
A Cost-benefit Evaluation of Accessibility Testing in Agile Software Development

Aleksander Bai, Heidi Camilla Mork
Norwegian Computing Center, Oslo, Norway

Email: {aleksander.bai|heidi.mork}@nr.no

Viktoria Stray
University of Oslo, Oslo, Norway
Email: stray@ifi.uio.no

Abstract—Accessibility testing in software development is test-
ing the software to ensure that it is usable by as many people as
possible, independent of their capabilities. Few guidelines exist
on how to include accessibility testing in an agile process, and
how to select testing methods from a cost-benefit point of view.
The end result is that many development teams do not include
accessibility testing, since they do not know how to prioritize the
different testing methods within a tight budget. In this paper, we
present an evaluation of four accessibility testing methods that
fits in an agile software development process. We discuss the
cost of each method with regards to resources and knowledge
requirements, and based on a cost-benefit analysis, we present
the optimal combinations of these methods in terms of cost and
issues discovered. Finally, we describe how accessibility testing
methods can be incorporated into an agile process by using the
agile accessibility spiral.

Keywords—Accessibility testing; Agile software development;
Cost-benefit analysis; Usability.

I. INTRODUCTION

The past decades have seen an increased interest in integrat-
ing usability in the software development process. However,
far to little attention has been paid to the field of accessibility.
Accessibility focuses on letting people with the widest range
of capabilities be able to use a product or service [1]. There
is an increased focus on accessibility from governments and
the United Nations with ”Convention on the Rights of Persons
with Disabilities” [2].

Studies show that doing usability testing is costly and can
take around 8-13% of the project’s total budget [3]. Much
of the cost goes to recruiting participants and evaluators
in addition to the man-hours required for conducting and
evaluating the results [4]. For accessibility testing, the cost can
be even higher than usability testing, since recruitment and ac-
commodation of participants usually have more requirements.

However, by not doing accessibility testing at all or by
postponing testing until the end of the project, the cost can
be extremely high, and it might not even be possible to do
accessibility adjustments at a late stage [5] [6]. Many studies
show that software that is hard to use, or have features that
are hard to understand, make users find better alternatives [7].
There might also be legal requirements to provide accessibility.

We argue that developers and testers in software teams
can take more responsibility for accessibility testing, and thus
lower the total testing cost of the project and at the same time
deliver a better product that is both more usable and accessible.
Our approach is targeted towards agile software development,
since it has become the mainstream development methodology
[8] [9].

During our evaluations, we have investigated different ac-
cessibility testing techniques, and we discuss the cost-benefit
aspect of these in an agile development process. We argue
that accessibility testing does not necessarily require a high
cost. We describe where in the process the methods can
be used and how they can be combined in optimal ways.
Consequently, the impact from accessibility testing towards
the end of the project will be minimized, and thus reduce
the cost of retrofitting [5]. Our suggested approach is not a
substitute for doing user testing, but an addition, incorporated
into the agile development process, to reduce the overall cost
and increase the usability and accessibility of the software.

The remainder of this paper is organized as follows. Section
II summarizes related work, and section III gives an overview
of accessibility testing methods. Section IV describes the
evaluation approach and the issues that were found during
the evaluations. Section V reports our cost-benefit analysis of
the accessibility testing methods and Section VI discusses the
results. Finally, we summarize and conclude in Section VII.

II. RELATED WORK

Zimmermann and Vanderheiden [10] have proposed a
method for integrating accessible design and testing in the
development of software applications, both iterative and non-
iterative processes. However, the proposed method’s main
focus is on how to gather accessibility requirements and does
not contain much details on how to actual perform testing in
an iterative process. There has been some focus on integrating
an agile development process with usability testing [11], and
in recent years, there has been an increasing interest in Agile
UX (User Experience) [12]. Bonacin et al. [13] propose how
to incorporate accessibility and usability testing into an agile
process, but do not discuss which accessibility testing methods
that are optimal to use or how to combine them in an efficient
setup.

A recent systematic review of usability testing methods for
software development processes [7] request more research into
evaluating the different testing methods and how they affect
the testing outcome. To the best of our knowledge, there are no
evaluations of accessibility testing methods in an agile process,
and there are no studies of which accessibility testing methods
that are most effective compared to resources and knowledge
available in a agile team. We address the latter issue in this
paper by showing a cost-benefit approach on how to select
accessibility testing methods in an agile process.

62Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

III. BACKGROUND

There are several methods for testing usability [7] and
accessibility [10] in software development: automated tools,
guidelines, expert walkthrough, interviews and user testing to
name a few. There are different alternatives of grouping these
methods [14], and we have chosen to divide them into five
groups based on the resources and knowledge required when
using the methods in software development, as shown in Table
TableI.

The amount of resources and knowledge required is cate-
gorized as either low, medium or high. In terms of resources,
low means that none or little prerequisites (tools, setup,
administration) are required to conduct the method; medium
means that some prerequisites are required, and they are
relatively cheap (under $1000); high means that the method
requires considerably investments in terms of setup, purchase,
administration or maintenance. In terms of knowledge, low
means that no or very little prior knowledge is required;
medium require some prior knowledge, either technical (usage,
commands) or domain (knowledge or experience with the
impairment); high means that extensive or expert training is
required to conduct the evaluation.

TABLE I. ACCESSIBILITY TESTING GROUPS.

Group Resource Knowledge
requirements requirements

1 Automated tools Low Low
2 Checklist and guidelines Low Low
3 Simulation using wearables Medium Low
4 Expert walkthrough Low High
5 User testing High Medium

Automated testing tools require fewer resources in terms
of time, knowledge and resources, compared to other testing
methods. It is quite feasible for a developer or tester to install
a tool and run an evaluation, and most of the tools are also
free to use. There are numerous alternatives out there, like the
NetBeans accessibility module [15] that integrate directly into
the developer’s tools, but most automated tools only support
simulation of visual impairments or a limited variant of other
impairments. Overall, the automated testing tools are low in
resources required to acquire and use them. The automated
tools usually explain the evaluation results in great details to
the operator, and give suggestions on how to fix or improve the
problems that have been found. This means very little prior
knowledge is required from the operator, and explains why
we have also labeled the automated tools methods with low
knowledge requirements in Table I.

Checklists and guidelines provide the evaluator with a
set of instructions and criteria to evaluate, and the WCAG
(Web Content Accessibility Guidelines) 2.0 standard [16] is
a common choice. It is easy to find both checklists and
guidelines on the Internet, and they have good and detailed
documentation on how to perform the evaluation and how
to assess the results from the evaluation. This is why we
have labeled checklists and guidelines methods with low for
resource and knowledge requirements. Even though these

methods require little resources and knowledge, studies have
shown that guidelines are hard to understand and follow, and
have not increased accessibility as much as anticipated [17].

There are many different tools or wearables that an able-
bodied person can use in a simulation. The motivation is to let
a person experience an impairment so the person might be able
to gain some insight into the issues that an impairment might
have with a certain design or solution [18]. It is important to
note that the intention of a simulation kit is not to simulate the
disability in itself, which is highly criticized [19]. Simulation
kits are fairly cheap to purchase and setup, but it requires some
planning; the simulation kits must be evaluated to discover
which is most suitable, and the simulation kits must also
be purchased. The planning and cost aspect is the reason
for labeling the simulation methods as medium. However,
simulation kits come with good instructions on how to operator
them and normally requires no prior knowledge, which is
reflected by low knowledge requirements in Table I.

Expert walkthrough, also called persona walkthrough or
persona testing approach [20], is where an expert simulates
or play-acts a persona while carrying out tasks. The more
knowledge the expert has about the disability that a particular
persona has, the easier it is to do a realistic and credible
acting while testing the solution. The approach is informal and
relatively quick to do, but is heavily dependent on the selected
personas and the experience that the expert has with the
particular type of disability. All expert walkthrough methods
requires expert knowledge (as the name indicates) and is
thus marked with high knowledge requirements. However,
there are few resource requirements for expert walkthrough
methods, and this is why they are labeled with low for resource
requirements.

The best approach for accessibility testing is user testing,
since the actual users are involved and the testers does not
have to do any approximation of impairments or mental states
[21] [22]. However, it is also an expensive method because
it requires much planning, recruitment and management [4].
Examples of user testing involves inquiry, interview, focus
group and questionnaire. This means that resource require-
ments are high as indicated in Table I. User testing methods
requires some prior knowledge on how to recruit, organize and
conduct user testing, and we have indicated this with medium
knowledge requirements.

IV. ACCESSIBILITY EVALUATIONS

We conducted eight evaluations. The goal of the evaluations
was to investigate what kind of issues the different test
methods can discover, and how the test methods differ from
each other. The findings of the evaluations were then used in a
cost-benefit analysis, to suggest where in an agile development
process the methods might be most valuable.

