
Effects of Recency and Commits Aggregation on Change Guide Method

Based on Change History Analysis

Tatsuya Mori†, Anders Mikael Hagward‡,†, Takashi Kobayashi†

† Graduate School of Information Science & Engineering, Tokyo Institute of Technology,
2–12–1 Ookayama, Meguro, Tokyo, Japan

‡ School of Computer Science and Communication, KTH Royal Institute of Technology,
Stockholm, Sweden

Email: {tmori, anders, tkobaya}@sa.cs.titech.ac.jp

Abstract—To prevent overlooked changes, many studies on change
guide, which suggest necessary code changes with using co-change
rules extracted from a change history, have been performed.
These approaches support developers to find codes that they
should change but have not been done yet when they decide
to commit their changes. The recommendations by existing
approaches are adequately accurate when the tools find can-
didates. However, these tools often fail to detect candidates of
overlooked changes. In this study, we focus on two characteristics
to increase the opportunity of recommendation to detect more
overlooked changes: one is the consideration of recency, i.e.,
we use only recent commits for extracting co-change rules, and
the other is the aggregation of commits for the same task,
i.e., we aggregate consecutive commits fixing the same bug. We
investigate the effects of our methods on the quality of co-change
rules. Experimental results using typical Open Source Software
(OSS) show that the consideration of recency can improve the
recommendation performance. Our approach can extract more
useful co-change rules and recommend more overlooked changes
in a higher rank than without the consideration of recency.

Keywords–change guide; software repository mining; commit
history; software maintenance.

I. INTRODUCTION

As the structure of a software program is scaled up, the
effort for the ripple effect analysis [1] significantly increases
during maintenance, such as bug correction and implementing
new features. For the quality of the product, it is important
to complete modifications. To prevent overlooked changes,
many change guide methods based on static analysis (SA)
have been proposed to analyze the scope of change effects [2].
However, these approaches detect many static dependencies
include ones unrelated to the change propagation [3]. Further,
SA-based approaches fail to find all of necessary dependencies
[4]. It cannot find dependencies between codes and non-code
elements, such as configuration files and ones through third
party libraries.

To overcome the limitations of SA-based change guide
methods, studies focusing on the analysis of a software change
history in version control system has been performed. These
approaches leverage implicit dependencies (aka. logical cou-
pling [5]) extracted from a change history with data mining
techniques.

By using association rule mining, an association between
code changes are extracted as rules that indicate “if a file is

changed, it is highly possible that another file is changed at
the same time”. We refer to those rules as co-change rules.
Zimmermann et al. proposed a co-change recommendation
tool, eROSE, that extracts co-change rules from a change
history and recommends code elements (e.g., methods or
fields) as possible future changes [6]. Their experimental
results showed the usefulness of co-change rules for the change
guide task. They achieved quite high accuracy for the change
recommendation with eROSE. However, the coverage of their
recommendation is a few percent; their approach often fails to
detect candidates of overlooked changes.

We consider that it is important to expand the coverage
for detecting overlooked changes. To increase the opportunity
of change guide, we address this low-coverage issue of co-
change rules based change guide. In this paper, we propose
methods to improve the quality of co-change rules. We focus
on two characteristics of change history. One is rececy, i.e.,
how recent the commit was done, and the other is task, i.e.,
which task the commit was related to.

The dependencies that cause change effect become altered
along with the project being a long life. That means that the
files that had been changed in early term of development might
have no dependencies currently. When we use all of the past
change histories, we might fail to extract useful dependencies
as a consequence of such noise dependencies. We form a
hypothesis that we can extract co-change rules strongly related
to current changes by considering recency.

When partial changes for a bug fix had been overlooked in
past, a developer may have already found these overlooked
changes and corrected them. We should treat these change
history as a single commit for a bug fix to capture the actual
co-change relation. This problem can be generalized as the
granularity of commits. Not only for unintended separation,
the granularity of commits also depends on the nature of
developers and projects. For example, while some developers
commit all changes for one task, others may commit changed
files in separate revisions for the same task. The difference
between developers commits behavior might introduce noise
for analysis of change history.

