
The Uncomfortable Discrepancies of Software Metric Thresholds and Reference

Values in Literature

Eudes de Castro Lima, Antônio Maria P. de Resende

Department of Computer Science

Universidade Federal de Lavras (UFLA)

Lavras, Minas Gerais, Brasil

e-mail: comp.eudes@gmail.com, tonio@dcc.ufla.br

Timothy C. Lethbridge

School of Information Technology and Engineering

University of Ottawa

Ottawa, Canada

e-mail: tcl@eecs.uottawa.ca

Abstract— Software metrics perform a crucial role in the

software industry because they provide measures needed to

control software process and product, such as software quality,

complexity, maintainability, and size. Measuring software allows

one to diagnose whether the project is within expected norms or

there is a deviation. However, many publications present metrics

but omit thresholds or reference values that would give guidance

about their ideal limits and range. Metrics might be used more

frequently and effectively if they were accompanied by reliable

reference values. We therefore present a Systematic Literature

Review to find research that presents such reference values and

thresholds. The keyword search phase of the systematic review

generated 6.654 articles from IEEE Xplore, ACM Digital

Library, Ei Compendex, SCOPUS, and Elsevier Science Direct.

Further filtering narrowed this to only 19 articles actually

disucssing thresholds and reference values. We present an

analysis of these papers, including a comparison highlighting

discrepancies in the reference values and thresholds. The results

serve as a starting point to guide further research.

Keywords- software metrics; software measures; thresholds;

reference values; systematic literature review.

I. INTRODUCTION

In medicine, when a blood test is done, the values obtained
are compared with their respective reference intervals printed
beside the results. If there is any abnormality in the results then
the doctor makes a diagnosis, defines the disease, and
determines the type and dose of medicine the patient should
take. There are reference values for most tests, allowing the
diagnosis of patients. However, in software engineering, there
is still a long journey to obtain these values and achieve
maturity based on measures.

Software metrics perform an important role in the software
industry because they provide measures for software features,
such as maintainability, reusability, portability, readability,
correctness, complexity and so on. These measures provide the
software engineer, software architects and project managers the
current state of the software. The measures allow diagnosing of
projects, products and processes, and check whether the values
of measures are within the expected norm or there is
unexpected deviation.

Over the years, a variety of software metrics [1]-[11] and
automated tools for measuring [12][13][14] have been
proposed. However, despite the importance of software
metrics, most have not been widely applied in industry

[15][16]. It is believed that one reason is the lack of reference
values and thresholds for most metrics [17].

A threshold defines a point that should (or not) be exceeded
due to (un)desirable effects involved. A reference value or
range gives objectives for what should be achieved or defines
value sets classified qualitatively; for instance the classification
could be bad, regular and good. In this paper, the term
‘reference value’ will be used for both in most of what follows,
unless context requires otherwise.

 In some cases, the reference values are known, but not
widely accepted. This causes an uncertainty which, according
to [16], inhibits the popularization of software metrics.

Reference values for metrics enable interpretation of the
results of measurement. It is through comparing measures to
reference values that software engineers can verify that the
project, product and process meets a desired standard or, that
the project is improving, worsening or stable.

Various authors [18]-[22] have proposed reference values
for software metrics and techniques for deriving them. There
are articles, such as [19][21][23], which provide benchmarks
based on "experience" (tacit knowledge) without any statistical
or technical analysis that supports the claim. However, since
they were obtained in a specific context, published reference
values tend not to be generalizable beyond the context of their
inception.

In this work, the results of a systematic literature review
(SLR) of software metrics are presented, focusing on reference
values. The SLR selection process resulted in selection of 19
articles, out of 6.654 considered. In subsequent sections we
summarize these articles and present the reference values cited
or calculated in the articles . We discuss certain differences in
metric interpretations. We also comment on the amount and
type of software used to calculate and validate the reference
values. We then present a comparison of the discrepancies
among reference values proposed in those articles. Finally, we
suggest future work that would promote improvements in
software metrics and measurements.

The SLR methodology has proven very useful software
engineering researchers. It provides a documented and
repeatable process to identify the state of the art about some
issues of researchers’ interest.

The structure of this paper is as follows. Section II
describes SLRs in general, the SLR construction process, the
protocol used and the results obtained from this SLR. Section
V presents the comparison analysis and discussion of the

1Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

articles as a group. Section VI presents the main conclusions
obtained in this work, as well as contributions and future work.

II. SYSTEMATIC REVIEW PROCESS

A systematic literature review is an evidence-based
technique originating in medicine and medical sciences [24].
This technique has been employed in several areas including
software engineering.

An SLR involves several distinct activities [25]. In the
literature, it is possible to find different suggestions for the
number and order of activities undertaken in a systematic
review. In [24][25][26] the authors present an SLR process
consisting of three main phases: planning, execution and
analysis of results. This section presents the application of the
SLR, following the three-phase approach.

1. Planning

This section presents the planning phase.

 Objectives: To perform a survey of scientific papers
that discusses software metrics that have ranges or
specific reference values associated with them.

 Research questions: What software metrics have
values or ranges of reference assigned to them? What
values or ranges have been identified in the literature?

 Keywords: The following keywords were adopted:
Software metric, measure, measuring, threshold,
reference value, value, range, limit.

Search string: the search string was compiled from the
keywords, linking them logically: (software) AND
(metric OR metrics OR measure OR measures OR
measuring) AND ("reference value" OR "reference
values" OR ranges OR thresholds OR limits OR range
OR threshold OR limit).

 Search method sources: Web sites of virtual scientific
libraries.

 List of research sources: IEEE Xplore
(http://ieeexplore.ieee.org), Elsevier Science Direct
(www.sciencedirect.com), Scopus (www.scopus.com),
ACM Digital Library (http://dl.acm.org), and
EiCompendex (www.engineeringvillage2.org).

