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Abstract—The architecture specifies how the system should be 
designed and built. Several architecture frameworks exist for 
implementing the architectural design process. However, 
shortcomings are identified in current architectural design 
processes, especially concerning volatile domains like 
healthcare. We claim that an iterative architectural design 
process is required, where the technical concerns are separated 
from the non-technical ones. Furthermore, a strong guiding 
vision is required. Based on our experiences from a biobank IT 
infrastructure process, we present a Continuous Renewability 
architectural design process that is modular, interoperable, 
controlled and abstracted, thus being capable of handling 
complex systems with severe uncertainties. 

Keywords- Architecture; design; lessons learned; post-
mortem; process. 

I.  INTRODUCTION 
Software systems are becoming ever more complex. 

Consequently, software and systems development has 
become increasingly challenging and intellectually 
demanding [1][2]. Therefore, it has been proposed that 
coherent and comprehensive modelling approaches be 
applied. Subsequently many approaches are developed in the 
field of systems architecture modelling [3]. 

Defining the architecture is an activity that specifies how 
a system is to be designed and implemented. Several 
architectural frameworks are available providing guidance 
on how to enact the architectural design process. However, 
in domains that are not established or stable, there exist 
variables that may cause changes and unexpected events that 
require non-routine solutions. The wider the scope of the 
project and the more stakeholders that are involved, the more 
difficult the architecture definition is [3]. 

Moreover, if the development problem is not well 
structured, it becomes increasingly more challenging to 
address and communicate [4]. Healthcare is one such domain 
that is constantly evolving. There exist several stakeholders 
from different domains, various laws and regulations are in 
effect, some of which are still emerging, e.g., General Data 
Protection Regulation [5], services and service models are 
still being refined. It is then easy to see the inherent volatility 
within this particular domain. Hence, we claim that an 
incremental and iterative process is necessary, where the 

outcome is built gradually. These facilitates observations of 
the evolution of the design and implementation over time, 
and to better understand its requirements and potential–
gradually gathering feedback and incorporating it into the 
development. However, not only design and implementation, 
but also system use and renewability has to be acknowledged 
in the architecture. 

Furthermore, there is a need to have a strong guiding 
vision towards which the architecture development efforts 
can be compared to. In order to define such a process, we 
propose the following research question: What form of 
architectural design process is suitable for volatile 
environments? To address our research question, we used a 
post-mortem analysis to study the process of building a 
biobank IT infrastructure. As a result, we propose a 
Continuous Renewability approach to architectural design 
process. 

The remainder of the paper is organised as follows. 
Section II studies the background. Section III presents the 
research approach. Section IV presents the architectural 
design process and the empirical experiences from healthcare 
domain. Section V evaluates our approach. Section VI 
discusses the results and implications. Section VII 
summarises this work. 

This paper is an extended version of [6] including, e.g., 
more detailed literature study, extended description of the 
proposed approach, and evaluation of the approach. 

II. BACKGROUND AND RELATED WORK 
The healthcare domain is one example of domains that 

are constantly evolving by means of new technological 
innovations, new requirements for efficiency and cost and 
new regulations being introduced. There also exists the 
continued interaction and dependency on legacy systems and 
data formats. The design reality of healthcare IT architecture 
is sketched in Figure 1. 

 

 
Figure 1.  Design reality of healthcare IT architecture. 
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Legacy systems and data formats that are widely utilised 
in the medical domain create challenges by means of 
potentially isolated and non-interoperable systems. In 
particular, legacy issues arising from the use of existing data 
formats, processes, applications and service-level agreements 
(SLA) increase the level of complexity involved in designing 
a unified technical solution. Thus, there exists a need for 
migration and renewal strategies in addition to strategies that 
enable complying with the legacy systems. 

Architectural design is heavily guided by requirements 
regarding efficiency and cost. Emerging technologies may 
provide better and more efficient solutions to current 
challenges, public-private partnerships (PPP) funded by a 
partnership of government and a number of private sector 
companies and new principles like 4P medicine, referring to 
preventive, predictive, personalised, and participatory 
medicine [7]. 4P medicine is also sometimes referred to as 
personalised or precision medicine. It can be seen as the 
tailoring of medical treatment to the individual 
characteristics, needs, and preferences of a patient during all 
stages of care, including prevention, diagnosis, treatment, 
and follow-up. It will also include enhancing the awareness 
about lifestyles and preventive lifestyle changes. The goal is 
to enhance the health outcomes with integration of evidence-
based medicine and precision diagnostics into clinical 
practice.  

Through this holistic approach, in combination with 
several divergent stakeholders and new technologies, it is 
easy to see that the design environment may become 
fragmented and volatile. Furthermore, the healthcare sector 
is examining new strategies and business models, such as 
PPP, where the strategic and business drivers are diverse. 
The gradual evolution of legacy systems towards new 
solutions must enable the continuing use of existing systems 
integrated into the current environment. This may potentially 
result in a complex environment with combination of both 
legacy systems and applications with brand new solutions 
[8]. The ongoing evolution through changing legislation, 
regulations and improvements in medical practices creates an 
environment that is constantly changing. 