In this study, we investigated effects of the consideration
of recency and the aggregation of consecutive commits fixing
the same bug on the performance of change guide based on
analyzing change history. We formalize our study with the
following two research questions:

96Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

RQ1 Can we improve the effectiveness of change rec-
ommendations with the consideration of recency?

RQ2 Can we improve the effectiveness of change rec-
ommendations with the aggregation of consecu-
tive commits fixing the same bug?

The main contributions of this paper are:

• We empirically confirm the usefulness of co-change
rules to recommend overlooked changes by using three
large OSS projects.

• We indicate that we can recommend more overlooked
changes significantly by considering recency as a
result of an experiment. Moreover, we can recommend
correct overlooked changes in a higher rank than
without the consideration of recency.

• We also show that we can improve the performance of
recommendation by aggregating consecutive commits
fixing the same bug depending on the projects.

Structure of the Paper. Section II discusses the related
work. Section III describes the experimental setup. Section
IV presents the results of experiments. Section V mentions
threats to validity. Section VI closes with conclusion and
consequences.

II. RELATED WORK

In this section, we survey the related work in the fields
of logical coupling and change guide based on change history
analysis. We also survey the related work using some methods
that we focus on in our study.

A. Logical Coupling
Gall et al. extracted dependencies between files that have a

chance to be changed at the same time by analyzing a change
history of a software system stored in version control system,
e.g., Concurrent Versions System (CVS) or Git [5]. They called
those dependencies “logical coupling.” Logical coupling can
represent implicit dependency that can not be extracted by
static analysis. Lanza et al. proposed Evolution Radar [7]. This
tool integrates both file-level and module-level logical coupling
information and visualizes those logical couplings. Alali et
al. investigated the impact of temporal and spatial locality
on the results of computing logical couplings [8]. Wetzlmaier
et al. reported insights about logical couplings extracting
from the change history of commercial software system [9].
They indicated resulting limitations and recommend further
processing and filtering steps to prepare the dependency data
for subsequent analysis and measurement activities.

Zimmermann et al. proposed eROSE [6]. This tool extracts
method-level logical couplings and recommends code elements
as possible future changes. eROSE extracts logical couplings
as association rules by association rule mining. Zimmermann
et al. performed an experiment to evaluate a performance of
recommendations by eROSE in the scenario that “when a
developer decides to commit changes to the version control
system, can eROSE recommend related changes that have not
been done yet?” As a result of the experiment, Precision of
recommendations by eROSE was 0.69. That means that 69%
of recommendations were correct. The recommendations by
eROSE were adequately accurate. However, Recall was 0.023.
(Note that they showed Recall was 0.75 in their paper. How-
ever, they calculated this value without the ratio of occurrence

of their recommendations. We recalculated actual Recall as the
product of their Recall and their Feedback.) That means that
only 2.3% of overlooked changes could be recommended. The
performance of recommendations by eROSE is satisfactory, but
we are motivated to recommend more overlooked changes.

B. Change guide based on change history analysis
Kagdi et al. proposed sqminer [10]. This tool uncovers

the sequences of changed files spuriously and decreases false
recommendations. Gerardo et al. showed that Granger causality
test can provide logical couplings that are complementary to
those extracted by association rules. They built hybrid rec-
ommender combining recommendations from association rules
and Granger causality. Their experimental results indicated that
the recommender can achieve a higher recall than the two
single techniques [4].

C. Consideration of Recency
In the field of data mining related to segmentation in

direct marketing, Recency, Frequency, and Monetary (RFM)
analysis is often performed [11][12]. RFM means how recently
a customer has purchased (recency), how often they purchase
(frequency), and how much the customer spends (monetary).
On the other hand, an association rule mining is often used
in the field of change guide for developers, and this method
takes only frequency (how often the files are co-changed in
the same commit) into account. The dependencies that cause
change effect become altered along with the project being a
long life, so co-change rules extracted from very old commits
might be useless currently. We form a hypothesis that if we also
take recency into account for an association rule mining, we
can extract co-change rules strongly related to current changes.