 Types of articles: Papers considered are those relating
to software metrics, including comparisons and
analyzes.

 Language of articles: The articles must be in English.

 Criteria for inclusion or exclusion of articles: Articles
should: i) Be available for download as full papers; ii)
Provide reference values for software metrics; and iii)
Have been published between the years 1990 and
2015.

It is known that the search string used can return a lot of

articles or limit the results as well. So, in this investigation, the
results expected are papers that contain the words present in
search string. A string search containing the name of a specific

metrics was not used. For instance, Depth Inheritance Tree,
Response for Classes, Coupling Between Objects, Number of
Children, Weighted Methods per Class, LCOM and others
could be inserted in the search string. Considering the amount
of metrics, the length of the search string, the volume of
articles that need to be retrieved and the data need to be
processed, the work must be separated for each metric.

2. Execution

The execution was divided into four steps, as suggested in
[27] called initial selection, primary selection, secondary
selection, and obtaining and evaluation of scientific papers.

 Initial selection (obtaining of articles): Searches are
conducted in databases defined in the protocol; then
the results are summarized according to previously
established criteria. This process is iterative, i.e. the
search can be readjusted and run again, if the results
are not reasonable.

 Primary selection: This is the first filtering of the
results. Usually the Title and Keywords of articles are
read to verify compliance with the criteria for inclusion
and exclusion.

 Secondary selection: This is the second filtering of the
results. This step aims to eliminate irrelevant results by
reading the abstracts and conclusions of the articles,
and checking compliance with the criteria for inclusion
and exclusion.

 Results organization: The results are tabulated in a
way that favors a quick visual analysis.

Step 1 – Initial selection

The initial selection was conducted by searching in the
databases mentioned above. Filters were carried out during
searching activity to restrict the results according to year (the
period between 1990 and 2015), language (English), and
discipline (computer science and/or software engineering).
Scientific articles were searched for using our search strings
applied to titles, abstracts and keywords.

Because of the characteristics of the search engines for
some databases, the search strings defined in the protocol
required slight change, but their semantics were retained. In
some situations, it was necessary to include the query string
parameters. For instance, in the ACM Digital Library it was
necessary to divide the search string into three, to obtain a
plausible result for analysis. The searches were performed on
November 10 and 26, 2014.

Table I presents the exact search strings used in the SLR for
each database.

As a result of that search, 6.654 scientific articles were
found, as shown in the second column of Table II. The tool
JabRef version 2.7.2 [28] was used to manage the list of
articles.

2Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

TABLE I. SEARCH STRINGS USED IN PRIMARY SELECTION

Databases Search strings

IEEE

Xplore

((software) AND (metric OR metrics OR measure OR measures OR

measuring) AND ("reference value" OR "reference values" OR

ranges OR thresholds OR limits OR range OR threshold OR limit))

Elsevier

Science

Direct

pub-date > 1989 and TITLE-ABS-KEY((software) AND (metric OR

metrics OR measure OR measures OR measuring) AND ("reference

value" OR "reference values" OR ranges OR thresholds OR limits

OR range OR threshold OR limit))[All Sources(Computer Science)]

Ei

Compendex

(((((software) AND (metric OR metrics OR measure OR measures

OR measuring) AND ("reference value" OR "reference values" OR

ranges OR thresholds OR limits OR range OR threshold OR limit))

WN KY) AND (({computer software} OR {software engineering})

WN CV)) AND (((english) WN LA) AND (1990-2015) WN YR))

Scopus

TITLE-ABS-KEY((software) AND (metric OR metrics OR measure

OR measures OR measuring) AND ("reference value" OR

"reference values" OR ranges OR thresholds OR limits OR range

OR threshold OR limit)) AND PUBYEAR > 1989 AND (LIMIT-

TO(LANGUAGE, "English")) AND (LIMIT-TO(SUBJAREA,

"COMP"))

ACM

Library

String 1
(“software measure*”) AND (“reference value*” OR

range* OR threshold* OR limit*)

String 2
(“software measuring”) AND (“reference value*” OR

range* OR threshold* OR limit*)

String 3
(“software metric*”) AND (“reference value*” OR

range* OR threshold* OR limit*)

TABLE II- RESULTS AFTER APPLYING SELECTIONS

Data Bases
Initial

Selection

Primary

Selection

Secondary Selection
Selected

Irlvt Rpt Incompl

IEEE 3.266 91 80 0 0 11

Elsevier 180 27 24 0 0 3

Compendex 1.254 33 19 11 0 3

Scopus 1.687 54 37 16 0 1

ACM 267 37 33 3 0 1

Total 6.654 242 193 30 0 19

Step 2 – Primary selection

After the initial selection was performed (step 1), the
scientific articles were submitted to primary selection, where
titles, keywords and abstracts were filtered and analyzed
manually.

During filtering, it was found that a large proportion of the
articles belonged to other areas of computer science and did
not meet the purposes of this SLR. Hence, the number of
scientific articles decreased from 6654 (obtained in the initial
selection) to 242. This is shown in column 3 of Table II.

In an SLR, it is usual for the initial search to return a large
number of irrelevant articles that neither respond to the
research questions nor are unrelated to the theme in question
[26].

Step 3 – Secondary selection

In secondary selection, the 242 scientific articles selected in
the primary selection (Step 2) passed an inspection in which
both introductions and conclusions were read. At this stage,
relevance, repetitiveness and completeness were checked.

Out of 242 articles selected earlier, 193 papers were
considered irrelevant, because they did not correspond to the
objectives of this SLR; 30 articles were considered repeated,
because they were found in more than one database; no article
was considered incomplete, and all items surveyed were
available. Finally, 19 scientific articles passed the selection

criteria. In other words, 19 papers were found that had clearly
stated an intent to define or analyze thresholds or reference
values in their title, abstract or introduction. Table II presents a
summary of the results in its rightmost four columns.

