

EBGSD: Emergence-Based Generative Software Development

Mahdi Mostafazadeh, Mohammad Reza Besharati, Raman Ramsin

Department of Computer Engineering

Sharif University of Technology

Tehran, Iran

e-mail: {mmostafazadeh, besharati}@ce.sharif.edu, ramsin@sharif.edu

Abstract—Generative Software Development (GSD) is an

area of research that aims at increasing the level of

productivity of software development processes. Despite

widespread research on GSD approaches, deficiencies such

as impracticability/impracticality, limited generation power,

and inadequate support for complexity management have

prevented them from achieving an ideal level of generativity.

We propose a GSD approach based on a novel modeling

paradigm called ‘Ivy’. Ivy models the context domain as a

set of conceptual phenomena, and depicts how these

phenomena emerge from one another. Our proposed

approach, Emergence-Based Generative Software

Development (EBGSD), uses Ivy models for modeling how a

software system (as a phenomenon) can emerge from its

underlying phenomena, and can provide an effective means

for managing software complexity. Developers can also elicit

generative patterns from Ivy models and utilize them to

increase the level of reuse and generativity, and thus

improve their productivity.

Keywords-generative software development; phenomenon;

emergence; conceptual model

I. INTRODUCTION

As Mens points out, “Software systems are among the
most intellectually complex artifacts ever created by
humans” [1]. Managing software complexity is indeed the
main impetus behind many research areas in software
engineering. Generative Software Development (GSD)
aims to address this issue through increasing the level of
automation in software development, which also enhances
productivity. Despite widespread research on GSD
approaches such as Model-Driven Development (MDD),
Software Product Lines (SPL), Program Development
from Formal Specifications, Generative Patterns, and
High-Level Programming Languages, there are certain
disadvantages in each of them that have prevented
researchers from achieving an ideal level of generativity in
software development. For instance, in Czarnecki’s GSD
approach [2], two methods (Configuration and
Transformation [3]) have been suggested for transition
from the problem domain to the solution domain; although
this approach is well-established, it has not achieved an
ideal level of generativity, mainly due to deficiency in
generation power, inflexibility of configuration, over-
abstractness, inattention to seamlessness, and ambiguities
in transformation. Furthermore, some of the approaches,
such as MDD and High-Level Programming Languages,
are deficient as to their support for complexity
management. These shortcomings (further explained in
Section II) are the main motivations behind this research.

We propose a GSD approach based on a novel
modeling paradigm called Ivy, originally proposed by

Besharati in a seminar report in 2013 [9]. Phenomenon and
Emergence [13] are the two basic concepts of the Ivy
paradigm. The Ivy paradigm prescribes a way for
modeling the emergence of a conceptual phenomenon
from its underlying phenomena. Emergence is recursive:
an Ivy model takes the form of a digraph that shows how a
phenomenon emerges from its underlying phenomena,
which in turn emerge from other phenomena, and so on.

In the Ivy-based software development approach that
we propose herein (which we have chosen to call
Emergence-Based Generative Software Development, or
EBGSD for short), the target software system is considered
as a phenomenon that emerges from its underlying
phenomena, and is therefore represented as an Ivy model.
The Ivy model helps manage the inherent complexity of
software systems. Furthermore, it is possible to extract
generative patterns from Ivy models and utilize them to
increase the level of reuse in software development
processes, and thereby promote generativity. The
evolutionary nature of the modeling approach makes it
highly practical, and can lead to a high level of flexibility
in software development. We have also proposed a
methodology for applying EBGSD to real-world projects.
EBGSD promotes seamlessness, and can improve software
processes as to smoothness of transition among
development activities.

The rest of the paper is structured as follows: Section II
provides an overview of the research background through
focusing on a number of prominent GSD approaches; in
Section III, we introduce the Ivy modeling paradigm as the
basis for our proposed approach; our EBGSD approach
and its corresponding methodology are proposed in
Sections IV and V, respectively; an illustrative example of
the application of EBGSD is given in Section VI; finally,
Section VII presents the conclusions and suggests ways for
furthering this research.

