
Requirement’s Variability in Model Generation from a Standard Document in Natural
Language

Juliana Galvani Greghi∗†, Eliane Martins†, Ariadne M. B. R. Carvalho†
∗Department of Computer Science

University of Lavras
Lavras-MG Brazil

Email:juliana@dcc.ufla.br
†Institute of Computing
University of Campinas

Campinas-SP Brazil
Email: {eliane, ariadne}@ic.unicamp.br

Abstract—Requirement documents are, in general, written in
natural language and, therefore, may contain problems such
as ambiguities and inconsistencies. In some domains, such as
the aerospace domain, requirements are obtained from standard
documents that describe the set of services to be implemented.
The standard document may present variability, with a set of
mandatory requirements, which must be always implemented,
and a set of optional ones. Also, different applications may require
different sets of services. In general, models, such as Extended
Finite State Machines (EFSMs), are used to represent the require-
ments. Because of the variability found in the document, different
models can be generated, making manual modeling a difficult and
error-prone task. There are many approaches to (semi) automatic
generation of models from requirement documents. But, to the
best of our knowledge, none is applied to standard documents,
or considers variability issues. In this work, a method for semi-
automatic generation of EFSMs from a natural language standard
document, with the use of variability modeling, is presented.
To validate the proposed approach, a prototype to generate
different EFSMs for the same service was developed, considering
the commonalities and variabilities of the requirements. The
document describes services and protocols for applications in the
aerospace domain.

Keywords–requirements modeling; variability management;
aerospace domain.

I. INTRODUCTION

The use of models in Software Engineering is not new,
because they are less subject to ambiguities and inconsistencies
than natural language descriptions. Besides, models can be
automatically processed by tools, enabling not only their
validation, but also the derivation of code, as well as test
cases. However, modeling is a manual task, error-prone [1]
due to human interference. Many applications may show some
degree of variability, and the definition of commonalities and
variabilities enables reuse of software artifacts, ensuring the
quality of the developed applications [2]. Reuse decreases
development and testing time, and increases reliability of the
reused elements, as much as these artifacts will have been
validated in previous applications [3].

Many different models may be required in the presence of
variability, catering for mandatory requirements, and for many
possible combinations of mandatory and optional require-
ments. In this context, the following research questions must

be answered: Can we deal with the large number of different
models that may be generated, considering the combination of
mandatory and optional requirements? Can these models be
semi-automatically generated?

Some approaches for automatic conversion of texts into
models [4][5][6] are detailed in Section III-A. But, to the best
of our knowledge, the available approaches do not address
variability in the requirements, i.e., when optional requirements
make it possible to create different behavioral instances, with
the same core asset, which allow the final product to have
different capabilities.

In this work, product line engineering concepts were applied
to a standard document to deal with the variability of the
requirements, and to be able to generate models that rep-
resent the services described in the standard document. The
analyzed standard document was elaborated by the European
Cooperation for Space Standardization (ECSS). The document
is the ECSS-E-70-41A - Ground System and Operations -
Telemetry and Telecommand Packet Utilization, called Packet
Utilization Standard (PUS), which standardizes telecommand
and telemetry packets related to a set of services for handling
on-board data software [7]. Those requirements are applicable
to every space mission, and they take into account that different
missions require different functionalities [7]. Furthermore,
variability modeling of the services described in the PUS
document helps the expert user, presenting the features that
must be included in the implementation, as well as the optional
ones, in a self-contained, summarized, and graphical format.
Moreover, the model shows relations between features, sug-
gesting features that should be made available together, and the
ones that should not, thus reducing the human effort required
to identify the information needed to implement a service.

The objective of this work is to show how to use variability
modeling to represent functional requirements from standard
documents, and to semi-automatically generate models rep-
resenting the requirements of each service described in the
standard document.

It is important to say that the EFSMs [8] are generated from
the standard document, not from the variability model. The
variability model is used to help understanding the relation-
ship between the services and their functionalities, which are
described in the standard document, and in the development

139Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

of a product line to semi-automatically generate EFSMs rep-
resenting the requirements defined in a standard document.
The proposed approach was evaluated with a prototype to
semi-automatically generate EFSMs from standard documents.
Furthermore, an empirical work was conducted in which the
PUS document [7] was used. For that, we had the collaboration
of researchers from the National Institute for Space Research
(INPE), and from the Aeronautics Technology Institute (ITA),
who provided the requirements for prototype development, and
who informally evaluated the generated models. They are very
familiar with the PUS document [7] because it is used in the
development of some of their projects.

The rest of the article is organized as follows. Section II
introduces the main concepts related to software product line,
and variability management. Section III presents related work,
and Section IV introduces the proposed approach. Section
V shows a working example, and Section VI presents the
validation of the proposed feature model. Finally, Section VII
concludes the article with suggestions for further work.