Step 4 - Obtaining and evaluation of scientific papers

Those 19 papers were read and discussed one by one, and
data were gathered in order to show the state of the art around
the research theme. Table III presents the relevant scientific
articles that answer the research questions set out in the
protocol. Section 3 presents the analysis and discussion of
papers identified.

3. Results analysis

This SLR indicates that the number of papers discussing
reference values for software metrics has increased in recent
years. One of the factors contributed to that increase is likely
the market demand for quality products. The SLR shows that
57.8% of scientific papers were published since 2009.

TABLE IV - RELEVANT INFORMATION OF ARTICLES IDENTIFIED IN SLR.

ID Classification

Articles or

tools

referenced

Values

empirically

validated

Technique Context

A Type I [13] no experience specific

B Type II [10] no
distribution

analysis
generic

C Type I [18] no
statistical

analysis
specific

D Type I [9][21] negative experience specific

E Type II [31] negative
statistical

analysis
specific

F Type I ISM no
logistic

regression
specific

G Type II - yes
distribution

analysis
specific

H Type I [44] no experience generic

I Type II - yes
statistical

analysis
specific

J Type II [21] yes
statistical

analysis
specific

K Type II - no
statistical

analysis
specific

L Type II - yes
statistical

analysis
specific

M Type II - no
ROC

courves
specific

N Type II - no experience generic

O Type II [45] no
ROC

courves
specific

P Type II no experience specific

Q Type II [45] no
statistical

analysis
generic

R Type I
[31][46]

[23][9]
no

learning

machine
specific

S Type II [13] no experience specific

A total of 66 metrics having thresholds were identified
from the 19 papers. Among the metrics identified, there are
metrics specific to the OO paradigm as well as traditional
metrics adapted to the OO paradigm, such as LOC and
cyclomatic complexity. In total, 57.4% of the papers refer to
OO metrics specifically and 82.5% of them come from the CK
metrics suite [4].

The IEEE Xplore database presented the most relevant
articles for this research, with 58% of studies. The databases
with the lowest number of relevant studies were Scopus and

3Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

the ACM Library, with 5% of scientific articles each. Table IV
summarizes the articles analyzed. The first column gives the
reference number (see Table III).

TABLE III. RELEVANT ARTICLES THAT ANSWER THE RESEARCH QUESTIONS

SET OUT IN THE PROTOCOL.

ID Year Title Ref. Base

A 2009
An outlier detection algorithm based on

object-oriented metrics thresholds
[29] IEEE

B 2010
Deriving metric thresholds from

benchmark data
[18] IEEE

C 2011
Benchmark-Based Aggregation of

Metrics to Ratings
[30] IEEE

D 2000 Thresholds for object-oriented measures [31] IEEE

E 2002
The optimal class size for object-oriented

software
[32] IEEE

F 2009

Clustering and Metrics Thresholds Based

Software Fault Prediction of Unlabeled

Program Modules

[33] IEEE

G 2003
A metrics suite for measuring reusability

of software components
[34] IEEE

H 2007

Observing Distributions in Size Metrics:

Experience from Analyzing Large

Software Systems

[35] IEEE

I 1997
Software metrics model for quality

control
[36] IEEE

J 2010

A Quantitative Investigation of the

Acceptable Risk Levels of Object-

Oriented Metrics in Open-Source

Systems

[37] IEEE

K 2014
Extracting relative thresholds for source

code metrics
[38] IEEE

L 2011
Identifying thresholds for object-oriented

software metrics
[20] Elsevier

M 2011
Class noise detection based on software

metrics and ROC curves
[39] Elsevier

N 2011
Improving the applicability of object-

oriented class cohesion metrics
[40] Elsevier

O 2010
Finding software metrics threshold

values using ROC curves
[22] Compendex

P 1992
Software metrics for object-oriented

systems
[19] Compendex

Q 2005

An empirical exploration of the

distributions of the Chidamber and

Kemerer object-oriented metrics suite

[41] Compendex

R 2011
Calculation and optimization of

thresholds for sets of software metrics
[42] Scopus

S 2010
Estimation of Software Reusability: An

Engineering Approach
[43] ACM

The second column categorizes the papers into: i) Type I -
studies that use existing reference values to achieve a goal,
such as outlier detection and predicting failures, and ii) Type-
II studies that aim to establish or optimize reference values.
Among the identified articles, 31.6% use existing thresholds
and 68.4% aim to identify or optimize thresholds as shown in
Table IV.

The thresholds classified as Type I and presented by
selected papers were gathered from tool documentation or
from other studies that they had referenced. The thresholds
obtained from tools such as: McCabe IQ, or ISM are hard to
reproduce because the tools are not readily available and some
thresholds were determined “by authors experience”.

The labels "no", "yes" and "negative" shown in Table IV
mean respectively that "there was no validation", "there was
validation", or "there was validation, but the result states that
the reference values are bad values". Articles D and E [31][32]
had negative validation, representing 10.5% of the articles. A
total of 21.1% of articles validated the thresholds and

reference values, and 68.4% did not validate them. These
results are undesirable, because only 21.1% validated values
and only article L [20] out of 21.1% were classified as general
context. The other articles were considered neither validated
nor general. Software engineering should have well validated
thresholds in order to support software engineers during the
development process.

Other articles had used the thresholds to validate only the
method used to discover thresholds, but they did not validate
their own thresholds as presented. This was the case for
articles R and S [42][43].

Regarding the techniques used to obtain the thresholds, as
Lanza and Marinescu indicated in [16], there are two main
approaches: professional experience and statistical analysis.
Of the articles analyzed, 31.6% obtained thresholds through
experience, i.e., the authors determined arbitrarily and
subjectively the thresholds, and 68.4% obtained them through
statistical analysis. Methods like machine learning and error
models were classified as statistical analysis approaches.