II. RESEARCH BACKGROUND

Software generation is an old ideal that has been
pursued and evolved over decades. The advent of
programming languages and compilers can be considered
as the first step towards enhanced productivity in software
development. The field has evolved over decades: for
instance, in the context of MDD, programming languages
and compilers have been replaced by Domain-Specific
Languages (DSLs) and model/code generators. Due to the
vastness of the research conducted on software
generativity, it is not possible to discuss all of them here;
hence, we will focus on the four most prominent
approaches, as listed below. Our main purpose in this
section is to demonstrate the motivations for this research,
and to outline the research objective.

108Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Genetic and evolutionary approaches: these
approaches aim at generating complex systems through
creation of a simple generative system to generate new
constructions that ultimately lead to the desired complex
system [4]. The main problem with these approaches is
that due to their high level of inherent randomness, they
are not applicable to systems with specific requirements.

MDD: MDD considers models as first-degree entities
that drive the software development process and serve as
the basis for generating the target software [5]. In this
approach, software is developed through creation of
models at a high-level of abstraction, and then
transformation of these models into their lower-level
counterparts (and ultimately software) based on certain
mappings. Although this approach has become popular in
recent years, there are major problems that prevent it from
achieving an ideal level of automation. For instance,
although this approach intends to reduce software
complexity, it in fact just shifts the complexity [6]:
development is easy and straightforward when the
modeling levels and their corresponding mappings have
been specified, but defining the levels and the mappings
themselves is by no means straightforward.

SPL: in the software product line approach, instead of
developing a single software system from scratch, the
focus is on a family of systems that are developed from a
set of common reusable components by applying a defined
process [7]. To be more precise, a software product line is
a set of software-intensive systems that share a common
set of features, and that are developed from a common set
of core assets [8]. As implied by this definition, SPL aims
to improve the productivity of software development
processes through providing a higher level of reuse; but the
definition makes no hint of any automation involved in the
process. Hence, SPL has not been able to achieve an ideal
level of generativity. Moreover, creating reusable assets is
a costly process, which might even adversely affect the
productivity of software development processes.

Czarnecki’s GSD approach: similar to SPL,
Czarnecki’s approach aims at increasing the productivity
of software development processes through focusing on
families of systems [2]. The main difference between this
approach and the SPL approach is that it emphasizes
automated composition of components, whereas manual
composition is acceptable in SPL. However, just like SPL,
GSD too can have an adverse affect on productivity.

As observed in the above approaches, although they
have strived to increase the level of software generativity,
certain deficiencies prevent them from achieving the ideal
level of generativity in software development, and
overcoming these deficiencies is the objective of this
research. Specifically, genetic approaches enjoy a high
level of automation, but are not practicable. On the other
hand, MDD, SPL, and GSD are practicable, but are
deficient as to complexity management, automation, and
productivity; to be precise, these approaches just replace
development complexity with mapping complexity.

III. IVY PARADIGM

Ivy [9] is a modeling paradigm for representing
conceptual phenomena and their emergence. Conceptual
phenomena are typically regarded as abstractions of real-
world phenomena. Ivy is based on the notion that

conceptual phenomena can be combined, and a new
conceptual phenomenon thus emerges. We model this fact
in the Ivy Model; as seen in Figure 1, an Ivy model is a
directed graph in which nodes represent phenomena, and
arcs represent emergences. As an example, consider the
following three conceptual phenomena: car, red, and
wheel, which are the results of abstraction from their real-
world counterparts. As shown in Figure 1, from a certain
point of view, the phenomena car and red can be
combined, and the phenomenon red car thus emerges.
From another point of view, the phenomena wheel and red
can be combined, and the phenomenon red wheel emerges.
The phenomena car and red wheel can be combined, and
from two different points of view, two phenomena emerge:
red-wheeled car, and red car wheel.