Various architectural frameworks have been proposed to 
address the different design realities, including standards, 
such as ISO/IEC/IEEE 42010. In addition a general model 
for architectural design is presented in [9]. Architectural 
frameworks have been analysed extensively [1][10][11], and 
a recurring theme across the frameworks is that each 
describes the role of the architecture in the product 
development process as a “systematic analysis and design of 
related information to provide model for guiding the actual 
development of information systems” [10]. The architectural 
design process is a one that guides the definition of a given 
system architecture, however, there is no general solution for 
the representation of a system’s architecture [10]. Many 
architecture frameworks discuss the architecture creation 
process yet few focus on the process [11]. The value of the 
processes is shown in the literature and it has been suggested 
that processes ensure that activities in an organisation are 
performed consistently and reliably [12]. The architectural 
design process should provide a structured approach to 

architecture activities in the product development process 
[10]. Furthermore, it is also important to acknowledge the 
phases of system in use and renewability. Thus, architecture 
should cover: 1) design, 2) implementation, 3) deployment, 
4) usage, and 5) renewability. The lack of proper planning 
for items usage and renewability can often lead to problems 
for customers, because evolution and renewability is 
expensive or impossible, system use may be restricted, and 
new processes are not supported. Maintenance can also 
suffer if developers only do design, implementation, and 
deployment. 

Several frameworks exist for modelling architecture. 
While different frameworks have different content and target 
a different audience [11], they aim to provide structure and 
systematic processes for systems design [10]. Examples of 
well known and established architecture frameworks are the 
Zachman Framework for Enterprise Architecture [13], 4+1 
View Model of Architecture [14], Federal Enterprise 
Architecture Framework (FEAF) [15], Reference Model for 
Open Distributed Computing (RM-ODP) [16], The Open 
Group Architectural Framework (TOGAF) [17], DoD 
Architecture Framework by the US Department of Defense 
(DoDAF) [18], and a general model of software architectural 
design by Hofmeister et al [9].  

While each architecture framework is suitable for 
different environments, they may result in similar outcomes 
based on their architecture goals and viewpoints. Viewpoints 
are an important feature of architecture frameworks as they 
represent the goals and focal points that the architecture 
framework emphasises like business, information, software 
and technical architectures. The analysis revealed that only 
three of the frameworks, FEAF, TOGAF and DoDAF, 
provided explicit support for the architectural design process, 
RM-ODP provided partial support, ZF and 4+1 View 
provided no support. ZF and TOGAF have a focus on 
enterprise architecture, 4+1 View and RM-ODP on software 
systems (typically distributed), FEAF is primarily a 
framework for architecture planning and DoDAF focuses on 
enterprise architecture related to defence operations and 
business operations and processes. It is thus typically quite 
domain specific. The general model by Hofmeister et al. is 
based on synthesis of several existing approaches. 
[3][9][10][11] 

Evaluations of architecture frameworks are presented, 
e.g., in [3][9][11]. While there are pros and cons for each 
method, common deficiencies in the architecture frameworks 
can be identified [10]: 1) The level of details required in 
models is not specified enough, 2) Rationales are not 
considered in models, thus no verification is possible, 3) 
Non-functional requirements are not considered in all 
frameworks, 4) Software configuration is not considered in 
all frameworks. 

There are also more recent approaches to systems design 
that aim at tackling the challenges of modern development 
environments. Palladio Component Model (PCM) is one 
such approach; among other benefits it enables the analysis 
of different architectural design alternatives (i.e., 
optimisation) and aims to address the challenges during the 
early development stages, thus avoiding costly redesigns 
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[19]. Software architecture optimisation has also been 
studied to help the search for optimal architectural design, 
e.g., Aleti et al. [20] performed an extensive systematic 
literature review focusing on software architecture 
optimisation.  

Even with software architecture optimisation efforts, 
architectural design still involves complex trade-off analyses 
that may require expertise in several domains or the 
environment may be more variable and dynamic than current 
process can support. It is even possible that not all 
stakeholders are known or they may not already know what 
the intent for the product to accomplish. Thus, such 
uncertainty may exist that the guiding vision for the product 
is impossible to be fully defined during the early stages of 
development. Instead, it is suggested that it is built 
incrementally.  

In conclusion, there is a need for an architectural design 
process that addresses the identified shortcomings, including: 
volatile environments, the availability of specific details, 
design rationales, non-functional requirements, and software 
configurations. 

III. RESEARCH APPROACH 
The results are based on experiences gathered during a 

biobank IT infrastructure development project. The research 
consisted of studying several organisations related to 
biobank activities. The purpose of this was to define 
architecture for a biobank and implement a functional 
infrastructure. Managing the large number of stakeholders 
and constantly changing environment requires carefully 
considered architecture approach, thus creating the need and 
basis for this work.  

During the project several challenges were identified. A 
post-mortem analysis was conducted to analyse these 
findings and to identify the shortcomings and improvements 
for the architectural design process. A post-mortem analysis 
is a study method that may be used to gather empirical 
knowledge. The benefits of a post-mortem analysis include 
revealing findings more frequently than other methods, such 
as project completion reports. It is beneficial to conduct post-
mortem analyses after important milestones and events in 
addition to the end of a project. Post-mortem analysis can be 
used as a project-based learning technique [21][22]. In 
addition to finding the impediments of the development 
process, post-mortem analyses may be used to improve 
methods and practises [23]. During this research project, a 
post-mortem analysis was used to study our development 
process to facilitate identifying potential sources for 
improvement or optimisation. 