The context was classified as generic and specific. The
'generic' label indicates the reference values fulfill all of the
following criteria: a) Three or more systems; b) more than
50% of systems are developed by people different from the
authors, c) more than one domain, and d) more than one
programming language. Otherwise the label 'specific' is used.
A total of 79% of selected papers were classified as specific,
and 21% were classified as general.

During the analysis process, several methods were found
to calculate thresholds. These include experience, statistical
analysis, error models, clustering, distribution analysis, and
machine learning.

Most of the papers would not be amenable to replication
due to incomplete details such as missing versions of systems,
names of systems, details about applied metric interpretation
to measure software and so on. Those details should be
included in articles. In fact, it is necessary to establish a
protocol to guide authors to supply that information, allowing
replication and validation of research of this kind.

Several articles did not define precise instructions for how
metrics were counted in papers. For instance, what is the
difference between ‘comments’ and ‘lines of comments’?
How were lines of comment blocks counted? And how were
lines counted that had both code and comment?

Another difficulty faced was determining whether a value
refers to a minimum or maximum, for instance in
Schneidewind’s article (1997) [36].

In [37], the authors used three versions of Eclipse to
determine values. However, using different versions of the
same software will not result in the same level of generality as
if completely different systems had been used. The same
argument can be made when multiple systems in the same
domain are analyzed.

In next section, some metrics are analyzed considering the
values found in the articles. The reference values presented by
article E [32] are results from a negative validation meaning
that values are invalid to use.

III. COMPARING REFERENCE VALUES PRESENTED BY PAPERS

After reading all selected papers, the gathered reference
values are presented in tables below with columns labelled

4Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

metric, reference, value, and nature of measure. Respectively,
each table contains the name of the metric evaluated, the
reference to the paper that presented the reference value, the
reference value presented or proposed to the metric mentioned,
and the nature of measure that represents the meaning of the
value presented like maximum, minimum, desirable, good,
bad, typical, etc.

In this section, the reader will note the existence of
different reference values for the same metric.

1. Weighted Methods per Class (WMC)

Two interpretations for the WMC metric were found. The
first interpretation, called here WMC1, is calculated by
summing the complexity of each method in a class and
assuming the complexity of each method is 1. That means the
WMC is a simply counting the number of methods (each
method has complexity 1). The second interpretation, called
here WMC2, is calculated by summing the McCabe
Cyclomatic Complexity of the methods.

Table V presents just one reference value that was found
for WMC1 and several different values for WMC2. For the
same interpretation, the WMC2 threshold could be 20 or 100 as
cited and calculated, respectively, in [22]. This situation makes
the work of software engineers difficult, since they will not
know what value should be used as a threshold in their
projects.

TABLE V - VALUES OF WMC METRIC

Metric Ref. Value Nature of Measure

WMC1 - Counting methods A 14 Max

WMC2 - Sum complexities

D 100 Max

K 100 Max

K 20 Max

N 24 Max

N 100 Max

R 100 Max

S 20 and 100 Desirable and Max

WMC - not defined K 32
80% quantiles

(relative threshold)

2. Depth of Inheritance Tree (DIT)

The papers presented moderate differences among
suggested DIT thresholds. This metric measures the maximum
depth of the inheritance hierarchy in a system. In Table VI, it is
observed that values from 6 to 10 are most commonly found to
be the maximum suggested value or upper threshold. This is
still a large range, so further research is needed to determine
how much worse a system would be if it had a DIT of 10 vs. 6.

TABLE VI - VALUES OF DIT METRIC.

Ref. Value Nature of Measure

A 7 Max

D 6 Max

L 2 Typical

Q 10 Max

Q 6 (in Java or C++) Max

S 3 and 6 Desirable and Max

3. Cyclomatic Complexity (CC)

The Cyclomatic Complexity metric is the number of
linearly independent paths in program flow and has
significantly different reference values in the papers studied, as
shown in Table XII.

TABLE XII - VALUES OF CICLOMATIC COMPLEXITY METRICS.

Metrics Ref. Value Nature of Measure

Cyclomatic Complexity Per

Method

B

<=6

]6;8]

]8;14]

>14

low risk

moderate risk

high risk

very-high risk

F 10

It was impossible check it,

because original reference

on web is not available

M

P1 - 3

P2 - 5

P3 - 5

P4 - 3

P5 - 4

Best value for each dataset

P1, P2,…, P5

P 10 Max

R

C - 24

C++ - 10

C# - 10

Max

Cyclomatic Complexity per

Module
P 100

Max Value, considering

10 methods and each one

supporting max

complexity equal 10.

Design Complexity Per Module

- Number of paths including

calls to other modules

M

P1 - 3

P2 - 3

P3 - 3

P4 - 3

P5 - 3

Best value for each dataset

P1, P2,…, P5

4. Number of Children (NOC)

NOC represents the number of children that any given class
has. In Table VIII, it is observed once again that there are
different values for the maximum value or upper threshold
ranging from 3 to 10.

TABLE VIII - VALUES OF NOC METRICS.

Ref. Value Nature of Measure

A 3 Max

Q 10 Max

Q]4, 6[Java and <6 C++ Desirable and Max

5. Lack Of Cohesion Methods (LCOM)

LCOM measures lack of cohesion and has several
interpretations and different names as shown in Table IX. As
different cohesion views appeared over time, new metrics were
developed. Article [40] explains the subtle difference among
the various LCOM metrics.

TABLE IX - VALUES OF LCOM 1, 2, 3, 4, 5 AND LOCM METRICS.

