Section V, and also by exploring the potentials of GMAP in 
addressing diverse APLE requirements. The research can be 
furthered by applying GMAP to a variety of project situations 
with different characteristics. 
 

164Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances



 

 

TABLE III.  RESULTS OF EVALUATION BASED ON CRITERIA RELATED TO PLE CHARACTERISTICS 

Criterion Possible Values 

C
D

D
 [

4
] 

d
e 

S
o

u
za

 &
 V

il
a

in
 

[6
] 

R
iP

L
E

-S
C

 [
7

] 

D
ía

z 
et

 a
l.

 [
3

] 

A
-P

ro
-P

D
  
[1

0
] 

G
h

a
n

a
m

 &
 M

a
u

re
r 

2
0
0
8

 [
1
1

] 

G
h

a
n

a
m

 &
 M

a
u

re
r 

2
0
0
9

 [
1
3

] 

G
h

a
n

a
m

 e
t 

a
l.

 [
1

2
] 

d
a

 S
il

v
a
 [

1
4
] 

C
a

rb
o

n
 e

t 
a
l.

 [
1
5

] 

N
o

o
r 

et
 a

l.
 [

1
6

] 

G
M

A
P

 

Presence of PL-Specific Activities 

Coverage of DE Activities 

 
“S”: Scoping; “A”: Reference architecture; 

“CA”: Core assets development. 

A-

CA 
A-CA S 

A-

CA 
N/A A-CA N/A 

A-

CA 
S N/A S 

S- A-

CA 

Coverage of AE Activities 
 

“R”: Matching product requirements & core 

requirements; “A”: Reference architecture 

instantiation; “CA”: Core assets selection;  
“V”: Binding of variation points to variants; 

“P”: product-specific parts development. 

N/A R-CA N/A 

A- 

CA- 
V 

CA- 

P 

R- 

CA 

R- 

CA- P 
N/A N/A 

R-A-

CA-

V-P 
N/A 

R-A-

CA-V-

P 

Product Line Characteristics 

Extensibility of PL Scope Yes/No N/A Y Y Y Y Y Y Y Y Y Y Y 

Production and Adherence to 
Reference Architecture 

1: Not produced; 2: Produced, but not 
adhered to; 3: Produced, and adhered to. 

2 2 N/A 3 1 1 1 3 N/A 3 N/A 3 

Techniques for Performing PL-Specific Activities 

Prescription of Specific Method for 

Identifying Core Assets & 
Commonalities/Variabilities (C/V) 

Yes/No 

N N Y N N/A Y N/A Y Y N/A Y Y 

Prescription of Specific Method for 

Documenting C/V 

Yes/No 
Y Y Y Y N/A Y N/A Y Y N/A N Y 

TABLE IV.  RESULTS OF EVALUATION BASED ON GENERAL CRITERIA FOR EVALUATING METHODOLOGIES 

Criterion Possible Values 

C
D

D
 [

4
] 

d
e 

S
o

u
za

 &
 V

il
a

in
 [

6
] 

R
iP

L
E

-S
C

 [
7

] 

D
ía

z 
et

 a
l.

 [
3

] 

A
-P

ro
-P

D
  
[1

0
] 

G
h

a
n

a
m

 &
 M

a
u

re
r 

2
0
0
8

 [
1
1

] 

G
h

a
n

a
m

 &
 M

a
u

re
r 

2
0
0
9

 [
1
3

] 

G
h

a
n

a
m

 e
t 

a
l.

 [
1

2
] 

d
a

 S
il

v
a
 [

1
4
] 

C
a

rb
o

n
 e

t 
a
l.

 [
1
5

] 

N
o

o
r 

et
 a

l.
 [

1
6

] 

G
M

A
P

 

Lifecycle 

Coverage of Generic Lifecycle Phases “D”: Definition; “C”: Construction;  

“M”: Maintenance 
D-C D-C D 

D-

C 
D-C D-C D-C 

D-

C 
D C D 

D-C-

M 

Coverage of Design Activities Yes/No Y Y N/A Y N N N N N/A Y N/A Y 

People 

Definition of Roles and Their 

Responsibilities 

1: No; 2: Roles yes, responsibilities 

no; 3: Roles and responsibilities 

defined. 