The system used for evaluation was a pilot for electronic
identification, developed during the EU project FutureID. The
pilot uses a software certificate or an ID card with a card
reader for the authentication process. The pilot uses both a

63Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Java client and a web front end, and consists of around ten
different user interfaces with varying complexity.

A. Selected Methods

We selected methods from the groups in Table I suitable
to be performed by a person working in an agile team, i.e.,
from all groups except user testing and testing with automated
tools. Table II shows the selected method types; Simulation kit
(group 3), VATlab (group 2), Persona (group 4) and Manual
WCAG (group 2).

The four types of methods were selected based on a
combination of resources and knowledge required to perform
a method. Ideally, in a development cycle, one wants to use
as little resources as possible on accessibility testing, but at
the same time discover the most critical accessibility issues
that exists in the software. Therefore, we focused on testing
methods that are relatively inexpensive to conduct in terms of
time and resources. This is why user testing was omitted, since
it is an expensive method to conduct. Automated tools were
also omitted, since they are limited in what they can actually
test.

Almost all methods are labelled as low with regards to
resources. The only method with prerequisites is the simulation
kit because some hardware must be purchased ahead of testing.
This is usually a one-time purchase, but it must also be stored
and assembled before usage, so we think it qualifies as medium
resource demanding compared to the others.

Most of the methods require very little prior knowledge.
Method 3 involves using a screen reader that requires knowl-
edge on how to operate it, but almost everyone can learn how
to use a screen reader in a short amount of time, and therefore
we labelled it medium. However, our level of using screen
readers cannot compare with the expert level of people that use
screen readers daily and are dependent of them. The persona
testing methods requires much more prior knowledge, both in
terms of the method itself, but also on the impairments that is
being play-acted. Thus, the persona testing methods are high
in knowledge demands.

TABLE II. OVERVIEW OF THE EIGHT EVALUATIONS

Method Impairments Resources Knowledge
1 Simulation kit Reduced vision Medium Low
2 Simulation kit Reduced dexterity Medium Low
3 VATLab Blindess Low Medium
4 VATLab Light sensitivity Low Low
5 VATLab Multiple Low Low
6 Persona Dyslexia Low High
7 Persona Being old Low High
8 Manual WCAG Multiple Low Low

For the simulation kit approach, two impairments were
selected that cover both visual and physical dimensions. We
used Cambridge inclusive design glasses [23] for simulating
reduced vision, and the Cambridge inclusive design gloves
[23] to simulate dexterity reduction. These gloves are typically
used for testing a physical products, but they were included
in our evaluation since there was a card reader involved.

We used a Virtual Assistive Technology Lab (VATLab) to
test various assistive technologies [24]. The VATLab contains

two different screen readers; NVDA and SuperNova. These
tools are used by blind people, and give a good indication of
how accessible the solution is for this type of impairment. We
also used the built-in high contrast mode in Windows. The
VATLab project also includes a checklist for evaluating web
pages for screen readers, and we used this checklist in the
evaluation [24].

For the persona walkthrough we defined two personas
that we had experience with, one being old and one with
dyslexia. For each persona there was an expert play-acting
the particular persona while performing the predefined test-
scenarios. To make it more realistic, the persona testing of
being old was also conducted with two layers of Cambridge
glasses to simulate reduced vision that often comes with age.

Finally, we conducted a manual testing of the WCAG
checklist. The testing was performed with supportive use of
available browser plugins to check for instance color contrast.

B. Participants

Six different participants performed the evaluations, where
the participants’ knowledge on accessibility testing ranged
from beginner to expert. All the participants had technological
background, their age ranged from 35 to 61, and there were
both males and females in the group. Two of the participants
where recruited based on their experience with persona testing
and their knowledge on dyslexia and aging.

C. Procedures

Before we started the evaluation, we defined whether an
issue was critical or cognitive. We defined a critical issue
as an issue that prevents the participant from continuing or
completing a task; e.g. difficult to read images or text because
of poor contrast or resolution. A cognitive issue was an issue
caused by confusing or missing information for the given
context; e.g. not understanding the purpose of a screen or not
understanding how to operate a controller. A problem can thus
belong to both the critical and cognitive category, as it was
often the case.