Our post-mortem analysis follows the general iterative 
post-mortem analysis proposed by Birk et al. [21], as shown 
in Figure 2. 

 

 
Figure 2.  General post-mortem analysis process [21]. 

 

TABLE I.  VARIOUS STAKEHOLDERS IN BIOBANK DOMAIN 

Stakeholder Input 
Valvira (National Supervisory 
Authority for Welfare and Health)  

- Biobank permission 
- Supervision 

Sample donor, person - Consent 
- Samples 

KELA (The Social Insurance 
Institution of Finland)  

- Information systems service  

THL (National Institute for Health 
and Welfare in Finland)  

- Architecture 
- BBMRI-ERIC: Obligations 

BBMRI (Biobanking and 
BioMolecular resources Research 
Infrastructure)  

- Common methods 

Registry - Source data 
Service provider - Service 
Health care units - Sample and data 

- Support services 
Research - Sample and data 
National ethical board (TUKIJA)  - Reports 
STM (The Ministry of Health and 
Social Affairs)  

- National biobank overall 
  architecture 

 
Our research started with an initial preparation stage 

where we carefully identified the key participants involved 
with our effort and selected viable methods and procedures. 

Project history was examined with the key participants 
involved in the project (primarily project managers and 
system architects) and project documents were studied. Then 
our goal for the post-mortem analysis was determined–to 
understand the needs for the architectural design process as 
well as identify potential sources for improvement and 
optimisation.  

Data collection involved gathering relevant project 
experiences from team members and key stakeholders (Table 
I). Participants of our data collection as well as data analysis 
session were project managers (1), system architects (2) and 
developers (2). A decision was made to conduct a 
lightweight post-mortem analysis. KJ sessions [24] with 
thematic analysis [25][26] were utilised to gather and 
organise ideas and data.  

In the analysis phase, findings and ideas were organised 
into groups based on their relationships. Post-It notes were 
used to record the ideas and findings and related notes were 
then grouped together. Based on our results, we present 
Continuous Renewability architectural design process. Table 
I presents the key stakeholders that participated in the 
definition of the biobank. The organisations were chosen as 
they could each provide potential data related to the research 
question. Experts and managers from different organisational 
levels were involved. Examples of input by the sources are 
also presented.  

IV. EXAMINING THE ARCHITECTURAL DESIGN PROCESS 

A. Preparation 
In the planning phase, project results were studied. These 

results included meeting memorandums, requirements, 
company materials and the results produced. The focus of 
the post-mortem analysis was decided to be to understand 
and improve the current processes, to find out what 
challenges regarding to architectural design process exist and 
where we succeeded. Post-mortem analysis participants were 
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informed of the procedures and schedules were agreed upon 
and the goal of the post-mortem analysis was determined. A 
lightweight post-mortem analysis was selected as it fits the 
project size best [27]. 

B. Data Collection and Data Analysis 
In this step, a summary of project history was explored 

with key members of the project to better understand the 
history of the project. Then we gathered the relevant project 
experience, and participants were asked to provide their 
views on the development process and practises. The views 
were documented using KJ sessions.  

Participants were given a set of Post-It notes and they 
were asked to write down one issue on each note including 
both challenges and successes. Each note was then attached 
to a whiteboard and the person was asked to explain why the 
issue is important. When all the notes were on the 
whiteboard, they were discussed thoroughly and then they 
were organised into thematic groups and each group was 
named, see Table II. Grouping the findings revealed nine 
themes. These groups indicate the main challenges or needs 
that were encountered in the development of the biobank IT-
infrastructure. These challenges are issues that may often be 
met in the architecture development in volatile environments.  

Data analysis was done in the same session as data 
collection. 

TABLE II.  SUMMARY OF THE MOST IMPORTANT FINDINGS 

Theme Finding 
Abstraction +  Abstracting the system design is useful 
Change and 
uncertainty 

-   Changing requirements, components and 
environment 
-   Unclear responsibilities 
-   Ongoing efforts that affect the work disruptively 

Communication -   Understanding stakeholders from other domains is 
challenging 
-   Various general communication issues are met 
-   Unclear stakeholders complicates the 
communication 
-   Critical information not available 
+  Constant communication within the development 
team was useful 
+  Common vision and shared understanding within 
the development team was helpful 
+  Building trust between the stakeholders enabled 
the communication channels to be build 

Controlled +  Planning and decision-making built within the 
process  

Guiding vision +  First architecture draft providing a guideline 
+  Defining the basic data flows before trying to 
integrate with the hospital systems 

Interoperability -   Numerous interfaces to existing systems 
-   Vast number of systems and applications, 
including legacy systems 

Iterative 
approach 

+  Iterative process builds the outcome gradually 
 

Modularity +  Following system architecture principles allowing 
for modular system 

Separation of 
concerns 

-   Non-technological issues complicating 
technological issues (politics, rigid processes, etc.) 
-   Complex operational environment requires 
examination of the system from different views 
+  Identifying new separation opportunities in 
existing architecture enabled development of isolated 
domains 

 

After the views and ideas were recorded, they were 
discussed in detail. A root-cause analysis was conducted to 
find out why those items occurred. Identifying root causes of 
the identified issues included consideration of how general 
these issues are and whom they concern.  