The world of software development is full of
representation, combination and emergence of conceptual
phenomena. Requirements engineering is concerned with
conceptual phenomena directly abstracted from real-world
phenomena. Some of these phenomena are combined, and
other conceptual phenomena emerge as a result. For
instance, the conceptual phenomena actors, use cases and
their relationships are combined and the phenomenon use
case diagram emerges; or in goal-oriented requirements
engineering, certain phenomena (i.e., goals) could be
combined, and a higher-level goal would emerge. Software
platforms are themselves conceptual phenomena that
emerge from other phenomena (e.g., requirements).
Design and implementation phases are concerned with
combination of requirement and platform phenomena and
the emergence of software-solution phenomena.

Since the dependencies in an Ivy model are
unidirectional, it can enhance understandability and
modifiability, leading to better complexity management.
The Ivy model may look very similar to other models such
as goal models [10] and feature models [11], but there are
fundamental differences. In those models, relationships
have very specific semantics: in goal models, relationships
mean Why and How [10], and in feature models,
relationships show the semantics of Has [12]. Whereas in
Ivy, the emergence relationship has a general meaning, and
its concrete semantics depends on the perspective upon
which it is based. The semantic generality of emergence is
an important feature of Ivy, which makes it capable of
tying all conceptual phenomena together. Thus, the
relationships in feature models and goal models can be
considered as special kinds of emergence.

car red wheel

red car

red
wheel

red-
wheeled

car

red car
wheel

Emergence

Phenomenon

Figure 1. Example of an Ivy model.

109Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

In the next section, we will explain our proposed GSD
approach based on the Ivy model.

IV. EBGSD APPROACH

In our proposed Ivy-based software development
approach, EBGSD, the system for which a software
solution is required is considered as a problem-domain
phenomenon, which itself emerges from lower-level
phenomena. We represent this fact in an Ivy model. This
process is applied recursively: for each phenomenon at
every level, we can represent the emergence of that
phenomenon from lower-level phenomena. Although this
process is theoretically endless, we continue it until the
phenomena at the lowest level can be considered as basic
phenomena in the problem domain; these ’leaf’
phenomena are the finest-grained phenomena required for
fulfilling the purposes of the developers. Similarly, we
consider the software platform (solution domain) as a
phenomenon, and draw an Ivy model to represent its
emergence. In the next step, we combine the two Ivy
models (problem-domain and solution-domain), and
software-solution phenomena emerge. The combination
process is initiated in a manual fashion, but it can then
proceed with a certain degree of automation through
producing and applying Ivy generators. This is done by
identifying recurring and reusable patterns of combination,
and capturing them as Ivy generation patterns. An Ivy
generator can then be developed to automatically apply
these patterns, and thereby combine the two source models
(problem-domain and solution-domain) into the destination
model (software-solution).

Ultimately, the code corresponding to each software-
solution phenomenon is produced. To this aim, it is first
determined which underlying software solution
phenomena affect the generation or modification of the
code corresponding to the target phenomenon; a set of
code generators are then developed for these underlying
phenomena, the outputs of which should be conveyed to
the codes of higher-level phenomena. Many of these code
generators are typically reusable, and therefore act as
patterns. The generation logic embodied in the code
generator of each phenomenon utilizes the outputs of
lower-level generators (i.e., the codes of the corresponding
lower-level phenomena) to generate the code of the target
phenomenon. Examples of the abovementioned models
and patterns are provided in Section VI.

In the next section, we propose an iterative-incremental
methodology for applying EBGSD in software
development projects.

V. A METHODOLOGY FOR APPLYING EBGSD

The iterative-incremental software development
methodology hereby proposed for applying EBGSD
consists of five iterative workflows (as shown in Figure 2):
1) Production of Problem-Domain Ivy Model, 2)
Production of Software-Platform Ivy Model, 5) Emergence
of Software-Solution Ivy Model, 4) Production of Ivy
Generators, and 5) Production and Application of Code
Generators. These workflows are iterated in order to
gradually produce the models and the target system. This
methodology is not a full-lifecycle process; it should be
augmented with complementary activities (including
umbrella activities and post-implementation activities) in
order to become practicable. The workflows will be
explained throughout the rest of this section. Section VI
provides examples of the products of these workflows.

A. Production of Problem-Domain Ivy Model

We consider the system (for which we intend to
develop software) as a phenomenon, and draw an Ivy
model depicting the phenomena from which it emerges.
Requirements and structural constituents of the problem
domain are considered as important phenomena in this
model. As previously mentioned, based on different points
of view, different Ivy models can be produced for the same
purpose. Drawing the Ivy model requires no special skills
on the part of the modeler; developers can draw their own
based on their particular perspectives of the system. For
example, an analyst who knows how to model the
requirements as use cases can regard each use case as a
phenomenon emerging from its steps, and each step as a
phenomenon emerging from the phenomena in the
structural view of the system. It should be noted that since
everything is represented as phenomena, it is necessary to
add certain semantic phenomena in order to provide the
readers and the generators with adequate semantics. For
example, if Add Student is a use case (represented as a
phenomenon of the same name), it is necessary to
represent the emergence of this phenomenon from a
phenomenon named Use Case.

B. Production of Software-Platform Ivy Model

We consider the software platform (solution domain)
as a phenomenon, and draw an Ivy model depicting the
phenomena from which it emerges. For example, in the
object-oriented platform, the phenomenon Class emerges
from the phenomena Attribute and Method, the
phenomenon Attribute itself emerges from its Type, and so
on. In some cases, it is enough to just model the solution-
domain phenomena; emergences are left out in such cases.

Production of Problem-
Domain Ivy Model

Production of Ivy
Generators

Production of Software-
Platform Ivy Model

Emergence of Software-
Solution Ivy Model

Production and
Application of Code

Generators

Product:
Problem-Domain
Ivy Model

Product:
Software-Platform
Ivy Model

Products:
-Ivy Generation Patterns
-Ivy Generators

Product:
Software-Solution Ivy Model

Products:
-Code Generation Patterns
-Code Generators
-Target Code

Figure 2. A methodology for applying EBGSD (workflows and products).

110Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

C. Emergence of Software-Solution Ivy Model

The problem-domain and software-platform Ivy
models are combined (partly manually, and mostly by
applying the Ivy generators produced in the next
workflow), and the software-solution Ivy model emerges;
as this workflow is dependent on Ivy generators, it
generally overlaps with the next workflow. It should be
noted that three types of phenomena may affect the
emergence of each software-solution phenomenon:
problem-domain phenomena, solution-domain phenomena,
and other software-solution phenomena. For instance, the
software-solution phenomenon Student emerges from
other software-solution phenomena (Name and Age), as
well as a solution-domain phenomenon (Class) and its
problem-domain counterpart (Student).

D. Production of Ivy Generators

Based on the problem-domain and software-platform
Ivy models, a set of Ivy generation patterns are elicited and
their corresponding Ivy generators are developed (to be
updated iteratively). This workflow starts after
combination patterns have been identified through manual
combination of the source Ivy models, and its results are in
turn used for producing the software-solution Ivy model; it
therefore overlaps with the previous workflow.

E. Production and Application of Code Generators

Based on the software-solution Ivy model, a set of code
generators are developed (as explained in Section IV).
These generators are in fact responsible for realizing what
the literature on emergence calls Radical Novelty [13]:
unpredicted and rich features that cannot be anticipated
until they actually surface.

VI. EXAMPLE

A partial problem-domain Ivy model for an education
system is illustrated in Figure 3. The Ivy model has been
drawn based on two different points of view. The left part
of the model is drawn based on a structural view of the

system. School and Student are two pivotal entities in the
system, so we have represented them as two phenomena
that have both emerged from the Entity phenomenon. The
Bold Tags shown on some of the phenomena indicate the
emergence of those phenomena from a phenomenon with
the same name as the tag; hence, there is no need to
explicitly show the corresponding emergence arcs, and
excessive complexity is thereby avoided. For instance, the
Entity tag on the Student phenomenon is equivalent to an
emergence arc from the Entity phenomenon to the Student
phenomenon. The PD prefix means that the phenomenon
belongs to the problem domain. One important relation in
the system is the relation between a school and its
students; hence, we have represented it as a phenomenon
that has emerged from three phenomena: School, Students,
and Relation.

The right half of the Ivy model is drawn based on a
functional view of the system. One of the system’s use
cases (Add Student) has been represented as a
phenomenon, emerging from its Steps and the Use Case
phenomenon. The use case steps themselves have emerged
from structural-view phenomena and certain semantic
phenomena such as Add and Command; these semantic
phenomena are essential for developing code generators. It
should be noted that these points of view are chosen from
among many possible alternatives; developers draw the Ivy
model based on their own perspectives (e.g., a feature-
driven point of view). Each phenomenon and emergence
itself may possess implicit semantics, which can be
represented separately as an Ivy model; however, due to
practicality considerations, the process of Ivy modeling
should be brought to an end before the complexity
becomes pointlessly overwhelming.

A partial solution-domain Ivy model for the object-
oriented platform is shown in Figure 4. This Ivy model has
been produced based on well-established object-oriented
notions, e.g., a class is an encapsulation of certain
attributes and methods. It should be noted that solution
domains are typically application-independent.

Structural Viewpoint CRUD Viewpoint

School and
Student
Relation

School
Role

IsNavigable

School
Entity

Role

Multiplicity
1

Property

Name

String Entity

Students
Role

IsNavigable

Relation

Student

Age

IsNavigable

Integer

Multiplicity
N

Add
Student

Use CaseEnter Data

Enter Name
Name

Use Case Step

Enter Age
Age

Use Case Step

Add Student
Command

Use Case Step

Add Command

Use Case Step

Education
System

Registration
Subsystem

Records
Subsystem

Figure 3. Partial problem-domain Ivy model for an education system.

111Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Class

Attribute CollectionMethod

IsSingleton

Singleton Class

CollectionAttribute

Class with Some Collection Attributes

Figure 4. Partial solution-domain Ivy model for the object-oriented

platform.

A partial software-solution Ivy model for the education
system is illustrated in Figure 5. This model is obtained
through extracting and applying a set of Ivy generation
patterns. These patterns are illustrated in Table I. Each
pattern has a Name, a Before state, and an After state
(which is basically an extension of the Before state). The
phenomena whose names are shown in braces are
placeholders for any phenomenon that conforms to the
topology of the pattern. As seen in Table I, these
placeholders are used for naming new phenomena in the
After state.

A set of code generation patterns, which can be used in
order to generate the code of our target system, are
illustrated in Table II. Each generation pattern has a Name,
an Ivy pattern that corresponds to the generator, and a
generation logic that generates or modifies the code of
some phenomena using the code of lower-level
phenomena. Table III shows a more complex code
generation pattern corresponding to class reification
(extraction of a class from an association relationship), and
Table IV shows an example of its application to a concrete
Ivy model.

VII. CONCLUSION AND FUTURE WORK

We have proposed EBGSD as a GSD approach, and
have proposed a methodology for applying it to real-world
projects. Achieving high levels of reuse, maintainability,
and complexity management are some important potential
benefits of our proposed approach. Since Ivy generation
patterns and code generation patterns are fine-grained
patterns expressed at a high level of abstraction, EBGSD
can achieve high levels of reuse. EBGSD can increase
maintainability and manage software complexity from two
aspects: increasing software understandability, and
improving modifiability. The Ivy model can be seen as a
software construction map, which can be easily reviewed
through a graph traversal algorithm. On the other hand,
since the couplings among Ivy elements are simple and
unidirectional, it is easy to apply the necessary changes, as
the changes do not propagate in an unmanageable fashion.
Furthermore, because this approach performs all the steps
of software development and produces the target artifacts
in a smooth and seamless manner, it can be a potential
solution to the conflict between modeling and agile
development; model-phobic agile methodologies might
find it worthwhile to invest in Ivy modeling, as Ivy models
are simple and straightforward, and can be used in such a
way that agility is not adversely affected.

School
PD::School

Class

Attribute

Student
PD::Student

Age
PD::Age

PD:Integer

Name
PD::Name
PD:String

school
PD::school
Attribute

students
PD::students

Attribute

Collection

Figure 5. Partial software-solution Ivy model for the education system.

At present, we are evaluating the approach through a
case study. Future research can focus on exploring existing
opportunities for using the approach for enhancing
automation through construction, rather than just reuse.

REFERENCES

[1] T. Mens, “On the Complexity of Software Systems,” Computer,
vol. 45, Aug. 2012, pp. 79–81, doi: 10.1109/MC.2012.273.

[2] K. Czarnecki, “Generative Programming,” PhD thesis, Technical
University of Ilmenau, 1999.

[3] K. Czarnecki, “Overview of Generative Software Development,”
Proc. European Commision and US National Science Foundation
Strategic Research Workshop on Unconventional Programming
Paradigms, 2005, pp. 326–341, doi: 10.1007/11527800_25.

[4] R. Poli, W. B. Langdon, and N. F. McPhee, A Field Guide to
Genetic Programming, Lulu Enterprises, 2008.

[5] M. Volter, T. Stahl, J. Bettin, A. Haase, and S. Helsen, Model-
Driven Software Development: Technology, Engineering,
Management, Wiley, 2013.

[6] B. Hailpern and P. Tarr, “Model-driven development: The good,
the bad, and the ugly,” IBM Systems Journal, vol. 45, July. 2006,
pp. 451–461, doi: 10.1147/sj.453.0451.

[7] S. Apel, D. Batory, C. Kastner, and G. Saake, Feature-Oriented
Software Product Lines: Concepts and Implementation, Springer,
2013.

[8] J. Royer and H. Arboleda, Model-Driven and Software Product
Line Engineering, Wiley, 2012.

[9] M. Besharati, “Generativity in Software Development: Survey and
Analysis,” M.Sc. Seminar Report, Sharif University of
Technology, 2013 (In Persian).

[10] A. Van Lamsweerde, Requirements Engineering: From System
Goals to UML Models to Software Specifications, Wiley, 2009.

[11] C. Kastner and S. Apel, “Feature-Oriented Software Development:
A Short Tutorial on Feature-Oriented Programming, Virtual
Separation of Concerns, and Variability-Aware Analysis,” in
Generative and Transformational Techniques in Software
Engineering IV, J.M. Fernandes, R. Lammel, J. Visser, J. Saraiva,
Eds. Springer, 2013, pp. 346–382, doi: 10.1007/978-3-642-18023-
1.

[12] P. Schobbens, P. Heymans, and J. Trigaux “Feature Diagrams: A
Survey and a Formal Semantics,” Proc. International Conference
on Requirements Engineering, 2006, pp. 139–148, doi:
10.1109/RE.2006.23.

[13] J. Goldstein , “Emergence in complex systems,” in The SAGE
Handbook of Complexity and Management, P. Allen, S. Maguire,
B. Mckelvey, Eds. SAGE, 2011, pp. 65–78.

112Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

TABLE I. A SET OF IVY GENERATION PATTERNS ELICITED FROM THE EXAMPLE

NAME BEFORE AFTER

Emergence of

Classes and

Attributes

{Ph1}Entity

{Ph2}Property

{Ph1}Entity

{Ph2}Property

{Ph1}

{Ph2}

Class

Attribute

Emergence of
Relational

Attribute

{Ph1}IsNavigable

Role

{Ph1}IsNavigable

Role

{Ph1}

Attribute

Specifying

Relational

Attribute Type

{Ph3}{Ph1}

{Ph4}

Attribute

{Ph2} ClassEntity

{Ph3}{Ph1}

{Ph4}

Attribute

{Ph2} ClassEntity

Injecting

String Type
{Ph1}Property

{Ph2}

String

Attribute

{Ph1}Property

{Ph2}

String

Attribute

Injecting

Integer Type
{Ph1}Property

{Ph2}

Integer

Attribute

{Ph1}Property

{Ph2}

Integer

Attribute

Emergence of

Collections
Multiplicity N

Attribute

{Ph2}

Role

{Ph1}

Multiplicity N

Attribute

{Ph2}

Role

{Ph1} Collection

Injecting

Relational

Attribute into

Class

Role

{Ph1} {Ph2}

{Class}

Class

Relation{Relation}

{Ph3}

Attribute

Role

{Ph1} {Ph2}

{Class}

Class

Relation{Relation}

{Ph3}

Attribute

TABLE II. A SET OF CODE GENERATION PATTERNS ELICITED FROM THE EXAMPLE

NAME PATTERN GENERATION LOGIC

Class Code Generation
Class{Ph1}

class {Ph1} { ClassTemplate c;

 Code() { if(c == null) c = Class::Code();
 c.SetName({Ph1});

 return c; } }

Injecting Attribute Code

into Class Code
Class{Ph1}

{Ph2} Attribute

class {Ph1} { ClassTemplate c;

 Code() { if(c == null) c = Class::Code();
 AttributeTemplate a = {Ph2}::Code();

 c.AddAttribute(a) } }

Injecting Type into

Attribute Code
Class{Ph1}

{Ph2} Attribute

class {Ph2} { AttributeTemplate a;

 Code() { if(a == null) a = Attribute::Code();
 a.SetType({Ph1});

 return a; } }

Injecting Collection

Semantic into Attribute

Code

Collection

{Ph1} Attribute

class {Ph1} { AttribueTemplate a;

 Code() { if(a == null) a = Attribute::Code();

 a.SetAsCollection();
 return a; } }

113Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

TABLE III. A MORE COMPLEX CODE GENERATION PATTERN, CORRESPONDING TO CLASS REIFICATION

NAME PATTERN GENERATION LOGIC

Reified-Class

Code

Generation

Reified

{Ph3}

{Ph1}

Class

{Ph2}

class {Ph1} {

 ClassTemplate c;

 Code() {
 c.SetName({Ph1});

 AttributeTemplate a1 = new AttributeTemplate();

 a1.SetType({Ph2});
 a2.SetName(lowercase({Ph2}));

 c.AddAttribute(a1);

 AttributeTemplate a2 = new AttributeTemplate();
 a2.SetType({Ph3});

 a2.SetName(lowercase({Ph3}));

 c.AddAttribute(a2);
 AttributeTemplate a = new AttributeTemplate();

 a.SetType(c);

 a.SetName(plural(lowercase({Ph1})));
 a.SetAsCollection();

 a.SetAsStatic();

 c.AddAtribute(a);
 MethodTemplate m = new MethodTemplate();

 m.SetName("Add"+{Ph1});

 m.AddParameter(1, {Ph2}, lowercase({Ph3}));
 m.AddParameter(2, {Ph3}, lowercase({Ph3}));

 CreateTemplate cr =

 new CreateTemplate({Ph1}, m.GetParameter(1), m.GetParameter(2));
 AddToCollectionTemplate ad =

 new AddToCollectionTemplate(cr.GetResult(), a);

 m.AddStatement(1, (StatementTemplate)cr);
 m.AddStatement(2, (StatementTemplate)ad);

 c.AddMethod(m);

 return c;
 }

}

TABLE IV. EXAMPLE OF APPLYING THE CODE GENERATION PATTERN SHOWN IN TABLE III (CLASS REIFICATION)

CONCRETE IVY TARGET CODE

Reified

Course

Registration

Class

Student

class Registration {
 Student student;

 Course course;

 Registration(Student student, Course course) {
 this.student = student;

 this.course = course;

 }
 static Collection<Registration> registrations;

 static AddRegistration(Student student, Course course) {

 Registration registration = Registration(student, Course);
 registrations.Add(registration);

 }

}

114Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