All the evaluations were conducted on the same machine
with the same setup to ensure an equal test environment.
Each evaluation also had a coordinator who wrote down the
issues reported by the tester, and the coordinator also made
notes when difficulties, that were not verbally expressed, were
observed. All the evaluations were conducted by at least two
different participants, and the results were aggregated.

A short initial test was conducted before the evaluations
started, in order to verify that the overall setup, the scenarios
and the ordering of them were best possible. The goal of
all the scenarios was to successfully log into the system.
Each participant performed five different scenarios in the same
order: 1) Invalid digital certificate 2) Valid digital certificate
3) Invalid smart card 4) Valid smart card, but incorrect PIN
code 5) Valid smart card and correct PIN code

The participants were unaware that they were given invalid
certificate, invalid smart card and invalid PIN (Personal Iden-
tification Number) code. The scenarios were also executed in

64Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

the listed order to avoid biasing the participants as they should
gradually progress a little further in the logging process.
Each method took under two hours to complete for a single
participant for all the scenarios.

D. Evaluation results
As can be seen from Table III, a high number of critical

issues were discovered with most of the methods. It should be
noted that a critical issue might only be critical in the context
of a given disability. For instance, incorrect HTML tags can be
critical for blindness, but may not be relevant for impairments
like reduced dexterity. However, for the solution as a whole, all
critical issues are equally relevant since an issue might exclude
some users if nothing is done to improve the problem.

TABLE III. ISSUES FOUND.

Method Issues Critical Cognitive
1 54 14 9
2 4 0 0
3 33 26 0
4 10 4 0
5 19 17 0
6 34 15 15
7 27 13 9
8 32 7 5

213 96 38

The simulation kit methods found fewer critical issues than
VATLab and persona testing, and this is mostly because most
of the issues reported were visual problems that were annoying
at best and in most cases problematic, but not marked as
critical since it did not hindered further progress. Of the
critical issues discovered with simulation kit, almost all were
also marked as cognitive. Note that a relative few number of
issues were found when simulating reduced dexterity, and we
believe this is mainly because the application did not require
much motoric precision. This is of course highly related to the
software that is evaluated.

WCAG also reported few critical issues, however this was
mostly because the WCAG evaluations criteria are high level.
For instance did a single criteria in WCAG cause over 17
critical issues to be reported in the VATLab methods since
it has a much finer granularity. WCAG also reported few
cognitive issues for the same reason.

VATLab methods reported on average the most critical is-
sues, and many of the issues were related to poor compatibility
for screen readers. We suspect that more issues could be found
if there had not been so many critical problems which made
further investigate in many screens impossible.

Persona testing methods found the most cognitive issues,
and this is not unexpected since the persona used in the
evaluations had focus on usability and understanding the
context. Most of the issues reported by persona testing were
directly related to the participant not understanding the context
of a screen and what was expected from the participant. A high
number of the cognitive issues were also marked as critical
since it is impossible for the participant to complete his task,
and this explains the high number of critical issues discovered
by persona testing.

V. RESULTS

Based on the evaluation results in Section IV, we performed
an cost-benefit analysis (CBA) of what combinations of ac-
cessibility testing methods that discovered most issues with
regards to resources and knowledge. The motivation for doing
a CBA is to get a more objective evaluation of the different
testing methods, so it is easier to evaluate when to include a
testing method in the process. CBA is a systematic approach
for comparing strengths and weaknesses for different options
[25]. It has not been used for comparing accessibility testing
methods to our knowledge, but it is a well known technique
that is used in many fields [26].

In order to do a CBA, we first defined the cost to be the
combination of resources and knowledge where resources
and knowledge ∈ { 1, 2, 3 } where low corresponds to 1,
medium to 2 and high to 3. This makes sense since both
variables contributes equally to the cost of executing a testing
method. We argue that the most beneficial accessibility testing
methods are those that find a high number of issues, but also
many critical and cognitive issues. We can then define the
benefit as the sum of found, critical and cognitive issues. Based
on the the definition of cost and benefit we can then define
the cost-benefit relationship accordingly:

CB =
1√
n

total2 + critical2 + cognitive2

resources× knowledge
(1)

Where total is the total number of issues for n methods,
cognitive is the total number of cognitive issues for n method,
critical is the total number of critical issues for n method
and n is the number of methods. We have included squared
weighting of both cognitive and critical issues since we argue
that these issues are more important to discover than minor
issues. We used

√
n instead of n as a penalty for the number

of evaluations, since using only n gave a too big penalty when
using multiple methods.