Metric Ref. Value Nature of Measure

LCOM1 N 42 and 21 Mean and 75th percentile

LCOM2
L 0, [10;20] and >20

Intervals mean:

Good, Regular and Bad

N 27 and 8 Mean and 75th percentile

LCOM3 N 1.67 and 2 Mean and 75th percentile

LCOM4 N 1.62 and 2 Mean and 75th percentile

LCOM5 N 0.76 and 1 Mean and 75th percentile

LOCM

 (McCabe Tools)
A 75 Max

LCOM

(not defined)
K 36

80% quantiles

(relative threshold)

6. Operator and Operand Countings

Halstead`s metrics count Unique Operators, Unique
Operands, Total Operators and Total Operands as shown in
Table X. There are different reference values for each dataset
from NASA in [39] called P1,…, P5 in this paper. Halstead
used these direct measures to calculate indirect measures, for
instance, volume of software can be used to indicate

5Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

complexity. The higher the volume of software, the higher its
complexity.

TABLE X - VALUES OF COMPLEXITY OPERATOR AND OPERAND METRICS.

Ref

Value to UNIQUE Value to TOTAL

Operator

Count

Operand

Count

Operator

Count

Operand

Count

F 25 0 125 70

I 10 33 26 21

M

P1 – 7

P2 – 12

P3 – 15

P4 - 18

P5 - 15

P1 – 7

P2 – 17

P3 – 19

P4 - 21

P5 - 20

P1 - 13

P2 - 42

P3 - 54

P4 - 53

P5 - 50

P1 - 8

P2 - 27

P3 - 36

P4 - 57

P5 - 34

7 Response For a Class (RFC), Coupling Between Object

Classes (CBO), Fan-in, Afferent Coupling (AC) and

Number of Function Calls (NFC)
Metrics shown in Table XI to Table XIII are related to

method calling. Fan-in is known as afferent coupling and Fan-
out is known as efferent coupling.

There are different values for the same metric in this case
too. For instance, Table XI shows in its first line the maximum
value is 2 and in line 6 the maximum value is 13.

TABLE XI - VALUES OF CBO AND METRICS.

Ref. Value Nature of Measure

A 2 Max

D 5 Max

J 5 Max

J 9 Max

O 5 Max

O 13 Max

R 5 Max

In Table XII, there are discrepancies among values. For

instance, the RFC maximum value starts with 0 and ends with

222.

TABLE XII - VALUES OF RESPONSE FOR CLASS (RFC).

Ref. Value Nature of Measure

A 100 Max

D 100 Max

J 100 Max

J 40 Max

K 49 80% quantiles - relative threshold

O 100 Max

O 44 Max

R 100 Max

S [50;100] and 222 Desirable and Max

TABLE XIII - VALUES OF FAN-IN, AFFERENT COUPLING (AC) AND

NUMBER OF FUNCTION CALLS (NFC) METRICS.

Metric Ref. Value Nature of Measure

FAN-IN B 10, 22 and 56
70%, 80%, 90%

percentiles

AC L 1, [2;20] and >20
Intervals mean:

Good, Regular and Bad

NFC- Number of

Function Calls
R 5 Max

8. Number of Attributes, Methods and Parameters

Metrics shown in Table XV measure characteristic related
to classes and methods like number of attributes and methods
per class and the number of parameters in a method signature.
Some variations are considered, such as whether modifiers are
public or private . The maximum value of 0 for the public

attributes measure was presented in paper H, due to suggested
good practices for OO modeling. Values originating from good
practices could be called theoretical recommendations.
However, paper H considers 0 as good, but accepts up to 10 as
the regular situation, when considering the distribution analysis
of dozens of open source systems. Those values could be called
practical recommendations.

TABLE XV - VALUES OF NUMBER OF ATTRIBUTES, NUMBER OF METHODS

AND NUMBER OF PARAMETERS.

Metric Ref. Value Nature of Measure

Number of

Attributes

E 39
Invalid Threshold. Do not

use.

K 0.1
75th percentile

(relative threshold)

Number of Public

Attributes

L 0, [1;10], >10
Intervals mean:

Good, Regular and Bad

H 0 Max

K 0.1
75th percentile

(relative threshold)

Number of

Methods (NM)

B 29, 42 and 73 70%, 80% 90% quantiles

E 1
Invalid Threshold. Do not

use

R 20 Max

K 16
80% quantiles

(relative threshold)

Number of Public

Methods

H [5;10] Min and Max Interval

L [0;10], [11;40], >40
Intervals mean:

Good, Regular and Bad

Number of

Parameters (NP)
B 10, 22, 56 70%, 80% 90% percentiles

These reference values have not been widely accepted for

the following main reasons: a) The thresholds that have been
found cannot distinguish ‘good’ from ‘bad’ values, they just
present statistical results; b) the thresholds originate from
studies of only one (or a few) application domains,
geographical regions, or groups of companies, reducing the
generalizability of results; c) There are important discrepancies
among thresholds proposed in different scientific papers; d)
The papers do not explain why a new threshold proposed is
better (or worse) than older ones. They just show numbers and
assert their new numbers as new suggested thresholds.

Article [20] seems to have reference values that are more
reliable, considering the number of systems and domains, but it
considers only Java systems.

Some reference values that were proposed omit
explanations of how they were calculated or the reason for
those values. Sometimes, it was stated that the values were
established based on author’s experience [13][19], suggesting
for us to close our eyes and just trust. Therefore, there is a
long distance to be walked in this journey to improve metrics
and their use.

During this analysis, no evidence was found regarding
whether different kinds of software (e.g., CPU bound vs. I/O
bound) should have the same thresholds or reference values. A
similar question arises regarding whether software employing
particular frameworks, or generated by code-generation tools
should be expected to have reference values consistent with
software that does not employ such technologies. For example,
such software might contain attributes and methods that are
empty or not used.

In [33] the authors showed different values for five projects
(Table X). There were significant differences among the values
for certain metrics in different articles. So, the question arises

6Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

of whether it is even possible calculate a single threshold or
reference value in many cases.