Analysis suggests that the most important issue affecting 
the architectural design was change and uncertainty in 
addition to communication issues and complexity in the 
system and environment. Together these hindered 
development efforts and may potentially affect quite severely 
the quality of the product. However, we also found ways to 
tackle these issues. For example, applying good 
communication practices, iterative development and having a 
guiding vision are all suggested. 

In summary, our architectural design process was 
iterative in nature. This allowed us to build a shared 
understanding of the work to be done, to shape the goals, and 
to react to numerous changes and uncertainties as well as the 
knowledge gaps between different stakeholders. The work 
started with a stakeholder analysis to find the relevant 
stakeholders and their viewpoints regarding biobank IT 
infrastructure. The key problem in gathering stakeholder 
views was their wide array of potential wishes and then 
implementing them on a technical level. Several stakeholders 
were not technically oriented in their background, thus they 
did not know the technical restrictions that may exist in such 
an environment.  

Similarly from both a legal perspective and a 
technological perspective, the various stakeholders had 
difficulty grasping adequately other domains than their own. 
Especially challenging were the legal issues regarding 
sensitive and personally identifiable information. Getting the 
stakeholder views and mapping them to a technical level in 
addition to ensuring compliance with laws and regulations is 
time consuming since there needs to be a consensus amongst 
the stakeholders. Multiple requirements were identified 
ranging from very abstract to very concrete. Based on this 
analysis we were able to come up with an architectural 
design process for volatile environments. 

C. Experiences 
Here we summarise our experiences from the 

architectural design process conducted in order to build a 
biobank IT infrastructure. The aim is to provide hands-on 
experience on architectural design process and to provide 
guidance on how to define architectures for systems that 
exist in volatile environments, and as with many other 
frameworks to control the complexity of development by 
abstracting the system design and modelling the intended 
system at different abstraction levels.  

We suggest an iterative approach in the form of 
Continuous Renewability, where the work is done iteratively 
and incrementally with feedback loops throughout the 
process improving communication. At each level, there are 
discussions about what is required, and what is already 
available. Frequently, comparisons to previous levels are 
done. As the process progresses, the need for changes and 
their associated effects grows smaller.  
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Figure 3.  Four levels of abstraction for describing software architectures. 

Different approaches can be used, as there are different 
needs, requirements, environments, etc. In our case, 
Continuous Renewability approach was required. Biobank 
data does not become old or obsolete. Instead, the amount of 
data grows over time. Similarly, the architectural design 
must be continuous to account for changes and new events 
and to have scalability and potential for upgrade while still 
keeping the whole system interoperable.  

In the Continuous Renewability model, four levels of 
abstraction are identified each representing a distinctive view 
of the architecture from enterprise level to technical details 
of the system/software architecture, see Figure 3. Each level 
implements the level above with more detailed technologies 
and descriptions. Each level is also a phase in our 
architectural design process. Moreover, each level 
corresponds to a set of stakeholders, and together the 
different views form the complete architecture specification. 

1) Strategic architecture is the starting point providing 
the overall description of the development problem, defining 
business views, business processes and rules, and 
performance goals. It also defines the conceptual architecture 
that connects the architecture effort with the visions, 
organisational strategies, business drivers and goals in 
addition to processes and functional perspectives. 

One of the main contributions is to communicate the 
vision and define the rationale–why things are required. 
External input can come from multiple sources including but 
not limited to various communities, laws and regulations. 

At this level, a strategic architecture is defined with the 
following output: A semantic model defining the 
relationships of business entities and business processes. 
Most of the external requirements and customer feedback 
come through this level as this level is typically closest to the 
customer interface of an organisation. It must have a solid 
understanding of customer requirements and it should 
communicate these requirements in addition to their rationale 
to internal stakeholders. A strategic architecture is also 
influenced by the business strategies and other high-level 
visions. Furthermore, it also receives feedback in an iterative 
manner from the whole architecture development cycle. It 
was noted that frequently this strategy consumes a 
disproportionate amount of time and effort, as it must be 
strictly representative of reality in order to provide a good 
basis for further actions. 

2) Logical architecture defines the functions and 
various resources or components of the system including 
their relations and how information flows throughout the 
system. Furthermore, this level defines the qualities of the 
system, i.e., gives the measurements on how to achieve the 

business goals specified at the strategic level. External input 
is the inventories of available building blocks for the system. 

The results from level 1 are further examined and 
developed in level 2, where the logical architecture is 
defined. The output of level 2 provides a logical data model 
that defines the relationships of data entities. 

3) Technical architecture implements the logical level 
and provides a foundation by defining the technical 
architecture including technology platforms, information 
system environments, hardware, software, network 
components, interfaces, platforms, etc. External input comes 
from sources including standards, non-functional 
requirements (NFR) (like redundancy, security, availability, 
scalability and interoperability). The output of level 3 is to 
provide a technical architecture that defines the physical data 
model and a technological architecture. 