We calculated CB for all permutations of the different
accessibility testing methods to identify the combinations that
gives most benefit compared to cost. The top results in addition
to some selected results are shown in Table IV ordered by CB.

Combining all methods (except method 2) gives a very
high coverage (almost 100%), but comes at a high cost, as
shown with #20. The CB found 19 better alternatives when
considering the costs. The optimal combination of methods
that maximize benefit compared to cost is using methods 5,
8, 3 and 1 (#1). This combination has a relatively low cost,
and discovered almost 65% of all issues in addition to a
high number of both critical and cognitive issues (66.7% and
36.8%).

It is not surprising that if more methods are combined then
the results are better, but at a higher cost, as for instance
shown with combination #5 and #8 in Table IV. However,
a combination of two methods (#3) gives reasonable good
results of discovering around 40% of the known issues, and a
large number of both critical and cognitive issues (21.9% and
36.8%).

65Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

TABLE IV. COST BENEFIT RESULTS.

Methods Cost Issues Critical Cognitive
1 5, 8, 3, 1 6 64.8% 66.7% 36.8%
2 8, 3, 1 5 55.9% 49.0% 36.8%
3 8, 1 3 40.4% 21.9% 36.8%
4 5, 8, 1 4 49.3% 39.6% 36.8%
5 5, 8, 6, 3, 1 9 80.8% 82.3% 76.3%
6 8, 6, 3, 1 8 71.8% 64.6% 76.3%
7 5, 8, 4, 3, 1 7 69.4% 70.8% 36.8%
8 5, 8, 7, 6, 3, 1 12 93.4% 95.8% 100%
9 5, 3, 1 5 49.8% 59.4% 23.7%

10 5, 8, 7, 3, 1 9 77.5% 80.0% 60.5%
...
20 5, 8, 7, 6, 4, 3, 1 13 98.1% 100.0% 100.0%
...
53 5, 8, 7, 6, 4, 2, 3, 1 15 100.0% 100.0% 100.0%
...

With a small increase in cost using three testing methods,
around 50% of all issues were discovered, as shown with
combination #2 and #4. Combination #2 finds 55.9% of
all issues, and almost half the known critical issues. It is
also worth noting that this testing method combination use
three different accessibility testing method types (simulation
kit, VATLab and Manual WCAG testing) to discovery many
different issues.

VI. DISCUSSION

Based on the results in Table IV we found that the combi-
nation of several methods provides good results compared to
the investment. Our CBA shows that combining the testing
methods 5, 8, 3 and 1 is the most profitable combination
of methods. The cost is moderate, and yet, the combination
of methods discover a large number of the issues with the
software we evaluated. However, the results does not say
anything about when to apply the different methods during
a development process.

Testing accessibility using simulation kit with reduced vi-
sion (method 1) is the only method which is always part
of top ten results. Manual WCAG (method 8) is part of the
combinations a total of 9 times, while testing blindness using
VATLab (method 3) is part of top ten a total of 8 times.
VATLab with checklist (method 5) is part of the top 10 results
7 times, while dyslexia persona testing (method 6) is part of
the top results three times. Based on these results we can make
some general recommendations on which methods to include
in accessibility testing during an agile process, and the order
in which they should be included.

In Figure 1 we have illustrated how to prioritize the different
accessibility testing methods in an agile development process,
and we call this the agile accessibility spiral. The circular
layers represents the testing methods, and start from the
center with automated tests and expands outwards to show
the priority of the testing methods. The red arrow illustrates
an agile process that spirals outwards and cover the same
activities in different iterations, and the motivation behind the
agile accessibility spiral is that the different testing methods
can be included in all the activities. The total cost increase as

co
st

issues

Pers
ona dyslexia

VAT
Lab checklist

VA
TLa

b screen reader
Manu

al WCAG

Si
mu
la

ti
on

kit reduced

visionAu
to
mated tests

Review

D
e
s
i
g
n

Development

T
e
s
t

FIGURE 1. AGILE ACCESSIBILITY SPIRAL.

more testing methods are included in testing, but the number
of issues discovered also increases.

The different process activities are shown at the edge of the
circle with blue separations between the different activities.
The activities are gradual and not necessarily clearly sepa-
rated as shown in the illustration, and they often happen in
parallel. We have illustrated four common activities (design,
development, test, review) that usually occur in agile software
development.