II. BACKGROUND

Software Product Line (SPL) is a set of software systems
that share common and optional features. It specifies particular
needs, obtained from a set of common assets [9]. Software
Product Line Engineering (SPLE) is a paradigm for developing
software applications using a common structure and satisfying
individual client needs. These individual needs are the vari-
ability of the system [2].

There are different definitions for variability. In this work,
the following definition is used: “Variability is the ability to
change or customize a system” [10]. There are several methods
for variability modeling, many of them based on features [11].
The concept of feature modeling was first proposed within the
Feature-Oriented Domain Analysis (FODA) method [12]. A
feature is an important quality or characteristic of a software
system, visible to the user. Feature Model (FM) is used to
express common and variable system requirements in a certain
domain, and the relationship between them [12]. FM is used
for product line development, and it represents the properties
of the system that are relevant to the end users in a hierarchical
form [11].

Feature modeling was chosen because it can be easily
understood by stakeholders, and it is widely accepted by
software engineers [11]. The notation used, presented in [13]
apud [14], extends the feature model notation with the feature
type or-feature, improving the representation of the relation-
ship between features.

III. RELATED WORK

There are many approaches for model generation from
natural language documents. The most relevants to this work
are presented in Subsection III-A. The application of SPL
in the space domain has been encouraged along the years,
and some examples of these applications are presented in
Subsection III-B.

A. Model Generation from Natural Language Information
The transformation of natural language requirements into

models present many challenges. Sometimes documents have
to be rewritten, either to correct mistakes, or to express
information in a structured format. Moreover, the notation in

which the information is expressed, and the kind of model that
must be generated, should be taken into account.

The approaches presented here use some sort of Natural
Language Processing (NLP) technique for text pre-processing,
usually a syntactic analyzer (or parser), and a part-of-speech
(PoS) tagger. The parser provides a valid syntactic structure for
a sentence. The process is supported by a grammar that defines
a set of valid structures in a given domain [15][16]. The PoS
tagger associates syntactic and morphological features to the
words of a sentence or text [15].

Yue, Briand and Labiche [17][4] present a method, imple-
mented as part of the aToucan tool, which takes use cases
in a pre-defined format [18] as input, extracting information
and producing Unified Modeling Language (UML) models
(class, activity, and state diagrams). Information extraction is
performed by NLP tools and transformation algorithms. An
extension of this work is presented in [19] to generate Aspect-
based State Machines. A product line model and configuration
were proposed in [20] to support model-based tests.

Deeptimahanti and Babar [21] transform the requirements
document into UML models (class, use cases, and collabo-
ration diagrams), using a tool called UMGAR. The process
initiates with requirements being rewritten to remove eventual
ambiguities from the sentences. Then, the information is ex-
tracted to generate the analysis model. The model can be con-
verted to Extensible Markup Language Metadata Interchange
(XMI) files, allowing for requirements traceability [5].

Kof [6] presents an approach to convert textual descriptions
of an automaton into a finite automaton model. The text is
pre-processed using a PoS tagger. The identification of states
relies on search terms, defined by the user, and on specific
word categories. The identification of transitions is based
on sentence’s segmentation, and on the categorization of the
sentence segments. A set of rules was defined to extract the
text segments that should be used for model generation. The
generated automaton is represented in a tabular form.

Kof and Penzenstadler [22] present a method for integration
of an NLP approach and a CASE tool. They show a method-
ology for translation from text to model using a previous
work [6]. The training data requires that the user selects the
section of the document to be processed. The methodology
was integrated with a tool that enables user interaction. The
tool learns on the fly about words and grammar constructions
that can be used in model generation.

Santiago [23] presents a methodology, SOLIMVA, to gen-
erate model-based test cases from requirements in natural
language documents. A statechart is produced with the in-
formation extracted from the requirements and a tool, called
GTSC [24], is used to generate test cases.

In our approach, the input is not restricted to a specific
format, as in [4][17], and sentences are not rewritten, differ-
ently from [21][5]. The search for patterns is similar to [6],
but in addition, our approach uses patterns extracted from
the document’s structure to obtain information that is used
for model generation. Similarly to Santiago’s work [23], our
approach was applied to the aerospace domain. All of them
use NLP tools to extract information from a natural language
document.

The novelty of the proposed approach is variability handling:
to the best of our knowledge, none of the existing approaches

140Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

deals with requirements variability during model generation.
In our approach, commonalities and variabilities are identified
and modeled with an FM, and this information is used to guide
model generation.

The information extraction process is briefly described in
Section IV.

B. Product Line for Space Application
The use of SPL approaches in space applications has in-

creased along the years due to many factors, e.g., search for
more rigorous architectural definition, cost saving, and the
need for more systematic approaches for systems develop-
ment [25][26][27][28].

Many approaches apply product line concepts in the
aerospace domain and, in general, the final products are spe-
cific software applications [28][29]. Our approach, differently,
applies product line concepts for model generation.