4) Implementation architecture focuses on details, such 
as hardware and software, operating systems and middleware 
in addition to interoperability and data definitions. External 
input comes from sources including configuration 
documents, technical constraints and application 
requirements. The output of level 4 is an implementation 
architecture that defines the implementation details, such as 
components, applications and software and hardware 
configurations. This implementation architecture takes into 
account all the technical constraints. Furthermore, it also has 
to communicate back to level 1, e.g., the weight of legacy 
(like data formats and applications), which will affect 
planning, system interoperability, business decisions, etc. 
The weight of legacy is a critical factor in system design in 
the healthcare domain where there may not exist alternatives 
that are readily available to replace existing systems. 

If changes are made at any level, it may have an effect on 
any other level. The Master Architecture is defined to guide 
the development effort, structure and scope of the process. 
This is illustrated in Figure 4.  

The Master Architecture maintains the up-to-date 
specification in addition to a specification document 
produced for each level. Defining the Master Architecture 
can start from the current architecture or current standards 
and infrastructures. 

 

 
Figure 4.  Continuous Renewability architectural design process. 

99Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances



First, a high level architecture is used which will then be 
further specified as the architectural design process 
progresses. The Master Architecture may also illustrate a set 
of use-case scenarios that can be referred to at each level to 
understand requirements of the system to be designed. 

The model has to account for 1) reality, 2) 
methodologies, 3) design models, and 4) design 
functionalities.  

Each phase has to correspond to the Master Architecture 
to verify the feasibility and progress of the development 
towards the set criteria. For example, phase 1 relates to 
synchronisation of costs and trade-offs, phase 2 to quality 
aspects, phase 3 to NFR’s and phase 4 to Functional 
Requirements (FR). Similarly, the produced documents and 
items are verified against the Master Architecture. 

The resulting architecture from this process is available at 
[28].  

V. EVALUATION 
Our Continuous Renewability approach is an 

amalgamation of several best practices found in other 
approaches and design methods. Table III presents a 
comparison of several commonly used approaches with our 
approach, and consider how they address the challenges and 
needs encountered in the architecture development in volatile 
environments. The themes captured in post-mortem analysis 
provide a good starting point for identifying requirements for 
architecture development in volatile environments. These 
themes are also recognised in the literature. The approaches 
are evaluated towards the identified requirements. The 
evaluation is literature based. Each approach is checked if 
they fulfil the requirement fully, partially or not at all. The 
Continuous Renewability approach (CR in the Table III) is 
built to address the identified requirements fully. 

It should be noted, however, that DoDAF is limited in 
scope and it does not address the relevant views for 
implementing the system as a software architecture as well 
as the other approaches [29]. 

Abstraction is one of the requirements for architecture 
description languages [30], furthermore, abstraction is 
necessary to enable the examination of architecture from 
different perspectives. Zachman, FEAF and DoDAF address 
the abstraction requirement, while TOGAF has very limited 
views [31]. Abstraction is addressed in 4+1 at least partially 
with different views.  

Changes and uncertainty. In real life, work has many 
variables, changes and unexpected events are met, vast 

amounts of data must be handled, and innovative solutions 
are needed [12][32][33]. Readiness for changes is necessary 
to adapt to future situations [9], furthermore, uncertainty and 
changes are also often met during the development work. 
Flexibility minimise the impact of changes. Change and 
uncertainty is addressed in Zachman, DoDAF and 
Hofmeister. FEAF accommodates changes at least partially 
through flexibility of methods, work products and tools [30]. 
TOGAF has a flexible process and accommodates changes 
and promotes change management [10][34]. RM-ODP does 
not consider the future needs or evolution of the architecture 
[10]. 4+1 does not address system evolution [10]. 

Communication is a mediating factor in coordinating 
and controlling the collaborative work. Software 
development requires a vast amount of communication, 
especially when dealing with complex infrastructures. These 
issues have been reported to decrease both the frequency and 
quality of communication, and ultimately, productivity. To 
mitigate these issues, tools, processes, and methodologies are 
required. [35][36]  

Communication is addressed in Zachman (through 
abstraction, simplification and common vocabulary) and 
Hofmeister, but not explicitly. FEAF provides a common 
language and facilitates communication [34]. DoDAF 
address communication at least partially through extensive 
documentation [10]. 4+1 address communication 
requirement fully. RM-ODP provides a framework for 
defining the languages for the viewpoints to be used as a 
dictionary for architecture description [29].   

Controlled refers to rigid processes and best practices 
that the architectural design process is based on. It also 
overlaps with the guiding vision, as control also comes from 
the ability to evaluate constantly the results towards set 
targets, ensuring the correct architectural decisions [9].  

FEAF (partially) and TOGAF (fully) provides process 
support [10][31][34]. FEAF measures success [34], while 
TOGAF lacks the continuous evaluation or validation. 4+1 
provides partial support through the validation of the 
architectural design, while DoDAF defines the process and 
evaluation [10][31][34] and Hofmeister provide full support 
for controllability. RM-ODP does not describe the 
architectural design process [10].  