Automated tests are always a vital part of any development
process and are thus in the center of the spiral, but we argue
that the first accessibility testing method that should be added
to automated tests is the simulation kit for reduced vision. This
is supported by our results in Table IV, and by the knowledge
required as shown in Table I. It is a method that can be
performed many times without affecting the bias of the tester
too much, since it is a wearable gadget that is used by the
tester and not so much a mental testing approach.

Other testing methods like persona testing should be per-
formed less often since the cost is quite high, but also because
it is a mental process which might be biased if performed too
often by the same person. After the simulation kit method
with reduced vision the methods follow successive with man-
ual WCAG, VATLab and blindness, VHL checklist, persona
dyslexia. We have not illustrated more methods in Figure 1,
since these 5 methods cover over 80% of known issues as
shown in Table IV. As a minimum at least two different testing
method should be included during testing [27].

During the first iterations in an agile development process, a
prototype is often developed, and since the motivation behind
a prototype is to show a concept and not necessarily think
about all possible outcomes or users, it is still beneficial to do
some accessibility testing to avoid costly adjustment at a later
stage [5]. However, not all accessibility testing methods are
suitable for testing against prototypes or even design sketches.
The agile accessibility spiral in Figure 1 also incorporate this
in the ordering.

Simulating reduced vision with simulation kit can be done

66Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

against both prototype and design sketches, and parts of
WCAG can also be tested at an early stage. Further out in the
agile accessibility spiral layers, when testing blindness with
VATLab and screen readers, a more stable software version
should be tested instead of design sketches or prototypes. This
is because screen readers requires elements to be marked so
the screen readers can find the required information.

VII. CONCLUSION

Based on our results, we recommend to use the agile
accessibility spiral, as a reference for accessibility testing in
agile development. We recommend to start from the center
and gradually apply more testing methods as the project pro-
gresses. The cost and knowledge of testing methods increase
from the center and outwards, but the discovery of issues also
increases when moving outwards from the center. Ideally, if
the team has access to staff that can perform persona testing,
or are willing to invest the resources to train one or more
in persona testing, then we strongly recommend to include
persona testing as part of the development cycle.

The different testing methods should be adjusted to the
software and the expertise of the development, so they fit
into the agile process. The more knowledge and experience
an agile team gains, the smaller the circles in the agile
accessibility spiral will become. And as stated before, we
strongly recommend to do testing with actual users at some
point in the software development. No amount of automated
tools, checklist and guidelines, simulation using wearables
or expert walkthrough can replace feedback from real users.
However, we argue that developers and testers can contribute
more with accessibility testing to deliver a better end product.

Our study of accessibility testing methods was limited in
number of participants and the size of the evaluated applica-
tion, hence, future work should explore the different accessibil-
ity testing methods for other software solutions. More research
on cost benefit evaluation in accessibility testing should be
done, and it would be interesting to evaluate more testing
methods and place these in the agile accessibility spiral.

ACKNOWLEDGMENT

This research was partially funded as part of the FutureID
project. The FutureID project is funded by the EU FP7
program (Grant agreement no: 318424).

REFERENCES

[1] H. Petrie and N. Bevan, “The evaluation of accessibility, usability and
user experience,” The universal access handbook, 2009, pp. 10–20.

[2] United Nations, “Convention on the Rights of Persons with Disabilities,”
http://www.un.org/disabilities/convention/conventionfull.shtml.

[3] J. Nielsen, “Return on investment for usability,” Jakob Nielsen’s Alert-
box, January, vol. 7, 2003.

[4] L. C. Cheng and M. Mustafa, “A reference to usability inspection
methods,” in International Colloquium of Art and Design Education
Research (i-CADER 2014). Springer, 2015, pp. 407–419.

[5] M.-L. Sánchez-Gordón and L. Moreno, “Toward an integration of web
accessibility into testing processes,” Procedia Computer Science, vol. 27,
2014, pp. 281–291.

[6] B. Haskins, B. Dick, J. Stecklein, R. Lovell, G. Moroney, and J. Dabney,
“Error Cost Escalation Through the Project Life Cycle,” in Incose -
Annual Conference Symposium Proceedings- Cd Rom Edition; 2004,
2004.

[7] F. Paz and J. A. Pow-Sang, “A systematic mapping review of usability
evaluation methods for software development process,” International
Journal of Software Engineering and Its Applications, vol. 10, no. 1,
2016, pp. 165–178.