3 1 3 1 1 1 1 1 1 1 3 3 

Usability 

W
el

l-
d

ef
in

ed
n

es
s 

Completeness of Methodology 

Definition 

“L”: Lifecycle; “A”: Activities;  

“R”: Roles; “P”: Products;  

“RL”: Rules;  
“TP”: Techniques/Practices;  

“U”: Umbrella Activities;  
“ML”: Modeling Language. L

-A
-T

P
-R

-P
-U

-R
L

-

M
L

 

L
-A

 (
P

ar
ti

al
)-

P
T

-

P
-U

 (
P

ar
ti

al
)-

R
L

 

L
-A

-P
T

-R
-P

-U
 

(P
ar

ti
al

)-
R

L
 

L
-A

-P
-U

 (
P

ar
ti

al
) 

L
-A

-P
T

-U
 

(P
ar

ti
al

)-
P

 

L
-A

-P
T

-P
 

L
-A

-P
T

-P
 

L
-A

-P
T

-P
 

L
-A

-P
T

-U
 

(P
ar

ti
al

)-
P

 

L
-A

-P
T

-U
 (

P
ar

ti
al

)-
P

 

L
-A

-P
T

-R
-U

 

(P
ar

ti
al

)-
P

 

L
--

T
P

-R
-P

-U
-R

L
 

Management of Definition 

Complexity  

Yes/No 
Y Y Y N N N N N N N N Y 

Attention to Detail in Definitions of 

Phases/Tasks 

Details provided for: 1: none;  

2: some of the phases/tasks; 3: all 

the phases/tasks 

3 2 3 1 1 2 3 3 2 2 3 3 

P
ro

ce
ss

 

M
an

ip
u

la
ti

o
n
 

Configurability of Process (at the 
start of the project) 

1: No; 2: Possible, but not addressed 
explicitly; 3: Explicitly addressed 2 2 1 1 2 1 1 1 1 2 2 3 

Flexibility of Process (while running 

the project) 

1: No; 2: Possible, but not addressed 

explicitly; 3: Explicitly addressed 2 2 1 1 1 1 1 1 1 1 2 3 

165Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances



 

 

TABLE V.  RESULTS OF EVALUATION BASED ON CRITERIA RELATED TO AGILITY CHARACTERISTICS 

Criterion Possible Values 

C
D

D
 [

4
] 

d
e
 S

o
u

z
a
 &

 

V
il

a
in

 [
6

] 

R
iP

L
E

-S
C

 [
7

] 

D
ía

z 
e
t 

a
l.

 [
3

] 

A
-P

r
o

-P
D

  
[1

0
] 

G
h

a
n

a
m

 &
 

M
a

u
r
er

 2
0

0
8

 [
1

1
] 

G
h

a
n

a
m

 &
 

M
a

u
r
er

 2
0

0
9

 [
1

3
] 

G
h

a
n

a
m

 e
t 

a
l.

 

[1
2

] 

d
a

 S
il

v
a

 [
1
4

] 

C
a

r
b

o
n

 e
t 

a
l.

 [
1

5
] 

N
o

o
r
 e

t 
a
l.

 [
1

6
] 

G
M

A
P

 

Attention to Customer 

Support for Active User Involvement Yes/No Y N Y Y Y N Y Y Y Y Y Y 

Support for Continuous Customer Feedback  Yes/No N N Y Y Y N Y Y N Y N Y 

Teams 

Support for Self-Organizing Teams 1: Not discussed; 2: No; 3: Yes.  2 3 1 1 1 1 1 1 1 1 3 3 

Support for Face-to-Face Conversation Yes/No N Y Y Y N Y N N Y Y Y Y 

Product 

Support for Continuous Integration Yes/No Y Y N/A N Y N Y Y N/A Y N/A Y 

Process 

Support for Iterative-Incremental Development Yes/No Y Y Y Y Y Y Y Y Y Y Y Y 

Prescription of Common Agile Practices Yes/No Y Y N N Y Y Y Y Y Y Y Y 

D
eg

re
e 

o
f 

A
g
il

it
y

 

Support for Rapid Development of Products 1: No; 2: To some extent; 3: Yes. 2 3 2 3 3 2 3 3 2 2 2 3 

Support for Leanness Factors Yes/No Y Y N Y N N N Y N N Y Y 

Support for Learning (from previous 

iterations/projects) 

1: No; 2: Yes, implicitly; 3: Yes, 

explicitly. 
2 3 1 1 1 1 1 1 2 2 1 Y 

Support for Responsiveness (provision of 

process feedback) 

Yes/No 
Y Y Y Y Y N N Y Y Y Y Y 

 

REFERENCES 

[1] G. K. Hanssen and T. E. Fægri, “Process fusion: An industrial 
case study on agile software product line engineering,” Journal 
of Systems and Software, vol. 81, no. 6, pp. 843–854, 2008. 