Guiding vision provides a common goal to guide the 
development and harmonise the practices. Guiding vision 
also acts as a baseline towards which the development can be 
verified. 

TABLE III.  COMPARISON OF APPROACHES (0=NO SUPPORT, 1=PARTIAL SUPPORT, 2=FULL SUPPORT) 

Requirement Zachman FEAF RM-ODP TOGAF DoDAF 4+1 Hofmeister  CR 
Abstraction 2 2 1 2 2 1 1 2 
Change & Uncertainty 2 1 0 2 2 0 2 2 
Communication 1 2 1 0 1 2 1 2 
Controlled 0 1 0 1 2 1 2 2 
Guiding vision 0 1 0 2 2 2 2 2 
Interoperable 0 2 2 2 2 0 0 2 
Iterative 0 1 0 1 2 2 2 2 
Modular 0 1 1 0 0 2 0 2 
Separation of concerns 1 2 1 0 1 1 2 2 

 

100Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances



Evaluation is ensuring that the architectural decisions are 
the correct ones [9]. DoDAF provides description of the 
intended product, with guidance and rules for consistency 
[18]. TOGAF and 4+1 guides the organisation with an 
architectural vision. In FEAF each segment has a guiding 
vision [34]. 

Interoperability is one of the drivers that contribute to 
the success of the product and it is necessary to address 
interoperability already in the architectural design [39]. 

FEAF, RM-ODP, TOGAF and DoDAF explicitly 
promote interoperability [10]. 

Iterative development is emphasised in [9], it was also 
revealed as one of the success factors in our post-mortem 
analysis. FEAF, TOGAF and 4+1 are iterative, however, 
FEAF and TOGAF do not explicitly propose iterations after 
each phase, but only after the whole process [9][34]. DoDAF 
is iterative [18]. 

Modularity is recognised as a crucial attribute in 
software architecture [40][41]. FEAF uses autonomous 
partitions to manage complexity [34]. 4+1 supports 
modularity to promote ease of development, software 
management and reuse as well as addressing environmental 
constraints [10].  

Separation of concerns provides several benefits, such 
as reduced complexity, improved reusability and simpler 
evolution [37][38]. Zachman, RM-ODP, DoDAF and 4+1 
partially address this requirement through views. Hofmeister 
address the complexity and separation of concerns. FEAF 
address this, as it is built on segments and enterprise 
services, which can be seen as views to development [34].  

VI. DISCUSSION 
Volatile environments present many non-trivial 

challenges for architectural design and specification. A post-
mortem analysis was conducted on a biobank IT 
infrastructure project to understand the architecture based on 
real problems and attempted solutions. A post-mortem 
analysis is a tool that can be used to learn from the 
experiences of previous iterations or completed projects. It 
can also be used to improve and adapt current software 
development processes [22]. Here, our aim was to learn from 
our experiences and then suggest improvements for 
architectural design processes, especially for volatile 
environments. 

Our Continuous Renewability approach to architecture is 
a) modular, b) interoperable, c) controlled and d) abstracted. 
This way we can handle complex systems with significant 
inherent uncertainties. The design philosophy is that when 
designing the architecture, the requirements were separated 
into technical and non-technical requirements whereby the 
non-technical requirements included requirements 
specialised to the biobank domain, like sample management 
and identification and table structures. These are 
requirements that do not affect the design of data flow, as we 
only need to know that the data exists and will be in some 
form that can be trivially read from, written to and 
transmitted securely over an encrypted socket-based 
connection directly to the next stage. The specific content of 
the data is largely irrelevant in most cases. 

Incremental and iterative development is suggested as it 
allows observing the outcome and improving it as new 
information becomes available. Our proposal is a Continuous 
Renewability architecture model, which is intended to be 
general, such that it does not mandate how each level should 
be modelled. This allows several architectural styles and 
notations to be utilised. More important is that all the 
necessary views to a development are addressed. 
Furthermore, our architecture is modular to allow flexibility 
and extendibility. Modularity allows the reconstruction of 
any part of the system, such that an area-of-effect can 
potentially be localised to just those components directly 
connected to the modified region. In the case of the biobank, 
the system has been designed such that successive system 
component regions typically form a directional data flow 
through standardised and well-defined interfaces. 
Interoperability is similarly achieved through the 
specification of interfaces defining various domains with 
utilisation of open-standard communication protocols. 
Controllability comes from the rigorous process and from the 
Master Architecture that guides the development and verifies 
the outputs against the set targets. Architecture should also 
be highly abstracted. For example, there exist requirements 
that are irrelevant when designing a data flow because we 
only require knowledge that a given data exists and will be in 
some form that we can work with. The specific content of 
the data is largely irrelevant in most cases. This is highly 
beneficial in an evolving healthcare environment whereby 
the specific content of a data set in addition may frequently 
be in a state of flux while the laws and regulations 
surrounding the data set are interpreted. Increasing or 
decreasing the level of abstraction as required allows the 
examination of the system from different perspectives. The 
separation of technical concerns from non-technical concerns 
allows us to adapt to future needs, as the design is not relying 
on specific technologies or solutions. 