D. Aggregation of Commits related to the same task
McIntosh et al. investigated the dependency between source

code files and build files. In their research, they aggregated
commits related to the same task for an association rule
mining to reduce the noise caused by inconsistent developer
commit behavior [13]. They aggregated commits based on
information extracted from Issue Tracking System and called
those aggregated commits “work item”. They found that work
item is a more suitable level of granularity for identifying co-
changing software entities rather than a single commit. An
aim of their study is detecting the logical couplings between
production code changes and build files. On the other hand, an
aim of our study is detecting and recommending overlooked
changes using logical couplings between source code files, but
we think that we can use the same technique for our study.

III. EXPERIMENTAL SETUP

In this section, we describe the tools that we implemented
for our experiments, a dataset, experimental settings to address
our research questions, and evaluation metrics to evaluate the
quality of recommendations.

A. Experimental Environment
We implemented LCExtractor for our experiments. LCEx-

tractor extracts co-change rules by using an Apriori algorithm
[14]. A co-change rule has a form of “A ⇒ B”. The notation
“A ⇒ B” means “if A is changed, it is highly possible that B is
changed at the same time.” “A” and “B” are called the left-hand

97Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

TABLE I. HISTORY OF ANALYZED PROJECTS

Project # Commits in Git since
Eclipse JDT 21,378 2001–2014
Firefox 395,466 1998–2014
Tomcat 13,824 2006–2014

side and the right-hand side, respectively. The left-hand side is
a set of files, and the right-hand side is a file. There are some
differences between LCExtractor and eROSE. LCExtractor
extracts file-level co-change rules, whereas eROSE extracts
method-level change rules. eROSE is an Eclipse plugin. On
the other hand, LCExtractor is the tool that spuriously makes
the situation, where a file that should be changed is overlooked,
and evaluate whether LCExtractor can recommend this over-
looked file or not. Therefore, LCExtractor can not recommend
to developers actually. However, LCExtractor is superior to
eROSE in some ways. LCExtractor can track renamed files
and deleted files in a change history. Due to this extension,
LCExtractor can recommend renamed files using co-change
rules extracted from files before renamed, and exclude deleted
files from candidate recommendations. LCExtractor extracts
co-change rules by analyzing change history in a modern
version control system, Git or Subversion, whereas eROSE
extracts co-change rules by analyzing change history in CVS.

Let us explain the process of LCExtractor recommendation.
We set the range of target commits, e.g., the latest 1,000
commits. LCExtractor extracts co-change rules using older
commits before the target commit. LCExtractor spuriously
makes the situation, where one file that should be changed is
forgotten to commit, by removing a file from the target commit.
Finally, LCExtractor recommends files using co-change rules
and evaluate those recommendations. LCExtractor performs
above processes iteratively for each target commit in order of
old to new. Note that LCExtractor uses commits treated as
targets in previous iterations for extracting co-change rules.

This tool was executed on an iMac Retina 5k, Late 2014,
with a 4GHz Intel Core i7 and 32GB main memory, running
Apple OS X Yosemite.

B. Dataset
For our experiments, we analyzed the change history of

three large open-source projects (Table I). We cloned all of
the commit histories of those projects as of December 2, 2014,
from GitHub.

C. Consideration of recency
To investigate how the consideration of recency affects a

performance of change recommendations, we compared the
case when we used only recent 5,000 commits older than a
target commit for extracting co-change rules, to the case when
we used all of the commits older than a target commit. We
refer to the latter case as a baseline. Concerning Firefox, we
used 20,000 commits older than a target commit instead of all
of the commits for the baseline. It is because the total number
of commits was very large (about 400,000) and it was difficult
for LCExtractor to use all of them for calculating co-change
rules.

The Apriori algorithm used in LCExtractor required two
parameters: minimum support (minsup) and minimum confi-
dence (minconf). We set minsup to be 0.0025 for Eclipse

and Firefox, and 0.001 for Tomcat. We set minconf to be
from 0.1 to 0.9 in steps of 0.1 for each project. As described
in Section III-A, we need to set the range of target commits.
In this experiments, we use 2,000 commits as target commits
for Eclipse, 5,000 commits for Firefox, and 3,000 commits for
Tomcat.