IV. REPRESENTING VARIABILITY FOR
EFSM MODEL GENERATION

The goal of this work was to use variability modeling to help
the semi-automatic generation of EFSMs. Variabilities were
identified to facilitate the generation, from standard documents,
of models used for development and testing. To exemplify the
entire process, a sample text, with some characteristics often
found in standard documents, is presented in Figure 1.

This is a made up data packet validation protocol, illustrating the proposed
information extraction methodology.
Standard document for network communication protocol
Chapter 3 - Data packet validation
3-A Description
This chapter defines a protocol for data packet validation. Data is organized
in packets, as described in chapter 1, and these packets must be validated
before sending. When a packet is sent, a validation activity is initiated.
The mandatory fields must be filled always, on each data transfer. Optional
fields can be filled according to the application requirements.
3-B Concepts
Data packet validation occurs in two stages:
1) Verification of mandatory fields: the type and the size of data must be
verified. Data must conform to the allowed types, and the size must comply
with the restrictions of the used type. An error shall occur if any mandatory
field is not filled.
2) Verification of optional fields: if one (or more) optional field is filled, the
data value must be verified. Data must conform to the allowed values for
the field. If a field value is out of range, a failure report must be generated.
3-C Available functionalities
3-C.1 Basic functionalities
Verification of mandatory fields (1,1): the result of the verification must be
recorded in a report file.
Verification of optional fields (2,1): the result of the verification can be
recorded in a report file if it is required by the application.
In addition to the description, other details about the protocol are described
in the last chapters of this manual. For details consult Appendix A.
3-C.2 Additional functionalities
Sending a warning e-mail (3,2)
Registering a log file for validation errors (4,2)
Validation of data packet integrity (5,2)
3-D Dependencies

ID Name Requires
1 Verification of mandatory fields
2 Verification of optional fields
3 Sending a warning e-mail
4 Registering a log file for validation errors
5 Validation of data packet integrity 1,2

Figure 1. Text fragment to illustrate the proposed methodology.

A. EFSM model generation
Figure 2 shows the process diagram for State Machine

Generation. The entire process has seven steps, subdivided in
sixteen tasks, which are described next. The process of infor-
mation identification and information extraction was already
discussed in a previous work [30].

Figure 2. Process Diagram for State Machine Generation.

Step 1 - Semi-automated analysis of the standard docu-
ment

This step comprises a set of activities performed by an
expert analyst. The process initiates with the selection of the
standard document to be processed (Task 1 - Figure 2). The
selected document must be in plain text format (.txt) to be
processed by the NLP tools. If the text is available in a different
format, it must be converted to .txt (Step 1.1 - Figure 2).
The plain text standard document is then processed by a word
frequency counter tool, and the results are used in the analysis
of the text (Tasks 2 and 3 - Figure 2). This analysis helps to
identify structural patterns in the sentences. Stop words, i.e.,
words that have a high frequency but no semantic meaning
[31], are not taken into account in the analysis. An example
of an identified pattern is: most sentences initiating with the
word “if” present a condition for the execution of an action,
as it can be noticed in the sentence “If a field value is out
of range, a failure report must be generated.”, presented in
Section 3-B.2, Figure 1.

Step 2 - Reading the text
After finding patterns in the sentences, the next task is the

careful manual reading of the standard document to identify
references to other documents, or to a different section or
chapter of the same document (Task 4 - Figure 2). This
information is marked for future processing.

The next task is to identify implicit information, i.e, infor-
mation represented in tables or figures that are not explicit in
the text, and that are related to the described service (Task 5 -
Figure 2). This information must also be marked and processed
to be used in a later stage. In the proposed methodology,
information described in different chapters/sections, or as

141Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

figures or tables, is manually extracted and stored in a database
for EFSM generation. This fact can be observed in Section 3-
D, line 5, Figure 1: the dependency relation is not explicit
in the text, and must be manually extracted and stored in a
database to be used during model generation.

Step 3 - Reading the service description
Text is pre-processed using the Stanford PoS Tagger [32]

(Task 6 - Figure 2). Each category attributed to a word is a
tag that can be used to help the expert analyst in the extraction
process. Sequences of tags were already used by Kof [6], and
his research is the work mostly related to ours. In Figure 3, we
can observe sequences of tags. In the underlined text segments,
the sequence “noun (tags initiated by NN) preposition (tag
IN) adjectives (tag JJ) noun (tags initiated by NN) noun (tags
initiated by NN)” is recurrent and can be used to identify sets
of information that must be extracted and used in later stages.
The process of finding patterns in the sequences of tags is
represented, in Figure 2, by Task 7.