In volatile environments, constant comparison to the 
Master Architecture is required. It allows for the verification 
of compliance for all the relevant inputs and design choices, 
even if those vary during development. The Master 
Architecture provides the goals towards which the effort is 
pushed as well as the guidelines that determine how those 
goals should be reached. Structure for the process is also 
provided. Design rationales guide the overall work and are 
kept up-to-date by continuous communication with the 
stakeholders who see the system being defined 
incrementally. Continuous communication also helps 
building trust between the stakeholders. This allows them to 
understand the rationale for design and implementation 
decisions better throughout the process as a consequence of 
context being more localised. Input is verified at each level 
and every iteration. Additionally, the Master architecture is 
updated accordingly. Comparing the results to the Master 
Architecture enables a constant feasibility analysis, and 
enables corrective actions if necessary. 

We suggest an approach to architecture whereby domains 
are the fundamental units and the communication pathways 
between the domains indicate connectivity between domains. 
The internal structure of a given domain remains unspecified 
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in the highest level of abstraction. It is only specialised once 
the requirements for that domain are exhibiting some form of 
stability. For example, we can consider the anonymising 
encoding service of the biobank not as a part of the 
architecture, but as a specialisation of a domain for a specific 
task. Thus, if for example, the law changes or it turns out it 
was misinterpreted, the specialised components of the 
domain may be updated or replaced with minimal impact to 
the architecture assuming the new specialisation utilises the 
existing connection path and communicates using 
compatible data storage and communication formats. It then 
follows that any connected domains from which it receives 
from or transmits to must be able to accept that 
communication readily.  

This is accomplished by initially designing the system at 
a high of abstraction, modelling the transformations that 
occur in a domain as a function with an argument type T that 
maps to some other type U where T, U may have some 
structure or may represent a collection of different data 
types. It is also important to note that type identifiers, such as 
T or U are arbitrarily chosen and the label communicates 
only the preservation, or lack thereof, of the structure of the 
input data. The labelling of an input and output type is 
defined such that if the input and output types of a domain 
are identical as is the case in a mapping from T to T then the 
transformation that occurs is said to be structure preserving 
such that the output contains an identical structure to the 
input type. An example of this could be structured tabular 
data with given column headings. If the transformation does 
not modify this table structure, instead only reading the 
contents or modifying the table contents then it is said to be 
structure preserving. It is then possible once a directed graph 
of each transformation is obtained to perform algebra upon 
this graph. Such operations may include the simplification of 
the structure through composing transformations or 
identifying potential incompatibilities between domains 
through type mismatches. Each domain in the architecture is 
constructed from many transformations composed in such a 
manner that the functionality of a domain may be mapped as 
the composition of many functions. 

In practise, many concepts may not map naturally to this 
model. Examples include data storage on disc and databases. 
In such cases, it is possible to map these as either state 
machines or simply as entities in the data flow that label a 
particular complex process. As requirements stabilise and 
become readily available, the intent is for an architecture 
defined in this abstract manner to reduce down to a 
traditional architecture specification.  

Designing the system this way allows us to largely 
disregard the shifting external environment and design a 
system around the modelled data flow rather than the 
specific form of the transformations until such time that 
information exhibits stability. It is only required that 
information regarding what transformations are required 
exists. This way, the architecture is largely resilient against 
variation in both non-functional and many non-technical 
requirements as each domain is intended to be entirely self-
contained with all state being local to that domain and any 
information that enters the domain is passed directly to it and 

the given output from a domain depends only upon 
information contained within that domain. 

We propose that architecture specifies the interfaces to 
the various domains and utilise open standard protocols for 
communication. It is specified that all data be retained so any 
variation in requirements downstream can be trivially 
propagated through the signal chain or the entire data set can 
be rebuilt at any time if a failure occurs somewhere. 
Similarly, by defining the interfaces between domains, it is 
possible to enforce properties, such as strong and guaranteed 
cryptography on communications and storage in addition to 
simple topology modifications due to a standardised 
interface between domains. While this requires additional 
work in the implementation stage, by communicating 
through a unified routing system, it ensures that future 
software replacing legacy or unsuitable components may 
develop against a known, open communication protocol 
removing the possibility that proprietary vendor 
communication methods hamper third-party inclusion into 
the architecture. There are many benefits of this approach, as 
shown in Table IV. 

With this in mind, we believe that this approach is not 
limited to a single field (pathology, genetics or similar) and 
does not depend on a single company. This is a general 
model that can apply to any domain of any size. 