D. Aggregation of consecutive commits fixing the same bug
To investigate how the aggregation of consecutive com-

mits fixing the same bug affects a performance of change
recommendations, we compared the case when we aggregated
consecutive commits fixing the same bug, to the case when
we did not aggregate. We refer to the latter case as a baseline.
In the former case, we referred to a commit message of each
commit and checked if the commit message contains a bug id.
If the commit message partially matched one of the following
regular expressions, we assumed that the commit was fixing a
bug.

• bug[# \t]*[0-9]+
• pr[# \t]*[0-9]+
• Show\ bug\.cgi\?id=[0-9]+

If the messages of consecutive commits contain the same
bug id, we aggregated them, i.e., we treated them as one
commit. In our experiment, we did not take other information
of commits (e.g., author or an interval between each commit)
when we aggregated them.

In this experiment, we used all of the commits older than
a target commit for extracting co-change rules, i.e., we did
not consider recency. Concerning Firefox, we used 20,000
commits older than a target commit instead of all of the
commits as we did in Section III-C. The settings of two
parameters (minsup and minconf) and the range of target
commits were same as Section III-C.

E. Evaluation Metrics
The most important aim of our study is a prevention of

overlooked changes. We used an evaluation setting that was
similar to the error prevention setting in [6] to evaluate the
quality of recommendations. We used Precision and Recall
for the metrics of recommendations. Precision represents the
accuracy of the recommendations. Recall represents the ratio
that the expected files are recommended. Because our aim
is a prevention of overlooked changes, Recall is important
rather than Presicion. In our experiments, the expected rec-
ommendation is only one file. As a result of this experimental
setting, it is possible that Precision become low unfairly
due to many false positives. To evaluate an accuracy of our
recommendations, we also use Mean Reciprocal Rank (MRR).
This metric is not used in [6]. The high MRR score means
that the expected files are recommended in a higher rank.
For example, if most of the expected files place top three
recommendations, MRR is higher than 0.33. The definition
of the metrics for co-change rules is described as follows.

Let the set of co-change rules be Rule = {(l1, r1),
(l2, r2), ..., (lm, rm)}, where li is the left-hand set of files and
ri is the right-hand file described in Section III-A. Let commit
history be Commit = {com1, com2, ..., comn}, where comi

is the set of files. For every changed file c ∈ comi, let
recomi,c be the recommended file set from the changed files

98Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

without c, as described below. In this experiments, c represents
a overlooked change file.

recomi,c =
∪

(lj ,rj)∈Rule

{
rj (if lj ⊆ (comi − {c}))
∅ (else)

(1)

For every overlooked change file c ∈ comi, let ranki,c be
the rank of {c} in recommendations ranked by confidence.
The confidence is one of the measure to evaluate the quality
of an association rule [15]. If the recommended file set do
not contain {c}, ranki,c is 0. Next, we define feedbacki,
precisioni, recalli, and mrri for each comi (note that |{c}|
is always 1).

feedbacki =
1

|comi|
∑

c∈comi

{
1 (if recomi,c ̸= ∅)
0 (else)

(2)

precisioni =
1

feedbacki · |comi|
∑

c∈comi

|recomi,c ∩ {c}|
|recomi,c|

(3)

recalli =
1

|comi|
∑

c∈comi

|recomi,c ∩ {c}|
|{c}|

(4)

mrri =
1

feedbacki · |comi|
∑

c∈comi

1

ranki,c
(5)

Similar to [6], we calculated precisioni with feedbacki
as the denominator, in the sense of “the accuracy of when
the recommendation was displayed.” If feedbacki was 0 (no
recommendation is displayed at this commit), we did not
calculate precisioni and excluded this commit from calcu-
lating PrecisionM . Unlike [6], we calculated recalli without
feedbacki as the denominator, in the sense of “the rate of
detecting overlooked changes for all commits, regardless of
whether of not the recommendation is displayed.” Similar to
Precision, if feedbacki was 0, we did not calculate mrri
and excluded this commit from calculating MRR. Finally,
let PrecisionM , RecallM and MRR be the average of
precisioni, recalli and mrri. Additionally, we define the
F -measure by calculating the harmonic mean of PrecisionM

and RecallM to evaluate the performance of recommenda-
tion comprehensively because there is a trade-off between
Precision and Recall.