[8] D. Bustard, G. Wilkie, and D. Greer, “The maturation of agile soft-
ware development principles and practice: observations on successive
industrial studies in 2010 and 2012,” in Engineering of Computer
Based Systems (ECBS), 2013 20th IEEE International Conference and
Workshops on the. IEEE, 2013, pp. 139–146.

[9] T. Dingsøyr, S. Nerur, V. Balijepally, and N. B. Moe, “A decade of
agile methodologies: Towards explaining agile software development,”
Journal of Systems and Software, vol. 85, no. 6, 2012, pp. 1213 – 1221.

[10] G. Zimmermann and G. Vanderheiden, “Accessible design and testing
in the application development process: considerations for an integrated
approach,” Universal Access in the Information Society, vol. 7, no. 1-2,
2008, pp. 117–128.

[11] J. C. Lee and D. S. McCrickard, “Towards extreme (ly) usable software:
Exploring tensions between usability and agile software development,”
in Agile Conference (AGILE), 2007. IEEE, 2007, pp. 59–71.

[12] D. Salah, R. F. Paige, and P. Cairns, “A systematic literature review
for agile development processes and user centred design integration,”
in Proceedings of the 18th International Conference on Evaluation
and Assessment in Software Engineering, ser. EASE ’14. New
York, NY, USA: ACM, 2014, pp. 5:1–5:10. [Online]. Available:
http://doi.acm.org/10.1145/2601248.2601276 [Accessed: 1. June 2015].

[13] R. Bonacin, M. C. C. Baranauskas, and M. A. Rodrigues, “An agile
process model for inclusive software development,” in Enterprise infor-
mation systems. Springer, 2009, pp. 807–818.

[14] K. S. Fuglerud and T. H. Røssvoll, “An evaluation of web-based voting
usability and accessibility,” Universal Access in the Information Society,
vol. 11, no. 4, 2012, pp. 359–373.

[15] NetBeans, “Accessibility Checker,” http://plugins.netbeans.org/plugin/
7577/accessibility-checker.

[16] W3C, “Web Content Accessibility Guidelines,” https://www.w3.org/TR/
WCAG20/.

[17] C. Power, A. Freire, H. Petrie, and D. Swallow, “Guidelines are only
half of the story: accessibility problems encountered by blind users on
the web,” in Proceedings of the SIGCHI conference on human factors
in computing systems. ACM, 2012, pp. 433–442.

[18] C. Cardoso and P. J. Clarkson, “Simulation in user-centred design: help-
ing designers to empathise with atypical users,” Journal of Engineering
Design, vol. 23, no. 1, 2012, pp. 1–22.

[19] A. M. Silverman, J. D. Gwinn, and L. Van Boven, “Stumbling in
their shoes disability simulations reduce judged capabilities of disabled
people,” Social Psychological and Personality Science, vol. 6, no. 4,
2015, pp. 464–471.

[20] T. Schulz and K. S. Fuglerud, “Creating Personas with Disabilities,”
in Computers Helping People with Special Needs, ser. Lecture Notes
in Computer Science, K. Miesenberger, A. Karshmer, P. Penaz, and
W. Zagler, Eds., vol. 7383. Linz, Austria: Springer Berlin / Heidelberg,
2012, pp. 145–152.

[21] J. S. Dumas and J. Redish, “A practical guide to usability testing”.
Intellect Books, 1999.

[22] R. G. Bias and D. J. Mayhew, “Cost-justifying usability: An update for
the Internet age”. Elsevier, 2005.

[23] Cambridge, “Inclusive Design Toolkit,” http://www.
inclusivedesigntoolkit.com.

[24] K. S. Fuglerud, S. E. Skotkjerra, and T. Halbach, “Håndbok i testing av
websider med hjelpe-middel-program-vare, Virtuell hjelpe-middellab,”
2015.

[25] M. M. Mantei and T. J. Teorey, “Cost/benefit analysis for incorporating
human factors in the software lifecycle,” Communications of the ACM,
vol. 31, no. 4, 1988, pp. 428–439.

[26] A. E. Boardman, D. H. Greenberg, A. R. Vining, and D. L. Weimer,
“Cost-benefit analysis: concepts and practice,” 2006.

[27] K. S. Fuglerud, “Inclusive design of ICT: The challenge of diversity”.
Dissertation for the Degree of PhD, University of Oslo, Faculty of
Humanitites, 2014.

67Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