TABLE IV.  BENEFITS 

- Since the creation of abstract domains is largely trivial and the 
communication between those domains follows open standards, each 
domain is fully knowable and may be audited. The system may then 
easily adapt by localising changes to only the affected domains.  
- Adapting to future needs is made viable using this architecture, as it 
doesn't matter whether the software used to power a particular domain is 
open source or proprietary as long as it conforms to the open standard 
data storage formats and communication protocols, it can be replaced or 
upgraded.  
- There is much less chance of a given software company creating a 
monopoly in the business domain by providing a large monolithic 
system that is proprietary and does not allow (or limits) the ability for 
third-parties to build upon or interface with it. 
- There is opportunity for innovation because anyone can develop 
candidate solutions for domain specialisation without needing to invest 
effort in satisfying criteria regarding licensing other vendor APIs. It also 
allows for larger scale international collaboration. 
- The organisation is free to choose any software, open source or 
proprietary to specialise each domain. We specify in our prototype 
biobank implementation architecture open source software because for 
our purposes existing solutions exist for many of the domain 
specialisations and it is possible to implement new functionality upon 
the existing code bases with relative ease. However, the client remains 
free to choose the software solutions they deem adequate. The only 
requirement is that the communication between domains follows open 
protocols with implementations provided either by an existing library or 
directly as part of the core infrastructure. 
- It has a potential to be cheaper to maintain. For example, if there is a 
decision to go for an entirely open source system, not only does there 
not typically exist a license cost, there may exist multiple potential 
options regarding which organisation to hire for supporting and 
maintaining the system. That way they can receive quotes and optimise 
expenditure based on the value each quote offers.  
- Since rigid software design processes may stagnate and impede 
innovation. By having a modular system, any organisation may be 
required to innovate whether it is by feature set or cost as there may not 
exist a possibility to implant a system at the project's inception and rely 
on the difficulty of switching to a competing product as a source of 
longevity in the deployed infrastructure.  
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This is where the novelty and innovativeness of this 
approach lies. We suggest a system design method that is 
resilient to changing requirements and constraints and is 
dependent only upon technological requirements, one that 
can adapt and grow to any scale and is both modular and 
knowable. 

There do, however exist limitations to this approach. In 
this case, there is limited access to end-users as only a 
limited number of healthcare professionals were directly 
participating in the process.  

We had to rely on application and service providers, who 
served as an intermediary between the researchers and the 
end-users. However, the application and service providers 
are established and well known in their domain and have a 
strong knowledge of the needs and requirements. We can 
thus rely on their experience for making informed decisions.  

The results should interest both academics and 
practitioners as they provide an experience report on a 
generalised architectural design process for volatile 
environments. This is a method for designing a system in 
such a way that it bypasses many non-technical issues by 
separating the technical concerns from the non-technical 
concerns through modular design. The study also lays the 
groundwork for further scholarly inquiry, including 
validating the findings in practice. 

VII. CONCLUSION AND FUTURE WORK 
This paper presented lessons learned from a biobank IT 

infrastructure project. A post-mortem analysis was 
conducted for biobank IT infrastructure process, where 
several challenges are encountered. Further challenges were 
presented by the strict requirements for privacy and 
anonymity as well as rigid processes involved with the 
patient data. We have identified several challenges and 
solution proposals.  

Table V shows the overview of proposed solutions and 
summarises how the challenges may be addressed. 

By following these proposals the resulting architecture 
will be a) modular, b) interoperable, c) controlled and d) 
abstracted. It is also suitable for volatile environments, thus 
addressing our research question.  

Continuous Renewability approach is general by 
definition and should be easily adapted to other domains. 
However, the practical generalisability of our results is 
limited until the process is used in other domains. It is 
important to note that the viability of this approach will need 
to be verified through controlled experiment and observation. 
Though, the generalisability is one of our main design 
philosophies guiding the development, hence we believe that 
generalisability issues are likely to be negligible. This model 
should be refined as feedback from applications is received. 

 
 
 
 
 
 
 

TABLE V.  OVERVIEW OF PROPOSED SOLUTIONS 

- Changing requirements, components and environments are tackled 
with iterative process that builds shared understanding, shape the goals 
and allow reacting to changes. Furthermore, Continuous Renewability 
approach enables constant feedback and mitigates the effects of changes 
as the process progresses.  
- Several communications related issues are tackled with iterative 
process, as it allow stakeholders to see the system grow, and their 
understanding improves along with the system. Improved 
communication practices also are necessary, starting from the planning 
to create a common vision on what to build and continuing through the 
whole development cycle. Constant communication also builds trust 
between the stakeholders.  
- The Master Architecture provides the scope and guidance for the 
development work. First architecture draft is defined to provide a 
guideline for development. Then the basic data flows are defined. 
Master Architecture provides a checkpoint towards which the design can 
be verified, while designing the system around data flows mitigates the 
complexity as well as the effects of changing external environment.  
- An iterative approach was adopted to build the outcome gradually. 
With the modular system architecture and abstracted systems design it 
allows for updating the design with minimal effort and minimal impact 
to other parts of the system. Abstraction and separation of concerns 
allows for adaptable design that accommodates the future needs and is 
scalable. It also is not reliant on certain technologies or solutions.  
- Separation of non-technological issues from technological issues 
simplifies the design, as it isolates, e.g., the effects of politics and rigid 
processes from the technological concerns.  
- The separation of the architecture into isolated domains connected 
through a common interface can serve to restrict the propagation of 
errors through the system in the event of component failure or 
modification. This in turn has the potential to offer greater flexibility and 
expansion of the system to meet future needs. 
- Interfaces between the domains and to existing systems utilise the 
open-standard communication protocols. This ensures interoperability, 
as the components can be changed according to future needs.  
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