Commit∗ = {comi|comi ∈ Commit, feedbacki ̸= 0} (6)

PrecisionM =
1

|Commit∗|
∑

comi∈Commit∗

precisioni (7)

RecallM =
1

|Commit|
∑

comi∈Commit

recalli (8)

TABLE II. MAXIMUM F -MEASURE

Project Considering recency Baseline
Eclipse JDT 0.137 (minconf: 0.5) 0.063 (minconf: 0.5)
Firefox 0.374 (minconf: 0.8) 0.362 (minconf: 0.8)
Tomcat 0.204 (minconf: 0.4) 0.167 (minconf: 0.4)

MRR =
1

|Commit∗|
∑

comi∈Commit∗

mrri (9)

F -measure = 2 · PrecisionM ·RecallM
PrecisionM +RecallM

(10)

IV. EXPERIMENTAL RESULT

We performed two experiments. In this section, we describe
results of each experiment.

A. RQ1: Can we improve the effectiveness of change recom-
mendations with the consideration of recency?

Figure 1 shows the relations between PrecisionM and
RecallM , and the relations between MRR and RecallM for
each project with varying minconf . The red curve represents
the case when we consider recency, and the blue one represents
a baseline.

Figure 1.(a), Figure 1.(c), and Figure 1.(e) show that
RecallM increased with the consideration of recency although
PrecisonM slightly decreased in all projects. As we aim to
find more overlooked changes rather than to make the recom-
mendations more accurate, that is a good result. Particularly
regarding Eclipse, RecallM significantly increased. In Figure
1.(a), a maximum RecallM is 0.28 with the consideration of
recency whereas a maximum RecallM of the baseline is 0.11.
That means that we could detect 2.5 times more overlooked
changes by considering recency than the baseline.

As a result of considering recency, PrecisionM is slightly
decreased. It is because the number of recommendations in-
creased with consideration of recency, i.e., many false positives
decreased PrecisionM even if the set of recommendations
contained a expected recommendation. However, in the view-
point of MRR, the recommendations with consideration of
recency were more accurate than the baseline. In Figure 1.(b)
and Figure 1.(d), MRR clearly increased with consideration
of recency. That means that we could recommend overlooked
changes in a higher rank with consideration of recency than the
baseline. Regarding Tomcat, shown in Figure 1.(f), we could
not improve MRR with consideration of recency. We consider
that it is because MRR was already high without consideration
of recency.

Table II shows a maximum F -measure of each project in
the case of considering recency and a baseline. For all of the
projects, a maximum F -measure achieved by consideration
of recency is higher than the baseline. That means that the
quality of the recommendations by consideration of recency
was comprehensively better than the baseline.

99Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Eclipse	 Firefox	 Tomcat	

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

0" 0.1" 0.2" 0.3" 0.4"

Pr
ec
is
io
n�

Recall�

With"
recency"
Baseline"

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0" 0.1" 0.2" 0.3" 0.4"
M
RR
�

Recall�

With"recency"

Baseline"

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

0" 0.1" 0.2" 0.3"

Pr
ec
is
io
n�

Recall�

With"recency"

Baseline"

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0" 0.1" 0.2" 0.3"

M
RR
�

Recall�

With"recency"

Baseline"

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

0" 0.1" 0.2" 0.3"

Pr
ec
is
io
n�

Recall�

With"recency"

Baseline"

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0" 0.1" 0.2" 0.3"

M
RR
�

Recall�

With"recency"

Baseline"

(a)	

(b)	

(c)	

(d)	

(e)	

(f)	

Figure 1. Performance of recommendations by considering of recency and baseline with varying minconf .The upper graphs show a relation between
PrecisionM and RecallM . The lower graphs show a relation between MRR and RecallM .