In addition to the categories, the structural pattern identified
in the document can also be used during information extrac-
tion. The identification of structural patterns is represented, in
Figure 2, by Task 8. An example of a structural pattern can
be found in Section 3-C.1, Figure 1. There is a description
of a functionality, followed by a parenthesis, two numbers
separated by a comma, and another parenthesis. The first
number is an identification of the functionality, and the second
indicates if it is a mandatory functionality (number 1), or
an optional functionality (number 2). The pattern “description
parenthesis number comma number parenthesis” can be used in
the extraction process to help the identification of information.
After the analysis, the expert analyst must identify mandatory
and optional functionalities described in the text. These func-
tionalities must be represented in a feature model, which is
used to guide the selection of services and functionalities in a
later stage of the processing (Task 9 - Figure 2).

Step 4 - Identification of states and transitions
The process continues with the identification of states (Task

10 - Figure 2), which relies on the location of the information,
e.g., on the section of the document where the information is
described, and on the sequence of the tags. In Figure 1, we can
see that states are located in the “Concepts” section, identified
by the number of the chapter, and by the identification of the
section (3-B). We can also observe that the description of the
stages starts with a noun (tags initiated with NN), followed by
“of” plus and adjective, and finished with a noun. This pattern
may be identified in Figure 3, in the underlined text segments.
The tasks to identify transitions are very similar to those for
state identification, and represented, in Figure 2, by Task 11.
A transition is composed of events, actions and conditions,
also known as guards. The identification of each transition
component can follow a set of rules and patterns.

The identification of conditions and actions, for example,
is based on the keyword “if”. In Figure 1, we can observe
two different situations: the if-clause at the beginning of the
sentence (Section 3-B.2, Figure 1 - “If a field value is out of
range, a failure report must be generated.”), and the if-clause
at the end of the sentence (Section 3-B.1, Figure 1 - “ An

a DT -RRB- -RRB-Verification NNP of IN mandatory JJ fields NNS
: : the DT type NN and CC the DT size NN of IN data/NNS (...)
b DT -RRB- -RRB- Verification NNP of IN optional JJ fields NNS
: : if IN one CD -LRB--LRB- or CC more JJR -RRB--RRB-
optional VBD (...)

Figure 3. Text segments for tag pattern identification

error shall occur if any mandatory field is not filled.”). In the
first situation, the text segment between the conjunction and
the comma is a condition (“a field value is out of range”), and
the text segment after the comma is an action (“failure report
must be generated”). In the second situation, the action is the
text segment until the conjunction (“An error shall occur”)
and the condition is the text segment after the conjunction
(“any mandatory field is not filled.”). Patterns are used to
create sets of rules to extract information from the standard
document. The set of rules must cover the entire description
of a service present in the standard document. It is possible
that each service may need a specific set of rules, because the
methodology is highly dependent on the text structure and on
the writing style.

Step 5 - Selection of the service and functionalities to be
modeled

This activity must be performed by an expert user, who
is using the requirements described in the standard document
for the development of a new system. The user must select
the service that needs to be modeled (Task 12 - Figure 2).
The mandatory functionalities are selected by default, but the
expert user may select the optional functionalities that must
be present in the model (Task 13 - Figure 2). The information
about what is mandatory or not in a service is provided by the
feature models elaborated in Task 9, Figure 2.

Step 6 - Information extraction
The information extraction is an automated task (Task 14

- Figure 2), which uses the sets of rules created during Step
4. The rules are applied in the standard document to extract
information about a specific service, selected by the expert user
in Task 12, Figure 2. The entire information about the selected
service is recovered. After the extraction process is completed,
the necessary information to represent only the functionalities
selected in Task 13, Figure 2, is filtered and sent to the next
step, that is, generation of EFSM. The process of information
filtering is based on mandatory and optional features identified
through the feature models elaborated in Task 9, Figure 2.

Step 7 - Generation of the EFSM
In the last step of the process, the expert user must select

the model format (Task 15 - Figure 2). The text format is
generated by default, but the user may request the generation
in graphical format too. The last activity is the generation of
the model (Task 16 - Figure 2). The extracted information
filtered according to the selection made by the expert user is
used to generate the EFSM.

B. Variability Modeling
As mentioned in Section II, variability is expressed through

a Feature Model (FM), following the FODA method [12]. The
three steps for feature modeling are described next.

Feature Identification
A feature is an aspect or characteristic of the system

considered important by its users [12]. In our proposal, features
are defined according to the expert user’s viewpoint.

The user may select the standard document version, the text
converter and the PoS tagger. The text converter is used to
pre-process the standard document, and the PoS tagger is used
for annotation. These requirements are considered features
because they are directly related to the choices of the expert
user that can affect the configuration of the new model.

Regarding the state machine model, the user must select
the service(s) to be modeled, the information about the EFSM
that will guide model generation, and the output notation of the
model. These are the main mandatory features of the system.
The sub-features identified for each of these main features are
as follows.

142Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Feature modeling
According to the FODA method [12], feature commonalities

and variabilities are represented as a tree. Figure 4 presents the
feature diagram for the translation system txt2smm.

Figure 4. Feature diagram for the txt2smm system.