[2] F. Farmahini Farahani and R. Ramsin, “Methodologies for 
Agile Product Line Engineering: A Survey and Evaluation,” 
Proc. International Conference on Intelligent Software 
Methodologies, Tools, and Techniques, 2014, pp. 545–564. 

[3] J. Díaz Fernández, J. Pérez Benedí, A. Yagüe Panadero, and J. 
Garbajosa Sopeña, “Tailoring the Scrum Development Process 
to Address Agile Product Line Engineering,” Proc. Jornadas de 
Ingeniería del Software y base de Datos, 2011. 

[4] X. Wang, “Towards an Agile Method for Building Software 
Product Lines,” M.Sc. Thesis, University of York, UK, 2005. 

[5] R. Ramsin and R. F. Paige, “Process-centered Review of Object 
Oriented Software Development Methodologies,” ACM 
Computing Surveys, vol. 40, no. 1, p. 3:1–89, 2008. 

[6] D. S. de Souza and P. Vilain, “Selecting Agile Practices for 
Developing Software Product Lines,” Proc. International 
Conference on Software Engineering & Knowledge 
Engineering, 2013, pp. 220–225. 

[7] M. Balbino, E. S. de Almeida, and S. R. de Lemos Meira, “An 
Agile Scoping Process for Software Product Lines,” Proc. 
International Conference on Software Engineering & 
Knowledge Engineering, 2011, pp. 717–722. 

[8] A. Abouzekry and R. Hassan, “Software Product Line Agility,” 
Proc. International Conference on Software Engineering 
Advances, 2011, pp. 1–7. 

[9] “The Agile Unified Process (AUP(.” [Online]. Available: 
http://www.ambysoft.com/unifiedprocess/agileUP.html. 
[Retrieved: August-2017]. 

[10] P. O’Leary, F. McCaffery, S. Thiel, and I. Richardson, “An 
agile process model for product derivation in software product 
line engineering,” Journal of Software: Evolution and Process, 
vol. 24, no. 5, pp. 561–571, 2012. 

[11] Y. Ghanam and F. Maurer, “An Iterative Model for Agile 
Product Line Engineering,” Proc. International Software 
Product Line Conference, 2008, pp. 377–384. 

[12] Y. Ghanam, D. Andreychuk, and F. Maurer, “Reactive 
Variability Management in Agile Software Development,” 
Proc. Agile Conference, 2010, pp. 27–34. 

[13] Y. Ghanam and F. Maurer, “Extreme product line engineering: 
Managing variability and traceability via executable 
specifications,” Proc. Agile Conference, 2009, pp. 41–48. 

[14] I. F. da Silva, “An agile approach for software product lines 
scoping,” Proc. International Software Product Line 
Conference, 2012, pp. 225–228. 

[15] R. Carbon, M. Lindvall, D. Muthig, and P. Costa, “Integrating 
product line engineering and agile methods: Flexible design up-
front vs. incremental design,” Proc. International Workshop on 
Agile Product Line Engineering, 2006, pp. 1–8. 

[16] M. A. Noor, R. Rabiser, and P. Grünbacher, “Agile product line 
planning: A collaborative approach and a case study,” Journal 
of Systems and Software, vol. 81, no. 6, pp. 868–882, 2008. 

[17] T. Vale et al., “SPLICE: A Lightweight Software Product Line 
Development Process for Small and Medium Size Projects,” 
Proc. Brazilian Symposium on Software Components, 
Architectures and Reuse, 2014, pp. 42–52. 

[18] F. van der Linden, K. Schmid, and E. Rommes, Software 
Product Lines in Action - The Best Industrial Practice in 
Product Line Engineering. Springer, 2007. 

[19] J. M. DeBaud and K. Schmid, “A systematic approach to derive 
the scope of software product lines,” Proc. International 
Conference on Software Engineering, 1999, pp. 34–43. 

[20] H. Gomaa, Designing software product lines with UML: From 
use cases to pattern-based software architecture. Addison-
Wesley, 2005. 

[21] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. 
Peterson, “Feature-Oriented Domain Analysis (FODA) 
Feasibility Study,” Carnegie Mellon University, 1990. 

[22] K. C. Kang, J. Lee, and P. Donohoe, “Feature-oriented product 
line engineering,” IEEE Software, vol. 19, no. 4, pp. 58–65, 
2002. 

[23] K. Schwaber and M. Beedle, Agile Software Development with 
Scrum. Prentice Hall, 2001. 

[24] K. Beck and C. Andres, Extreme Programming Explained: 
Embrace Change, 2nd edition. Addison-Wesley, 2004.

 

166Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances


