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Abstract—Generative Software Development (GSD) is an 

area of research that aims at increasing the level of 

productivity of software development processes. Despite 

widespread research on GSD approaches, deficiencies such 

as impracticability/impracticality, limited generation power, 

and inadequate support for complexity management have 

prevented them from achieving an ideal level of generativity. 

We propose a GSD approach based on a novel modeling 

paradigm called ‘Ivy’. Ivy models the context domain as a 

set of conceptual phenomena, and depicts how these 

phenomena emerge from one another. Our proposed 

approach, Emergence-Based Generative Software 

Development (EBGSD), uses Ivy models for modeling how a 

software system (as a phenomenon) can emerge from its 

underlying phenomena, and can provide an effective means 

for managing software complexity. Developers can also elicit 

generative patterns from Ivy models and utilize them to 

increase the level of reuse and generativity, and thus 

improve their productivity.  

Keywords-generative software development; phenomenon; 

emergence; conceptual model 

I.  INTRODUCTION 

As Mens points out, “Software systems are among the 
most intellectually complex artifacts ever created by 
humans” [1]. Managing software complexity is indeed the 
main impetus behind many research areas in software 
engineering. Generative Software Development (GSD) 
aims to address this issue through increasing the level of 
automation in software development, which also enhances 
productivity. Despite widespread research on GSD 
approaches such as Model-Driven Development (MDD), 
Software Product Lines (SPL), Program Development 
from Formal Specifications, Generative Patterns, and 
High-Level Programming Languages, there are certain 
disadvantages in each of them that have prevented 
researchers from achieving an ideal level of generativity in 
software development. For instance, in Czarnecki’s GSD 
approach [2], two methods (Configuration and 
Transformation [3]) have been suggested for transition 
from the problem domain to the solution domain; although 
this approach is well-established, it has not achieved an 
ideal level of generativity, mainly due to deficiency in 
generation power, inflexibility of configuration, over-
abstractness, inattention to seamlessness, and ambiguities 
in transformation. Furthermore, some of the approaches, 
such as MDD and High-Level Programming Languages, 
are deficient as to their support for complexity 
management. These shortcomings (further explained in 
Section II) are the main motivations behind this research. 

We propose a GSD approach based on a novel 
modeling paradigm called Ivy, originally proposed by 

Besharati in a seminar report in 2013 [9]. Phenomenon and 
Emergence [13] are the two basic concepts of the Ivy 
paradigm. The Ivy paradigm prescribes a way for 
modeling the emergence of a conceptual phenomenon 
from its underlying phenomena. Emergence is recursive: 
an Ivy model takes the form of a digraph that shows how a 
phenomenon emerges from its underlying phenomena, 
which in turn emerge from other phenomena, and so on.  

In the Ivy-based software development approach that 
we propose herein (which we have chosen to call 
Emergence-Based Generative Software Development, or 
EBGSD for short), the target software system is considered 
as a phenomenon that emerges from its underlying 
phenomena, and is therefore represented as an Ivy model. 
The Ivy model helps manage the inherent complexity of 
software systems. Furthermore, it is possible to extract 
generative patterns from Ivy models and utilize them to 
increase the level of reuse in software development 
processes, and thereby promote generativity. The 
evolutionary nature of the modeling approach makes it 
highly practical, and can lead to a high level of flexibility 
in software development. We have also proposed a 
methodology for applying EBGSD to real-world projects. 
EBGSD promotes seamlessness, and can improve software 
processes as to smoothness of transition among 
development activities.  

The rest of the paper is structured as follows: Section II 
provides an overview of the research background through 
focusing on a number of prominent GSD approaches; in 
Section III, we introduce the Ivy modeling paradigm as the 
basis for our proposed approach; our EBGSD approach 
and its corresponding methodology are proposed in 
Sections IV and V, respectively; an illustrative example of 
the application of EBGSD is given in Section VI; finally, 
Section VII presents the conclusions and suggests ways for 
furthering this research. 

II. RESEARCH BACKGROUND 

Software generation is an old ideal that has been 
pursued and evolved over decades. The advent of 
programming languages and compilers can be considered 
as the first step towards enhanced productivity in software 
development. The field has evolved over decades: for 
instance, in the context of MDD, programming languages 
and compilers have been replaced by Domain-Specific 
Languages (DSLs) and model/code generators. Due to the 
vastness of the research conducted on software 
generativity, it is not possible to discuss all of them here; 
hence, we will focus on the four most prominent 
approaches, as listed below. Our main purpose in this 
section is to demonstrate the motivations for this research, 
and to outline the research objective. 
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Genetic and evolutionary approaches: these 
approaches aim at generating complex systems through 
creation of a simple generative system to generate new 
constructions that ultimately lead to the desired complex 
system [4]. The main problem with these approaches is 
that due to their high level of inherent randomness, they 
are not applicable to systems with specific requirements. 

MDD: MDD considers models as first-degree entities 
that drive the software development process and serve as 
the basis for generating the target software [5]. In this 
approach, software is developed through creation of 
models at a high-level of abstraction, and then 
transformation of these models into their lower-level 
counterparts (and ultimately software) based on certain 
mappings. Although this approach has become popular in 
recent years, there are major problems that prevent it from 
achieving an ideal level of automation. For instance, 
although this approach intends to reduce software 
complexity, it in fact just shifts the complexity [6]: 
development is easy and straightforward when the 
modeling levels and their corresponding mappings have 
been specified, but defining the levels and the mappings 
themselves is by no means straightforward. 

SPL: in the software product line approach, instead of 
developing a single software system from scratch, the 
focus is on a family of systems that are developed from a 
set of common reusable components by applying a defined 
process [7]. To be more precise, a software product line is 
a set of software-intensive systems that share a common 
set of features, and that are developed from a common set 
of core assets [8]. As implied by this definition, SPL aims 
to improve the productivity of software development 
processes through providing a higher level of reuse; but the 
definition makes no hint of any automation involved in the 
process. Hence, SPL has not been able to achieve an ideal 
level of generativity. Moreover, creating reusable assets is 
a costly process, which might even adversely affect the 
productivity of software development processes. 

Czarnecki’s GSD approach: similar to SPL, 
Czarnecki’s approach aims at increasing the productivity 
of software development processes through focusing on 
families of systems [2]. The main difference between this 
approach and the SPL approach is that it emphasizes 
automated composition of components, whereas manual 
composition is acceptable in SPL. However, just like SPL, 
GSD too can have an adverse affect on productivity. 

As observed in the above approaches, although they 
have strived to increase the level of software generativity, 
certain deficiencies prevent them from achieving the ideal 
level of generativity in software development, and 
overcoming these deficiencies is the objective of this 
research. Specifically, genetic approaches enjoy a high 
level of automation, but are not practicable. On the other 
hand, MDD, SPL, and GSD are practicable, but are 
deficient as to complexity management, automation, and 
productivity; to be precise, these approaches just replace 
development complexity with mapping complexity. 

III. IVY PARADIGM 

Ivy [9] is a modeling paradigm for representing 
conceptual phenomena and their emergence. Conceptual 
phenomena are typically regarded as abstractions of real-
world phenomena. Ivy is based on the notion that 

conceptual phenomena can be combined, and a new 
conceptual phenomenon thus emerges. We model this fact 
in the Ivy Model; as seen in Figure 1, an Ivy model is a 
directed graph in which nodes represent phenomena, and 
arcs represent emergences. As an example, consider the 
following three conceptual phenomena: car, red, and 
wheel, which are the results of abstraction from their real-
world counterparts. As shown in Figure 1, from a certain 
point of view, the phenomena car and red can be 
combined, and the phenomenon red car thus emerges. 
From another point of view, the phenomena wheel and red 
can be combined, and the phenomenon red wheel emerges. 
The phenomena car and red wheel can be combined, and 
from two different points of view, two phenomena emerge: 
red-wheeled car, and red car wheel.  

The world of software development is full of 
representation, combination and emergence of conceptual 
phenomena. Requirements engineering is concerned with 
conceptual phenomena directly abstracted from real-world 
phenomena. Some of these phenomena are combined, and 
other conceptual phenomena emerge as a result. For 
instance, the conceptual phenomena actors, use cases and 
their relationships are combined and the phenomenon use 
case diagram emerges; or in goal-oriented requirements 
engineering, certain phenomena (i.e., goals) could be 
combined, and a higher-level goal would emerge. Software 
platforms are themselves conceptual phenomena that 
emerge from other phenomena (e.g., requirements). 
Design and implementation phases are concerned with 
combination of requirement and platform phenomena and 
the emergence of software-solution phenomena.  

Since the dependencies in an Ivy model are 
unidirectional, it can enhance understandability and 
modifiability, leading to better complexity management. 
The Ivy model may look very similar to other models such 
as goal models [10] and feature models [11], but there are 
fundamental differences. In those models, relationships 
have very specific semantics: in goal models, relationships 
mean Why and How [10], and in feature models, 
relationships show the semantics of Has [12]. Whereas in 
Ivy, the emergence relationship has a general meaning, and 
its concrete semantics depends on the perspective upon 
which it is based. The semantic generality of emergence is 
an important feature of Ivy, which makes it capable of 
tying all conceptual phenomena together. Thus, the 
relationships in feature models and goal models can be 
considered as special kinds of emergence.  

 

car red wheel

red car

red 
wheel

red-
wheeled 

car

red car 
wheel

Emergence

Phenomenon

 
Figure 1.  Example of an Ivy model. 
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In the next section, we will explain our proposed GSD 
approach based on the Ivy model. 

IV. EBGSD APPROACH  

In our proposed Ivy-based software development 
approach, EBGSD, the system for which a software 
solution is required is considered as a problem-domain 
phenomenon, which itself emerges from lower-level 
phenomena. We represent this fact in an Ivy model. This 
process is applied recursively: for each phenomenon at 
every level, we can represent the emergence of that 
phenomenon from lower-level phenomena. Although this 
process is theoretically endless, we continue it until the 
phenomena at the lowest level can be considered as basic 
phenomena in the problem domain; these ’leaf’ 
phenomena are the finest-grained phenomena required for 
fulfilling the purposes of the developers. Similarly, we 
consider the software platform (solution domain) as a 
phenomenon, and draw an Ivy model to represent its 
emergence. In the next step, we combine the two Ivy 
models (problem-domain and solution-domain), and 
software-solution phenomena emerge. The combination 
process is initiated in a manual fashion, but it can then 
proceed with a certain degree of automation through 
producing and applying Ivy generators. This is done by 
identifying recurring and reusable patterns of combination, 
and capturing them as Ivy generation patterns. An Ivy 
generator can then be developed to automatically apply 
these patterns, and thereby combine the two source models 
(problem-domain and solution-domain) into the destination 
model (software-solution).  

Ultimately, the code corresponding to each software-
solution phenomenon is produced. To this aim, it is first 
determined which underlying software solution 
phenomena affect the generation or modification of the 
code corresponding to the target phenomenon; a set of 
code generators are then developed for these underlying 
phenomena, the outputs of which should be conveyed to 
the codes of higher-level phenomena. Many of these code 
generators are typically reusable, and therefore act as 
patterns. The generation logic embodied in the code 
generator of each phenomenon utilizes the outputs of 
lower-level generators (i.e., the codes of the corresponding 
lower-level phenomena) to generate the code of the target 
phenomenon. Examples of the abovementioned models 
and patterns are provided in Section VI.  

In the next section, we propose an iterative-incremental 
methodology for applying EBGSD in software 
development projects. 

V. A METHODOLOGY FOR APPLYING EBGSD 

The iterative-incremental software development 
methodology hereby proposed for applying EBGSD 
consists of five iterative workflows (as shown in Figure 2): 
1) Production of Problem-Domain Ivy Model, 2) 
Production of Software-Platform Ivy Model, 5) Emergence 
of Software-Solution Ivy Model, 4) Production of Ivy 
Generators, and 5) Production and Application of Code 
Generators. These workflows are iterated in order to 
gradually produce the models and the target system. This 
methodology is not a full-lifecycle process; it should be 
augmented with complementary activities (including 
umbrella activities and post-implementation activities) in 
order to become practicable. The workflows will be 
explained throughout the rest of this section. Section VI 
provides examples of the products of these workflows.  

A. Production of Problem-Domain Ivy Model 

We consider the system (for which we intend to 
develop software) as a phenomenon, and draw an Ivy 
model depicting the phenomena from which it emerges. 
Requirements and structural constituents of the problem 
domain are considered as important phenomena in this 
model. As previously mentioned, based on different points 
of view, different Ivy models can be produced for the same 
purpose. Drawing the Ivy model requires no special skills 
on the part of the modeler; developers can draw their own 
based on their particular perspectives of the system. For 
example, an analyst who knows how to model the 
requirements as use cases can regard each use case as a 
phenomenon emerging from its steps, and each step as a 
phenomenon emerging from the phenomena in the 
structural view of the system. It should be noted that since 
everything is represented as phenomena, it is necessary to 
add certain semantic phenomena in order to provide the 
readers and the generators with adequate semantics. For 
example, if Add Student is a use case (represented as a 
phenomenon of the same name), it is necessary to 
represent the emergence of this phenomenon from a 
phenomenon named Use Case. 

B. Production of Software-Platform Ivy Model 

We consider the software platform (solution domain) 
as a phenomenon, and draw an Ivy model depicting the 
phenomena from which it emerges. For example, in the 
object-oriented platform, the phenomenon Class emerges 
from the phenomena Attribute and Method, the 
phenomenon Attribute itself emerges from its Type, and so 
on. In some cases, it is enough to just model the solution-
domain phenomena; emergences are left out in such cases. 

 

Production of Problem-
Domain Ivy Model

Production of Ivy 
Generators

Production of Software-
Platform Ivy Model

Emergence of Software-
Solution Ivy Model

Production and 
Application of Code 

Generators

Product:
Problem-Domain 
Ivy Model

Product:
Software-Platform 
Ivy Model

Products:
-Ivy Generation Patterns
-Ivy Generators

Product:
Software-Solution Ivy Model

Products:
-Code Generation Patterns
-Code Generators
-Target Code

 

Figure 2.  A methodology for applying EBGSD (workflows and products). 
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C. Emergence of Software-Solution Ivy Model 

The problem-domain and software-platform Ivy 
models are combined (partly manually, and mostly by 
applying the Ivy generators produced in the next 
workflow), and the software-solution Ivy model emerges; 
as this workflow is dependent on Ivy generators, it 
generally overlaps with the next workflow. It should be 
noted that three types of phenomena may affect the 
emergence of each software-solution phenomenon: 
problem-domain phenomena, solution-domain phenomena, 
and other software-solution phenomena. For instance, the 
software-solution phenomenon Student emerges from 
other software-solution phenomena (Name and Age), as 
well as a solution-domain phenomenon (Class) and its 
problem-domain counterpart (Student).  

D. Production of Ivy Generators 

Based on the problem-domain and software-platform 
Ivy models, a set of Ivy generation patterns are elicited and 
their corresponding Ivy generators are developed (to be 
updated iteratively). This workflow starts after 
combination patterns have been identified through manual 
combination of the source Ivy models, and its results are in 
turn used for producing the software-solution Ivy model; it 
therefore overlaps with the previous workflow.  

E. Production and Application of Code Generators 

Based on the software-solution Ivy model, a set of code 
generators are developed (as explained in Section IV). 
These generators are in fact responsible for realizing what 
the literature on emergence calls Radical Novelty [13]: 
unpredicted and rich features that cannot be anticipated 
until they actually surface.  

VI. EXAMPLE 

A partial problem-domain Ivy model for an education 
system is illustrated in Figure 3. The Ivy model has been 
drawn based on two different points of view. The left part 
of the model is drawn based on a structural view of the 

system. School and Student are two pivotal entities in the 
system, so we have represented them as two phenomena 
that have both emerged from the Entity phenomenon. The 
Bold Tags shown on some of the phenomena indicate the 
emergence of those phenomena from a phenomenon with 
the same name as the tag; hence, there is no need to 
explicitly show the corresponding emergence arcs, and 
excessive complexity is thereby avoided. For instance, the 
Entity tag on the Student phenomenon is equivalent to an 
emergence arc from the Entity phenomenon to the Student 
phenomenon. The PD prefix means that the phenomenon 
belongs to the problem domain. One important relation in 
the system is the relation between a school and its 
students; hence, we have represented it as a phenomenon 
that has emerged from three phenomena: School, Students, 
and Relation.  

The right half of the Ivy model is drawn based on a 
functional view of the system. One of the system’s use 
cases (Add Student) has been represented as a 
phenomenon, emerging from its Steps and the Use Case 
phenomenon. The use case steps themselves have emerged 
from structural-view phenomena and certain semantic 
phenomena such as Add and Command; these semantic 
phenomena are essential for developing code generators. It 
should be noted that these points of view are chosen from 
among many possible alternatives; developers draw the Ivy 
model based on their own perspectives (e.g., a feature-
driven point of view). Each phenomenon and emergence 
itself may possess implicit semantics, which can be 
represented separately as an Ivy model; however, due to 
practicality considerations, the process of Ivy modeling 
should be brought to an end before the complexity 
becomes pointlessly overwhelming. 

A partial solution-domain Ivy model for the object-
oriented platform is shown in Figure 4. This Ivy model has 
been produced based on well-established object-oriented 
notions, e.g., a class is an encapsulation of certain 
attributes and methods. It should be noted that solution 
domains are typically application-independent. 

Structural Viewpoint CRUD Viewpoint

School and 
Student 
Relation

School
Role

IsNavigable

School
Entity

Role

Multiplicity
1

Property

Name

String Entity

Students
Role

IsNavigable

Relation

Student

Age

IsNavigable

Integer

Multiplicity
N

Add 
Student

Use CaseEnter Data

Enter Name
Name

Use Case Step

Enter Age
Age

Use Case Step

Add Student 
Command

Use Case Step

Add Command

Use Case Step

Education 
System

Registration 
Subsystem

Records 
Subsystem

Figure 3.  Partial problem-domain Ivy model for an education system. 
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Figure 4.  Partial solution-domain Ivy model for the object-oriented 

platform. 

A partial software-solution Ivy model for the education 
system is illustrated in Figure 5. This model is obtained 
through extracting and applying a set of Ivy generation 
patterns. These patterns are illustrated in Table I. Each 
pattern has a Name, a Before state, and an After state 
(which is basically an extension of the Before state). The 
phenomena whose names are shown in braces are 
placeholders for any phenomenon that conforms to the 
topology of the pattern. As seen in Table I, these 
placeholders are used for naming new phenomena in the 
After state. 

A set of code generation patterns, which can be used in 
order to generate the code of our target system, are 
illustrated in Table II. Each generation pattern has a Name, 
an Ivy pattern that corresponds to the generator, and a 
generation logic that generates or modifies the code of 
some phenomena using the code of lower-level 
phenomena. Table III shows a more complex code 
generation pattern corresponding to class reification 
(extraction of a class from an association relationship), and 
Table IV shows an example of its application to a concrete 
Ivy model.   

VII. CONCLUSION AND FUTURE WORK 

We have proposed EBGSD as a GSD approach, and 
have proposed a methodology for applying it to real-world 
projects. Achieving high levels of reuse, maintainability, 
and complexity management are some important potential 
benefits of our proposed approach. Since Ivy generation 
patterns and code generation patterns are fine-grained 
patterns expressed at a high level of abstraction, EBGSD 
can achieve high levels of reuse. EBGSD can increase 
maintainability and manage software complexity from two 
aspects: increasing software understandability, and 
improving modifiability. The Ivy model can be seen as a 
software construction map, which can be easily reviewed 
through a graph traversal algorithm. On the other hand, 
since the couplings among Ivy elements are simple and 
unidirectional, it is easy to apply the necessary changes, as 
the changes do not propagate in an unmanageable fashion. 
Furthermore, because this approach performs all the steps 
of software development and produces the target artifacts 
in a smooth and seamless manner, it can be a potential 
solution to the conflict between modeling and agile 
development; model-phobic agile methodologies might 
find it worthwhile to invest in Ivy modeling, as Ivy models 
are simple and straightforward, and can be used in such a 
way that agility is not adversely affected. 

School
PD::School

Class

Attribute

Student
PD::Student

Age
PD::Age

PD:Integer

Name
PD::Name
PD:String

school
PD::school
Attribute

students
PD::students

Attribute

Collection

 
Figure 5.  Partial software-solution Ivy model for the education system. 

At present, we are evaluating the approach through a 
case study. Future research can focus on exploring existing 
opportunities for using the approach for enhancing 
automation through construction, rather than just reuse. 
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TABLE I.  A SET OF IVY GENERATION PATTERNS ELICITED FROM THE EXAMPLE 

NAME BEFORE AFTER 

Emergence of 

Classes and 

Attributes 

{Ph1}Entity

{Ph2}Property
 

{Ph1}Entity

{Ph2}Property

{Ph1}

{Ph2}

Class

Attribute
 

Emergence of 
Relational 

Attribute 

{Ph1}IsNavigable

Role
 

{Ph1}IsNavigable

Role

{Ph1}

Attribute
 

Specifying 

Relational 

Attribute Type  

{Ph3}{Ph1}

{Ph4}

Attribute

{Ph2} ClassEntity
 

{Ph3}{Ph1}

{Ph4}

Attribute

{Ph2} ClassEntity
 

Injecting 

String Type  
{Ph1}Property

{Ph2}

String

Attribute
 

{Ph1}Property

{Ph2}

String

Attribute
 

Injecting 

Integer Type  
{Ph1}Property

{Ph2}

Integer

Attribute
 

{Ph1}Property

{Ph2}

Integer

Attribute
 

Emergence of 

Collections  
Multiplicity N

Attribute

{Ph2}

Role

{Ph1}

 

Multiplicity N

Attribute

{Ph2}

Role

{Ph1} Collection

 
Injecting 

Relational 

Attribute into 

Class  

Role

{Ph1} {Ph2}

{Class}

Class

Relation{Relation}

{Ph3}

Attribute
 

Role

{Ph1} {Ph2}

{Class}

Class

Relation{Relation}

{Ph3}

Attribute

 

 

TABLE II.  A SET OF CODE GENERATION PATTERNS ELICITED FROM THE EXAMPLE 

NAME PATTERN GENERATION LOGIC 

Class Code Generation 
Class{Ph1}

 

class {Ph1} {    ClassTemplate c; 

         Code() {    if(c == null) c = Class::Code(); 
          c.SetName({Ph1}); 

          return c;    }    } 

Injecting Attribute Code 

into Class Code 
Class{Ph1}

{Ph2} Attribute
 

class {Ph1} {    ClassTemplate c; 

         Code() {    if(c == null) c = Class::Code(); 
          AttributeTemplate a = {Ph2}::Code(); 

          c.AddAttribute(a)    }    } 

Injecting Type into 

Attribute Code 
Class{Ph1}

{Ph2} Attribute
 

class {Ph2} {    AttributeTemplate a; 

         Code() {    if(a == null) a = Attribute::Code(); 
          a.SetType({Ph1}); 

          return a;    }    } 

Injecting Collection 

Semantic into Attribute 

Code 

Collection

{Ph1} Attribute
 

class {Ph1} {    AttribueTemplate a; 

         Code() {    if(a == null) a = Attribute::Code(); 

          a.SetAsCollection(); 
          return a;    }    } 
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TABLE III.  A MORE COMPLEX CODE GENERATION PATTERN, CORRESPONDING TO CLASS REIFICATION 

NAME PATTERN GENERATION LOGIC 

Reified-Class 

Code 

Generation 

Reified

{Ph3}

{Ph1}

Class

{Ph2}

 

class {Ph1} { 

 ClassTemplate c; 

 Code() { 
  c.SetName({Ph1}); 

  AttributeTemplate a1 = new AttributeTemplate(); 

  a1.SetType({Ph2}); 
  a2.SetName(lowercase({Ph2})); 

  c.AddAttribute(a1); 

  AttributeTemplate a2 = new AttributeTemplate(); 
  a2.SetType({Ph3}); 

  a2.SetName(lowercase({Ph3})); 

  c.AddAttribute(a2); 
  AttributeTemplate a = new AttributeTemplate(); 

  a.SetType(c); 

  a.SetName(plural(lowercase({Ph1}))); 
  a.SetAsCollection(); 

  a.SetAsStatic(); 

  c.AddAtribute(a); 
  MethodTemplate m = new MethodTemplate(); 

  m.SetName("Add"+{Ph1}); 

  m.AddParameter(1, {Ph2}, lowercase({Ph3})); 
  m.AddParameter(2, {Ph3}, lowercase({Ph3})); 

  CreateTemplate cr = 

                                          new CreateTemplate({Ph1}, m.GetParameter(1), m.GetParameter(2)); 
  AddToCollectionTemplate ad = 

                                          new AddToCollectionTemplate(cr.GetResult(), a); 

  m.AddStatement(1, (StatementTemplate)cr); 
  m.AddStatement(2, (StatementTemplate)ad); 

  c.AddMethod(m); 

  return c; 
 } 

} 

 

TABLE IV.  EXAMPLE OF APPLYING THE CODE GENERATION PATTERN SHOWN IN TABLE III (CLASS REIFICATION) 

CONCRETE IVY TARGET CODE 

Reified

Course

Registration

Class

Student

 

class Registration { 
 Student student; 

 Course course; 

 Registration(Student student, Course course) { 
  this.student = student; 

  this.course = course; 

 } 
 static Collection<Registration> registrations; 

 static AddRegistration(Student student, Course course) { 

  Registration registration = Registration(student, Course); 
  registrations.Add(registration); 

 } 

} 
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