The generation of a new model requires the configuration of
six main mandatory features. Three of them are related to doc-
ument management: “Document Version”, “Text Converter”
and “PoS Tagger”, each with alternative sub-features. In an
alternative relationship, only one sub-feature must be selected.

“Document Version” presents the sub-features “V1” and
“Vn”, representing that the user must select the version of the
standard document. “Text Converter” presents the sub-features
“C1” and “Cn”, representing that the user must select the
converter tool. Finally “PoS Tagger” presents the sub-features
“T1” and “Tn”, representing the user must select the PoS
Tagger to be used for text annotation.

“Service Description”, “EFSM Information” and “Model
Format” are the next three features, related to the state machine
generation. “Service Description” presents the or-features “S1”
and “Sn”, which means that at least one service must be
selected. Each service has a set of mandatory functionalities,
always available in every implementation of the service, and
which are represented by the mandatory feature “Function-
ality Group 1”. Additional functionalities are represented by
optional features “Functionality Group N”. Each Functionality
may describe a set of sub-functionalities such as reports,
messages, or requests.

These are represented by “Sub-functionality 1” to “Sub-
functionality N”, which may be mandatory, optional, alter-
native, or or-feature, depending on the requirements of each
functionality.

The information extracted for state machine generation
is presented to the expert user who may edit it. This is
represented by the mandatory feature “EFSM Information”,
and by the optional feature “Information Edition”. The state
machine model can be generated in textual or graphical nota-
tion. This selection is represented by the mandatory feature
“Model Format”, and the available formats are represented
by the mandatory feature “Text”, and by the optional feature
“Graphic”.

Applying feature modeling to the text example in Figure 1,
and considering that “Data packet validation protocol” is one
of the protocols described in the standard document, the

resultant FM would look like the diagram shown in Figure 5,
where “Data transfer protocol” is represented by “S1”.

Figure 5. Feature diagram for the text example.

The service described in the text example is a made up data
packet validation protocol, and the available functionalities
are: Verification of mandatory fields, Verification of optional
fields, Sending a warning e-mail, Registering a log file for
validation errors, and Validation of data packet integrity. The
first two functionalities are mandatory, i.e., they must be
always available in every implementation of the protocol,
and the last three functionalities are optional. The text also
describes the generation of a report file for “Verification of
optional fields”, which is mandatory. The dependency relation
is described in Section 3-D, Figure 1.

Feature model validation and analysis
There are many tools for supporting feature modeling, but

some are more adequate for feature checking; to validate and
analyze the generated model, one, to be presented later, was
chosen. Several operations for automated analysis of feature
models are available, like: validation of the feature model,
i.e., whether the FM allows for the configuration of at least
one valid product; estimation of the number of valid products;
computation of all valid products; evaluation of the variability
degree of the feature model; checking the consistency of the
product, i.e., determining if a specific combination of features
is valid, looking for errors in the feature model, and many other
operations. The feature model validation process is presented
in Section VI.

V. WORKING EXAMPLE
The proposed approach was applied to the PUS docu-

ment [7]. A prototype was developed to extract the necessary
information, and to generate different models for the same
service, taking into account the commonalities and variabilities
of the service. The text was pre-processed using the Stanford
PoS Tagger [32].

The PUS document describes a set of 16 services to
support functionalities for spacecraft monitoring, but there
are no mandatory services for a given mission. Each service
is described with a minimum capability set that must be
always included in every implementation of the service, and
additional capability sets that may be optionally implemented
[7]. In addition to the variability, the document also defines

143Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

other important requirements that must be considered in the
implementation of each service, and which may appear in
different sections of the PUS document.

An example of an instantiation of the feature model for the
generation of a state machine of the Telecommand Verification
Service (TVS) is shown. This example was executed using the
prototype especially developed for the task.

The TVS is described in four stages, each one with a set
of capabilities that might be mandatory or optional. Each
capability defines the generation of reports describing the
failure or the success of a given stage. According to the chapter
that describes the information that can be used for any service,
failure reports must always be generated and, according to
the description of the service, there will be a dependency
relationship between success and failure reports [7].

Regarding document processing, the following features were
selected: standard document version: V1, corresponding to
the version from 30 January, 2003; Text converter: C1; POS
Tagger: T1; Service: TVS; Minimum Capability: Capability
Group 1, corresponding to Acceptance of the telecommand;
Additional Capabilities: Capability Group 4, corresponding to
the Completion of the Execution of the telecommand; Edit
Information: No edition; Model Format: text.

With this configuration, an EFSM in text format is gen-
erated, and shown here in a tabular form (Table I). The
first column shows the state names, extracted from the PUS
document. The state “withoutTC” is not presented in the text,
but it was included in the EFSM as recommended by the
researchers from INPE and ITA who informally evaluated the
generated models.

The second and third columns are names used to identify
input and output events for each state. These names were semi-
automatically extracted from the document during the infor-
mation extraction phase, presented in Figure 2. This simple
example shows the state machines generated to represent the
normal behavior of the Telecommand Verification Service. The
resultant model can be seen in Figure 6.

The model presented in Figure 6 represents a semi-
automatically generated EFSM for the example presented in
Table I. It was redrawn, and the natural language conditions
were suppressed due to the to lack of space. In this model, the
service is represented in two main states: the acceptance of
the telecommand, and the completion of the execution of the
telecommand. For each of these states, there is an available
report. In Figure 6, this report is represented by a natural
language parameter, followed by the terms AckON or AckOFF.
These terms refer to the possibility of sending or not the report
to the control station.

To evaluate the generated model, the model presented in
Figure 6 was compared to the EFSM manually generated
(Figure 7), available at [33].

These models represent the same capabilities configured in
the example (Table I), and some differences between the mod-
els were found: an additional state present in Figure 7, which

TABLE I. OUTPUT FROM THE STATE MACHINE GENERATION
SYSTEM

State Input Event Output Event
without TC TC TC

Acceptance of the TC Acceptance OK
telecommand

Completion of Acceptance OK Completion OK
execution

is represented in the semi-automatically generated EFSM as
a natural language condition; the information about sending
reports to the control station that is represented, in Figure
7, by brackets and hifens. Despite of these differences, the
main information were preserved, and the semi-automatically
generated model can be used by the expert user as a initial
model for the development and testing processes.

This working example helps to answer the first research
question presented in Section I: Can we manage the large
number of different models that can be generated, considering
the combination of mandatory and optional requirements?
The product line approach helps to deal with the different
models which may be generated for the same service, con-
sidering the possible combinations between mandatory and
optional features. The implementation of the prototype and the
evaluation of the generated models helps to answer the last
research question presented in Section I: the models can be
semi-automatically generated, and the possible combinations
are generated in a controlled way, avoiding invalid feature
combination.

VI. FEATURE MODEL VALIDATION
The feature model presented in Figure 4 was validated

within the FaMa FW [34] tool, which represents variability via
feature models. FaMa FW performs many analysis operations
on an FM, for example, checking if the FM has at least one
valid product, computing all valid products for a given FM,
and the variability degree of the FM.

Figure 6. EFSM semi-automatically generated.

Figure 7. EFSM manually generated. Adapted from [33]

144Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

FaMa FW can be used in a shell front-end, or integrated to
other applications. In this work, the shell front-end was used.
All available operations in the command line interface were
applied, and no errors were found.

For instance, the TVS affords two document versions, two
converter tools, two PoS taggers, the different combinations of
capabilities from TVS, the possibility of editing information,
and two model notations to represent the EFSM. Choices be-
tween the several alternatives multiply to give 256 descriptions
of new products. The number gets even larger if it is taken into
account that the PUS document describes 16 services.

The prototype avoids the selection of invalid combinations,
for example, automatically selecting mandatory features from
a selected service by the expert user, or automatically select-
ing/deselecting features related to an optional, or alternative
feature selected by the expert user.

Regarding the selection used in the working example for the
Document Version, the PoS tagger, the text converter and the
selected service, there are 8 different possible combinations of
additional capabilities for the TVS.

Some limitations were identified in the proposed approach:
self-loops and hierarchies cannot be treated unless explicitly
described in the text.

VII. CONCLUSION AND FUTURE WORK
The use of models to represent requirements is widespread

as an alternative to minimize problems during development
and testing processes of computational systems. In an attempt
to help the semi-automatic generation of EFSMs, considering
the variability of requirements in a natural language standard
document, the following questions were posed in Section I:
Can we deal with the large number of different models that
may be generated considering the combination of manda-
tory and optional requirements? Can these models be semi-
automatically generated?

These questions were answered in the article, showing that
variability modeling is fundamental to the successful gener-
ation of state machine models, not only by allowing for the
exploration of numerous combinations, but also for avoiding
the invalid ones.

A prototype tool was implemented to semi-automatically
generate state machine models. The models were generated
according to the proposed feature model, and informally eval-
uated by the INPE and ITA researchers, who also selected
the set of services to be modeled. The state machine models
generated with the prototype tool were validated using a model
checking tool, and by comparing the semi-automatically and
manually generated models for the same services, with the
same configuration.

Results showed that the state machines are very similar.
The similarities are a strong indication that the generated
models could help the analysts in the development and testing
processes of new computational systems, reducing time and
effort needed for manual modeling.

Although the effort needed to extract information from the
document may seem excessive due to the writing style depen-
dency of the standard document, this can be counterbalanced
by several aspects: reduction of time consumed in manual
modeling, minimization of errors due to human interference,
and possibility of automating the testing process. Moreover,
a standard document is used by many organizations around
the world, and these benefits can be extended to all of them.
Another positive trait of the approach is that the use of
structural information of the text during information extraction
process eliminates the need for rewriting sentences, as required
by some available approaches.

Some limitations to the semi-automatic generation are the
treatment of self-loops and of the hierarchical relationships,
already identified in the literature. In the proposed approach,
self-loops could be treated if they were explicitly described in
the text.

As future work, we intend to generate models for other
services described in the PUS document, and evaluate the
prototype from the user perspective, aiming at identifying
usability issues and other problems that might be fixed in the
final version of the tool.

ACKNOWLEDGMENT
The authors would like to thank Ana Maria Ambrósio,

from the National Institute for Space Research, for providing
requirements for service implementation, Emı́lia Villani, from
the Aeronautics Technology Institute, Cecı́lia M. F. Rubira,
from the University of Campinas, Patrick Henrique Brito,
from the Federal University of Alagoas, Marco Vieira, from
Coimbra University and Raphael Winckler de Bettio, from the
University of Lavras, for their valuable help throughout this
research. The authors would also like to thank Fundação de
Amparo à Pesquisa do Estado de Minas Gerais - Fapemig,-
Fundação de Apoio ao Ensino, à Pesquisa e à Extensão -
FAEPEX/Unicamp and Institute of Computing - Unicamp, for
providing financial support.

REFERENCES

[1] V. Ambriola and V. Gervasi, “Processing natural language require-
ments,” in In Proceedings of ASE 1997. IEEE Press, 1997, pp. 36–45.

[2] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2005.

[3] R. Pressman, Engenharia de software. McGraw-Hill, 2006.

[4] T. Yue, L. Briand, and Y. Labiche, “Automatically deriving a UML
analysis model from a use case model,” Simula Research Laboratory,
Tech. Rep. 2010-15 (Version 2), 2013.

[5] D. K. Deeptimahanti and R. Sanyal, “Semi-automatic generation
of UML models from natural language requirements,” in
Proceedings of the ISEC ’11. New York, NY, USA: ACM,
2011, pp. 165–174, retrieved: 2015.09.17. [Online]. Available:
http://doi.acm.org/10.1145/1953355.1953378

[6] L. Kof, “Translation of textual specifications to automata by means of
discourse context modeling,” in Requirements Engineering: Foundation
for Software Quality, ser. LNCS, M. Glinz and P. Heymans, Eds.
Springer Berlin Heidelberg, 2009, vol. 5512, pp. 197–211.

[7] ECSS, Ground systems and operations - Telemetry and telecommand
packet utilization. ECSS-E-70-41A. ESA Publications Division, 2003.

[8] V. S. Alagar and K. Periyasamy, Specification of Software Systems.
Springer London Dordrecht Heidelberg New York, 2011.

[9] L. M. Northrop, “SEI’s software product line tenets,” IEEE Softw.,
vol. 19, no. 4, Jul. 2002, pp. 32–40, retrieved: 2015.09.17. [Online].
Available: http://dx.doi.org/10.1109/MS.2002.1020285

[10] J. van Gurp, J. Bosch, and M. Svahnberg, “On the notion of variability
in software product lines,” in Software Architecture, 2001. Proceedings.
Working IEEE/IFIP Conference on, 2001, pp. 45–54.

[11] K. Kang and H. Lee, “Variability modeling,” in Systems and Software
Variability Management, R. Capilla, J. Bosch, and K.-C. Kang, Eds.
Springer Berlin Heidelberg, 2013, pp. 25–42.

[12] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson,
“Feature-oriented domain analysis (FODA) feasibility study,”
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania, Tech. Rep. CMU/SEI-90-TR-021, 1990, retrieved:
2015.09.17.

[13] K. Czarnecki, “Generative programming: Principles and techniques of
software engineering based on automated configuration and fragment-
based component models,” Ph.D. dissertation, Technical University of
Ilmenau, October 1998.

145Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

[14] K. Czarnecki, S. Helsen, and E. Ulrich, “Staged configuration through
specialization and multilevel configuration of feature models,” Software
Process: Improvement and Practice, vol. 10, 04/2005 2005, pp. 143 –
169.

[15] E. Charniak, “Statistical techniques for natural language parsing,” AI
Magazine, vol. 18, no. 4, 1997, pp. 33–44.

[16] D. Klein and C. D. Manning, “Accurate unlexicalized parsing,” in
Meeting of the Association for Computational Linguistics, 2003, pp.
423–430.

[17] T. Yue, L. Briand, and Y. Labiche, “An automated approach
to transform use cases into activity diagrams,” in Modelling
Foundations and Applications, ser. LNCS, T. Kühne, B. Selic, M.-P.
Gervais, and F. Terrier, Eds. Springer Berlin Heidelberg, 2010,
vol. 6138, pp. 337–353, retrieved: 2015.09.17. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-13595-8 26

[18] ——, “A use case modeling approach to facilitate the transition towards
analysis models: Concepts and empirical evaluation,” in Model Driven
Engineering Languages and Systems, ser. Lecture Notes in Computer
Science, A. Schürr and B. Selic, Eds. Springer Berlin Heidelberg,
2009, vol. 5795, pp. 484–498.

[19] T. Yue and S. Ali, “Bridging the gap between requirements and
aspect state machines to support non-functional testing: Industrial
case studies,” in Modelling Foundations and Applications, ser. Lecture
Notes in Computer Science, A. Vallecillo, J.-P. Tolvanen, E. Kindler,
H. Störrle, and D. Kolovos, Eds. Springer Berlin Heidelberg, 2012,
vol. 7349, pp. 133–145, retrieved: 2015.09.17. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-31491-9 12

[20] S. Ali, T. Yue, L. Briand, and S. Walawege, “A product line
modeling and configuration methodology to support model-based
testing: An industrial case study,” in Model Driven Engineering
Languages and Systems, ser. Lecture Notes in Computer Science,
R. France, J. Kazmeier, R. Breu, and C. Atkinson, Eds. Springer
Berlin Heidelberg, 2012, vol. 7590, pp. 726–742, retrieved: 2015.09.17.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-33666-9 46

[21] D. K. Deeptimahanti and M. A. Babar, “An automated tool for generat-
ing UML models from natural language requirements,” in Proceedings
of ASE’09, Nov 2009, pp. 680–682.

[22] L. Kof and B. Penzenstadler, “Faster from requirements documents to
system models: Interactive semi-automatic translation,” in Proceedings
of the REFSQ 2011 Workshops REEW, EPICAL and RePriCo, the
REFSQ 2011 Empirical Track (Empirical Live Experiment and Em-
pirical Research Fair), and the REFSQ 2011 Doctoral Symposium,
B. Berenbach, M. Daneva, J. Dör, S. Fricker, V. Gervasi, M. Glinz,
A. Herrmann, B. Krams, N. H. Madhavji, B. Paech, S. Schockert, and
N. Seyff, Eds. ICB Research Report- 44, 2011, pp. 14–25.

[23] V. A. d. Santiago Júnior and N. Vijaykumar, “Generating model-based
test cases from natural language requirements for space application
software,” Software Quality Journal, vol. 20, no. 1, 2012, pp. 77–143.

[24] V. A. d. Santiago Junior, N. Vijaykumar, D. Guimaraes, A. Amaral, and
E. Ferreira, “An environment for automated test case generation from
statechart-based and finite state machine-based behavioral models,” in
Proceedings of ICSTW ’08, April 2008, pp. 63–72.

[25] R. Lutz, “Software engineering for space exploration,” Computer,
IEEE Computer Society, vol. 44, no. 10, 2011, pp. 41–46, retrieved:
2015.09.17.

[26] J. Penã, M. G. Hinchey, A. Ruiz-Cortés, and P. Trinidad, “Building the
core architecture of a nasa multiagent system product line,” in AOSE,
ser. LNCS, L. Padgham and F. Zambonelli, Eds. Springer Berlin
Heidelberg, 2007, vol. 4405, pp. 208–224.

[27] K. Weiss, “Reviewing aerospace proposals with respect to software
architecture,” in Aerospace Conference, 2007 IEEE, March 2007, pp.
1–20.

[28] J. Fant, H. Gomaa, and R. Pettit, “Software product line engineering
of space flight software,” in Product Line Approaches in Software
Engineering (PLEASE), 2012 3rd International Workshop on, June
2012, pp. 41–44.

[29] I. Habli, T. Kelly, and I. Hopkins, “Challenges of establishing a software
product line for an aerospace engine monitoring system,” in Software
Product Line Conference, 2007. SPLC 2007. 11th International, Sept
2007, pp. 193–202.

[30] J. G. Greghi, E. Martins, and A. M. B. R. Carvalho, “Semi-automatic
generation of extended finite state machines from natural language
standard documents,” in Dependable Systems and Networks Workshops

(DSN-W), 2015 IEEE International Conference on, June 2015, pp. 45–
50.

[31] C. D. Manning and H. Schütze, Foundations of statistical natural
language processing. MIT press, 1999.

[32] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer,
“Feature-rich part-of-speech tagging with a cyclic dependency
network,” in Proceedings of the NAACL ’03 - Volume 1.
Stroudsburg, PA, USA: Association for Computational Linguistics,
2003, pp. 173–180, retrieved: 2015.09.17. [Online]. Available:
http://dx.doi.org/10.3115/1073445.1073478

[33] R. P. Pontes, P. C. Véras, A. M. Ambrosio, and E. Villani,
“Contributions of model checking and cofi methodology to the
development of space embedded software,” Empirical Software
Engineering, vol. 19, no. 1, 2014, pp. 39–68, retrieved: 2015.09.18.
[Online]. Available: http://dx.doi.org/10.1007/s10664-012-9215-y

[34] Research Group of Applied Software Engineering, “FAMA-FeAture
Model Analyser,” http://www.isa.us.es/fama/, retrieved: 2015.09.17.

146Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