� �
The answer to RQ1 is Yes. If we consider recency, we
can extract useful co-change rules that are not able to
be extract without consideration of recency. Therefore,
Recall of recommendations increase with consideration
of recency. Although Precision slightly decrease, we can
recommend overlooked changes in a higher rank than
without consideration of recency.� �

B. RQ2: Can we improve the effectiveness of change recom-
mendations by the aggregation of consecutive commits fixing
the same bug?

Figure 2 shows the relations between PrecisionM and
RecallM for each project with varying minconf . The yellow
curve represents the case when we aggregate consecutive
commits fixing the same bug, and the blue one represents a
baseline.

In Figure 2.(a) and Figure 2.(c), we could not improve
both RecallM and PrecisionM . However, regarding Firefox,
shown in Figure 2.(b), RecallM increased with the aggregation
of consecutive commits fixing the same bug. That means that
we could extract useful co-change rules that were not able to be
extract without aggregation of consecutive commits fixing the
same bug depending on projects. As a result of an additional
investigation, it is reveal that the number of commits used for
extracting co-change rules drastically decreased by aggregating
for Firefox (from 20,000 to 15,918), whereas the number
of those slightly decreased by aggregating for Eclipse (from
21,378 to 21,098) and Tomcat (from 13,824 to 13,661). We
found that the effect that we aggregate consecutive commits
fixing the same bug depended on a nature or commit policy
of the project.

Table III shows a maximum F -measure of each project
in the case of aggregating consecutive commits fixing the
same bug and a baseline. Regarding Firefox, a maximum

TABLE III. MAXIMUM F -MEASURE

Project Aggregating commits Baseline
Eclipse JDT 0.063 (minconf: 0.5) 0.063 (minconf: 0.5)
Firefox 0.414 (minconf: 0.8) 0.362 (minconf: 0.8)
Tomcat 0.167 (minconf: 0.4) 0.167 (minconf: 0.4)

F -measure achieved by aggregation of consecutive commits
fixing the same bug is higher than the baseline. Regarding
Eclipse and Tomcat, maximum F -measure of two cases
are same because we could not improve both RecallM and
PrecisionM as previously described. That means that the
quality of co-change rules can be improved by aggregation
of consecutive commits fixing the same bug in some cases.
Moreover, we also found that aggregation of commits did not
affect the performance of recommendation in a negative way.� �

The answer to RQ2 is, in some cases, Yes. If we aggregate
consecutive commits fixing the same bug, we can extract
useful co-change rules that are not able to be extract
without aggregation of commits depending on projects.
Even if we can not extract more useful co-change rules
by aggregation of commits, there is no harmful effect.� �

V. THREATS TO VALIDITY

Threats to internal validity relate to errors in LCExtractor
and parameter settings. We have carefully checked our code,
however still there could be errors that we did not notice. In
our experiments, we set minsup to be 0.0025 for Eclipse
and Firefox, and 0.001 for Tomcat. It is possible that those
values were not appropriate. At the moment, we have no
method that decide an appropriate minsup prior to performing
experiments.

100Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

0" 0.1" 0.2" 0.3" 0.4"

Pr
ec
is
io
n�

Recall�

With"
aggrega5on"

Baseline"

(b)	
0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

0" 0.1" 0.2" 0.3"

Pr
ec
is
io
n�

Recall�

With"aggrega5on"

Baseline"

(c)	
0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

0" 0.1" 0.2"

Pr
ec
is
io
n�

Recall�

With"aggrega5on"

Baseline"

(a)	

Eclipse	 Firefox	 Tomcat	

Figure 2. Relation between PrecisionM and RecallM by aggregating of commits and baseline with varying minconf .

Threats to external validity relate to the generalizability
of our results. We have analyzed 3 different projects. In the
future, we plan to reduce this threat further by analyzing more
change histories from additional software projects.

Threats to construct validity relate to the experimental
settings. We defined using recent 5,000 commits older than a
target commit for extracting co-change rules as consideration
of recency in the first experiment. However, we did not
perform experiments with changing the number of commits
for extracting co-change rules. In the future, we plan to reduce
this threat further by performing experiments with changing
the number of commits used for extracting co-change rules. In
the second experiment, we aggregated commits based on only
bug id information extracted from commit messages. If we
extract more information from Issue Tracking System or Bug
Tracking System and use them, we might aggregate commits
more appropriately.

VI. CONCLUSION AND FUTURE WORK

Numerous studies for supporting developers to find neces-
sary code changes with using co-change rules extracted from
the change history have been performed. However, the scope
of overlooked changes that existing tools can recommend is
limited. In this paper, we focused on the consideration of
recency and the aggregation of consecutive commits fixing the
same bug. We investigated how they affected the performance
of recommendations by using typical OSS (Eclipse, Firefox,
and Tomcat). As a result of experiments, we could recommend
more overlooked changes by considering recency. We also
could recommend correct files in a higher rank than recom-
mendations without consideration of recency. Concerning the
case when we aggregated consecutive commits fixing the same
bug, we found that the performance of recommendations can
be improved depending on projects.

In the future, we plan to perform experiments using more
change histories from additional software projects to generalize
our theory. In this paper, we indicate that we can improve
the performance of recommendations by considering recency.
However, we suppose that we can not extract useful co-change
rules if we use the small set of commits, e.g., only 10 commits
older than a target commit. We plan to investigate how many
recent commits are sufficient to extract useful co-change rules.

ACKNOWLEDGMENT

This work is partially supported by the Grant-in-Aid for
Scientific Research of MEXT Japan (#24300006, #25730037,
#26280021).

REFERENCES
[1] S. S. Yau, J. S. Collofello, and T. MacGregor, “Ripple effect analysis

of software maintenance,” in Proc. COMPSAC’78, pp. 60–65.
[2] L. C. Briand, J. Wust, and H. Lounis, “Using coupling measurement

for impact analysis in object-oriented systems,” in Proc. ICSM ’99, pp.
475–482.

[3] M. M. Geipel and F. Schweitzer, “Software change dynamics: evidence
from 35 java projects,” in Proc. FSE 2009, pp. 269–272.

[4] G. Canfora, M. Ceccarelli, L. Cerulo, and M. Di Penta, “Using
multivariate time series and association rules to detect logical change
coupling: an empirical study.” in Proc. ICSM 2010, pp. 1–10.

[5] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling based
on product release history,” in Proc. ICSM ’98, pp. 190–198.

[6] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining
version histories to guide software changes,” IEEE TSE, vol. 31, no. 6,
2005, pp. 429–445.

[7] M. D’Ambros, M. Lanza, and M. Lungu, “The evolution radar: Visual-
izing integrated logical coupling information,” in Proc. MSR 2006, pp.
26–32.

[8] A. Alali, B. Bartman, C. D. Newman, and J. I. Maletic, “A preliminary
investigation of using age and distance measures in the detection of
evolutionary couplings,” in Proc. MSR 2013, pp. 169–172.

[9] T. Wetzlmaier, C. Klammer, and R. Ramler, “Extracting dependencies
from software changes: an industry experience report,” in Proc. IWSM-
MENSURA 2014, pp. 163–168.

[10] H. Kagdi, S. Yusuf, and J. I. Maletic, “Mining sequences of changed-
files from version histories,” in Proc. MSR 2006, pp. 47–53.

[11] P. C. Verhoef, P. N. Spring, J. C. Hoekstra, and P. S. Leeflang, “The
commercial use of segmentation and predictive modeling techniques
for database marketing in the netherlands,” Decision Support Systems,
vol. 34, no. 4, 2003, pp. 471–481.

[12] J. A. McCarty and M. Hastak, “Segmentation approaches in data-
mining: A comparison of rfm, chaid, and logistic regression,” Journal
of business research, vol. 60, no. 6, 2007, pp. 656–662.

[13] S. McIntosh, B. Adams, T. H. Nguyen, Y. Kamei, and A. E. Hassan,
“An empirical study of build maintenance effort,” in Proc. ICSE 2011,
pp. 141–150.

[14] P. Bondugula, Implementation and Analysis of Apriori Algorithm for
Data Mining. ProQuest, 2006.

[15] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases,” in ACM SIGMOD Record,
vol. 22, no. 2, 1993, pp. 207–216.

101Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