Furthermore, in articles [31] and [32] the authors show
negative results for those validations. The first one [31]
demonstrates that there was no threshold effect (sudden effect
change at some threshold) in some metrics. The second one
[32] demonstrates there is no empirical evidence for the
“Goldilocks Conjecture” that there is a ‘sweet spot’ for a given
metric. Even if these are valid conclusions, surely there must
be negative effects at some extreme values. In other words,
even if Goldilocks found that all the beds were comfortable,
she likely still would not have wanted to sleep on a board or on
quicksand.

This context, without reference values that are generic,
brings to mind learning processes like machine learning, neural
networks, fuzzy systems, and so on. Those methods, without
generic values for training, have to be trained in each context
and must have their application limited to that context only.

Considering the current scenario without generic thresholds
and reference values, more effort needs to be applied to find
reasonable values.

We found no articles presenting values of metrics that
simultaneously take into consideration dimensions such as
domain, architecture, language, size of system, size of
developer teams, modeling approach, code generation
technology, build system, or delivery system. We believe that
reference values may be quite different depending on where
systems are situated in the space defined by the above
dimensions. Additionally, there were no papers comparing
metrics in several independent systems or different versions of
the same system. By independent systems, we are referring to
systems produced by others than those that are collecting,
calculating or validating thresholds or reference values. In
some cases, it was not clear whether the systems studied were
independent of the evaluators.

Many reference values found should be used only with
caution, because, for instance, either they do not have
validation, or their measurement cannot be repeated, or they
might be specific to a certain type of system, and hence not
generic.

As mentioned earlier, it is also important to consider how a
metric is interpreted or implemented and what impact this has
on reference values. For instance, when the metric LOC is
applied, it is necessary to define how blank lines, comments,
and statements in more than one line will be counted.

There are also likely to be inherent differences in reference
values for different programming languages. For example,
some object-oriented languages might intrinsically need
different numbers of classes, or different depths of inheritance
due to such features as inner classes and multiple inheritance.
Other feature differences could lead to different numbers of
attributes, methods, and so on.

Thus, we recommend that a Metrics Research Protocol
should be developed. This would promote consistent research
and enable the exchange of ‘big data’ in this field among many
researchers. It would be similar to what has happened in
biology (e.g., genomics), particle physics, and so on.

There are some metrics for which there likely should be no
natural limit and for which a more complex system would
always have higher values. For instance, this would apply to

LOC, number of classes, number of methods, and number of
attributes in a system. For such metrics, the reference values
should suggest averages or medians per unit, where the unit
might be the class.

The situation described in this paper indicates that the
software engineering community must conduct considerable
additional research if it wants to be considered a true branch of
engineering.

IV. CONCLUSION AND FUTURE WORK

The main objective of this study was to conduct a survey of
software metrics that have reference values or thresholds
associated with them. For this, a systematic literature review
was performed to identify, interpret, and evaluate the relevant
scientific articles available.

During the conduct of the SLR, 6654 scientific articles
were identified after searching of IEEE Xplore, EiCompendex,
Elsevier Science Direct, Scopus and the ACM Library. The
primary selection obtained 242 papers, based on scanning titles
and keywords. With further refinement, 193 papers were
classified irrelevant, 30 were classified repeated, and none
were classified incomplete. Finally, the SLR resulted in 19
articles read and analyzed completely.

The original questions that motivated this SRL were: a)
What software metrics have reference values or ranges
assigned to them? b) What values or ranges were identified in
the literature? Both of these questions were answered, and
details were discussed throughout this paper. However, our
analysis showed that the values are not yet generic enough or
sufficiently validated to be useful.

The major contributions of this work are: i) the
identification of a set of measures that have reference values ii)
the summary of measures, values, systems evaluated, domains
and languages involved, and technical validation, of these iii)
critical evaluation of 19 articles.

The main conclusions of this paper are: i) There are
conflicts among the most reference values; ii) There are several
non-reproducible research papers in the field; iii) There are
reference values based on weak or absent validation; iv) The
selected reference values are for the most part not
generalizable; v) There is little comparison between reference
values and discussion of how one value is better than another;
vi) The thresholds found cannot be used to distinguish ‘good’
from ‘bad’ values, they mainly represent statistical results; and
vii) The scientific community should establish a protocol to
determine what authors should consider minimum information
and procedures that a paper must have when they study and
purpose thresholds and reference values for software metrics.

Thus, the values presented in papers should not be trusted.
The lack of reference values for software metrics persists.
Additional investigation involving other articles not covered in
this SLR and new statistical analysis involving multiple
software systems must be conducted. Considering the
discrepancies among values presented in this paper, we assert
that the issue involving metrics and their thresholds and
reference values is completely open and deserves more effort.

The possible threats to validity of this study include the
limitations of search engines of the digital libraries, and lack of
retrieval due to insufficient detail in the title, abstract or
keywords of the papers. Other valid articles without keywords

7Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

in the titles or provided keywords might not have been found.
The authors will conduct a new SLR involving the name of
each metric and also conduct a statistical analysis of more than
100 open source software projects.

Software metrics have played a key role in organizations.
Even though there has been a growth of research related to
software metrics and thresholds in the last few years, this issue
still needs further research and publications that provide
support to software engineers.

Various actions should be taken as future work:

i) Perform a backward and foward SLR considering the

set of articles discussed in this paper as the starting point. This

might uncover important information that may have been

abandoned over time, as well as complementary data about

thresholds and methods.

ii) Perform a comparative analysis in order to identify

discrepancies among thresholds selected in the literature,

considering software both within various domains and across

domains.

iii) Study and conduct research to establish thresholds for

metrics of interest, creating quality protocols useful as for

reference.

iv) Evaluate evolution of measures between different

versions of the same software, of the same domain and

different domains in order to get average values and uncover

discrepancies.

v) Compare different metrics tools in order to look for

discrepancies in the same metrics applied in the same projects,

to understand why they produce different values, and to enable

creation of warnings and advice about their use.

vi) Develop and propose a protocol to facilitate research

into reference values for various metrics and software types,

and for specific software instances to assure sharing of data

and replicability.

vii) Model thresholds as an n-dimensional problem

considering different domains, sizes, languages, paradigms,

kinds of system and so on.

viii) Develop a comparative analysis about correlation

among similar metrics in order to identify distinct behaviors

even though those metrics assess the same software attribute

(characteristic).
The software engineering research groups from UFLA and

UOttawa continue their work in advancing all these proposals.
In particular, we are extending the Umple technology [47, 48]
to compute metrics for state machines and networks of
associations embedded in code, and will develop systematic
reference values for these metrics.

Finally, the results obtained in this SLR served to
understand the state of the art and serve to guide subsequent
studies related software metrics and thresholds.

ACKNOWLEDGMENT

The authors thank the CNPq / Brazil for financial support
and the Research Groups on Software Engineering, Federal
University of Lavras (PQES / UFLA) and the University of
Ottawa is research environment.

REFERENCES

[1] F. B. E. Abreu and R. Carapuça, “Object-Oriented Software
Engineering: Measuring”, in Proc. of 4th Int. Conf. on Software Quality.
Milwaukee: American Society for Quality, pp. 1-8, 1994.

[2] A. J. Albrecht, “Measuring Application Development Productivity”, in
Proc. of first IBM Application Development Symposium, New York:
IBM, pp. 83-92, 1979.

[3] J. Bieman and B. Kang, “Cohesion and Reuse in an Object-Oriented
System”, in Proc. of Symposium on Software Reusability (SSR'95), New
York: ACM, pp. 259-262, 1995.

[4] S. Chidamber and C. Kemerer, "A metrics suite for object oriented
design", IEEE Transactions on Software Engineering, v. 20, n. 6, pp.
476-493, 1994.

[5] J. A. Dallal and L. C. Briand, “A Precise Method-Method Interaction-
Based Cohesion Metric for Object-Oriented Classes”, ACM
Transactions on Software Engineering and Methodology, v. 21, n. 2,
pp. 1-34, 2012.

[6] G. Gui and P. D. Scott, "New Coupling and Cohesion Metrics for
Evaluation of Software Component Reusability", In Proc. of 9th Int.
Conf. for Young Computer Scientists (ICYCS’ 2008), Hunan: IEEE,
pp.1181-1186, 2008.

[7] M. Halstead, Elements of software science. New York: Elsevier, 1977.

[8] S. Henry and D. Kafura, "Software Structure Metrics Based on
Information Flow", IEEE Transactions on Software Engineering, v. -7,
n. 5, pp. 510-518, 1981.

[9] M. Lorenz and J. Kidd, Object-oriented software metrics. Englewood
Cliffs, NJ: PTR Prentice Hall, 1994.

[10] T. McCabe, "A Complexity Measure", IEEE Transactions on Software
Engineering, v. -2, n. 4, pp. 308-320, 1976.

[11] H. Washizaki, H. Yamamoto, and Y. Fukazawa, “A Metrics Suite for
Measuring Reusability of Software Components”, in Proc. of 9th Int.
Symposium on Software Metrics, Sydney: IEEE Computer Society, pp.
211-223, 2003.

[12] CCCC - Cccc.sourceforge.net, "Software Metrics Investigation", 2015.
[Online]. Available: http://cccc.sourceforge.net/. [accessed: 13-July-
2016].

[13] McCabe IQ. “MaCabe software”. Available:
http://www.mccabe.com/pdf/McCabe%20IQ%20Metrics.pdf. [accessed:
13-July-2016].

[14] A. Terceiro et al, “Analizo: An Extensible Multi-Language Source Code
Analysis and Visualization Toolkit”, in Proc. of the Brazilian Conf. on
Software 2010, Salvador: SBC, pp. 1-6, 2010.

[15] N. Fenton and M. Neil, "Software metrics: successes, failures and new
directions", Journal of Systems and Software, v. 47, n. 2-3, pp. 149-157,
1999.

[16] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice: Using
Software Metrics to Characterize, Evaluate, and Improve the Design of
Object-Oriented Systems. New York: Springer, 2006.

[17] E. Tempero, “On Measuring Java Software”, in Proc. of 31th
Australasian Computer Science Conference, Wollongong: CRPIT, pp.
7-7, 2008.

[18] T. L. Alves, C. Ypma, and J. Visser, “Deriving Metric Thresholds from
Benchmark Data”, in Proc. of the 10th IEEE Int. Conf. on Software
Maintenance, Timisoara: IEEE Computer Society, pp. 1-10, 2010.

[19] J. C. Coppick and T. J. Cheatham, “Software Metrics for Object-
Oriented Systems”, in Proc. of 20th ACM Computer Science
Conference, New York: ACM, pp. 317-322, 1992.

[20] K. Ferreira, M. Bigonha, R. Bigonha, L. Mendes, and H. Almeida,
"Identifying thresholds for object-oriented software metrics", Journal of
Systems and Software, v. 85, n. 2, pp. 244-257, 2011.

[21] L. H. Rosenberg, R. Stapko, and A. Gallo, “Risk-Based Object Oriented
Testing”, in Proc. of 24th Annual Software Engineering Workshop,
Greenbelt: NASA, 1 CD-ROM, 1999.

[22] R. Shatnawi, W. Li, J. Swain, and T. Newman, "Finding software
metrics threshold values using ROC curves", Journal of Software
Maintenance and Evolution: Research and Practice, v. 22, n. 1, pp. 1-
16, 2010.

8Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

[23] V. A. French, “Establishing Software Metric Thresholds”, in Proc. of
9th Int. Workshop on Software Measurement, Mont-Tremblant, pp. 1-10,
1999.

[24] J. Biolchini et al, Systematic review in software engineering. Rio de
Janeiro: UFRJ, Technical Reports RT - ES, 679/05 , 31 p., 2005.

[25] B. Kitchenham, Procedures for performing systematic reviews. Keele:
Keele University, Technical Report TR/SE-0401; NICTA Technical
Report, 0400011T.1, 33 p., 2004.

[26] B. Kitchenham and S. Charters. Guidelines for performing systematic
literature reviews in software engineering. Keele: EBSE Technical
Report EBSE-2007-01, 57 p., 2007.

[27] T. Dyba, T. Dingsoyr, and G. K. Hanssen, “Applying Systematic
Reviews to Diverse Study Types: An Experience Report”, in Proc. of 1st
Int. Symposium on Empirical Software Engineering and Measurement,
Washington: IEEE Computer Society, pp. 225-234, 2007.

[28] Jabref, "JabRef reference manager", 2015. [Online]. Available:
http://www.jabref.org. [accessed: 13-July-2016].

[29] O. Alan and C. Catal, “An Outlier Detection Algorithm Based on
Object-Oriented Metrics Thresholds”, in Proc. of the 24th Int.
Symposium on Computer and Information Sciences, Guzelyurt: IEEE
Computer Society, pp. 567-570, 2009.

[30] T. L. Alves, J. P. Correia, and J. Visser, “Benchmark-Based
Aggregation of Metrics to Ratings”, in Proc. of the 21th Int. Workshop
on Software Measurement; Int. Conf. on Software Process and Product
Measurement, Nara: IEEE Computer Society, pp. 20-29, 2011.

[31] S. Benlarbi, K. El Emam, N. Goel, and S. Rai, “Thresholds for Object-
Oriented Measures”, in Proc. of 11th Int. Symposium on Software
Reliability Engineering, San Jose: IEEE Computer Society, pp. 24-38,
2000.

[32] K. El Emam et al., "The optimal class size for object-oriented software",
IEEE Transactions on Software Engineering, v. 28, n. 5, pp. 494-509,
2002.

[33] C. Catal, U. Sevim, and B. Diri, “Clustering and Metrics Thresholds
Based Software Fault Prediction of Unlabeled Program Modules”, in
Proc. of 6th Int. Conf. on Information Technology New Generations, Las
Vegas: IEEE Computer Society, pp. 199-204, 2009.

[34] H. Washizaki, H. Yamamoto, and Y. Fukazawa, “A Metrics Suite for
Measuring Reusability of Software Components”, in Proc. of 9th Int.
Symposium on Software Metrics, Sydney: IEEE Computer Society, pp.
211-223, 2003.

[35] R. Ramler, K. Wolfmaier, and T. Natschlager, “Observing Distributions
in Size Metrics: Experience From Analyzing Large Software Systems”,

in Proc. of 31th Annual Int. Computer Software and Applications
Conference, Beijing: IEEE Computer Society, pp. 299-304, 2007.

[36] Schneidewind, N. F. “Software Metrics Model for Quality Control”, in
Proc. of 4th Int. Software Metrics Symposium, Albuquerque: IEEE
Computer Society, pp. 127-136, 1997.

[37] R. Shatnawi, "A Quantitative Investigation of the Acceptable Risk
Levels of Object-Oriented Metrics in Open-Source Systems", IEEE
Transactions on Software Engineering, v. 36, n. 2, pp. 216-225, 2010.

[38] P. Oliveira, M. T. Valente, and F. L. Paim, "Extracting Relative
Thresholds for Source Code Metrics", Software Maintenance,
Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Software
Evolution Week - IEEE Conference on, pp.254-263, 2014.

[39] C. Catal, O. Alan, and K. Balkan, "Class noise detection based on
software metrics and ROC curves", Information Sciences, vol. 181, no.
21, pp. 4867-4877, 2011.

[40] J. Al Dallal, "Improving the applicability of object-oriented class
cohesion metrics", Information and Software Technology, vol. 53, no. 9,
pp. 914-928, 2011.

[41] G. Succi, W. Pedrycz, S. Djokic, P. Zuliani, and B. Russo, "An
Empirical Exploration of the Distributions of the Chidamber and
Kemerer Object-Oriented Metrics Suite", Empirical Software
Engineering, v. 10, n. 1, pp. 81-104, 2005.

[42] S. Herbold, J. Grabowski, and S. Waack, "Calculation and optimization
of thresholds for sets of software metrics", Empirical Software
Engineering, v. 16, n. 6, pp. 812-841, 2011.

[43] T. R. G. Nair and R. Selvarani, “Estimation of Software Reusability: An
Engineering Approach”. ACM SIGSOFT Software Engineering Notes,
New York, v. 35, n. 1, p. 1-6, 2010.

[44] K. Wolfmaier and R. Ramler, “Common Findings and Lessons Learned
from Software Architecture and Design Analysis”, in Proc. of 11th
IEEE Int. Software Metrics Symposium, Como: IEEE Computer Society,
pp. 1-8, 2005.

[45] L. H. Rosenberg, “Applying and Interpreting Object Oriented Metrics”,
in Proc. of 10th Software Technology Conference, Utah, pp. 1-18, 1998.

[46] T. Copeland, PMD applied. Alexandria, Va.: Centennial Books, 2005.

[47] T. C. Lethbridge, A. Forward, and O. Badreddin, “Umplification:
Refactoring to Incrementally Add Abstraction to a Program”, in
Conference on Reverse Engineering, Boston, pp. 220-224, 2010.

[48] Cruise Group, "Umple: Merging Modeling with Programming", 2016.
[Online]. Available: http://www.umple.org. [accessed: 13-July-2016].

[49] M. Young, The Technical Writer’s Handbook. Mill Valley, CA:
University Science, 1989.

9Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

